Quantitative Genomics and Genetics
 BTRY 4830/6830; PBSB.520I. 03

Lecture 10: Introduction to Hypothesis Testing II

Jason Mezey
Feb 23, 2023 (Th) 8:05-9:20

Announcements

- There will be NO CLASS THIS TUES (Feb 28 = Cornell, Ithaca winter break)
- Homework \#3 will be assigned this evening (Feb 23)
- We will have office hours next week but day and time TBD (I will send a message about this next week)

Summary of lecture 10: Introduction to Hypothesis Testing

- Last lecture, we completed our (general) discussion of estimators and confidence intervals
- Today we will (almost) complete our (general) discussion of hypothesis testing (!!)

Conceptual Overview

Statistics

Estimators

$$
\begin{aligned}
& \text { Estimator: } T(\mathbf{x})=\hat{\theta} \quad \begin{array}{c}
\text { Estimator Sampling } \\
\text { Distribution: }
\end{array} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta \\
& \begin{array}{c}
\uparrow \\
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]}
\end{array} \\
& \text { Distribution: } \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Experiment } \quad \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

Hypothesis Tests

Hypothesis: $T(\mathbf{x}), H_{0}: \theta=c$

$$
\begin{aligned}
& \begin{array}{c}
\uparrow \\
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]}
\end{array} \\
& X=x \quad \not \quad \operatorname{Pr}(X)
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow \quad \uparrow \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Random Variable } \\
& \text { Experiment —— } \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

$\begin{aligned} & \text { Statistic Sampling } \\ & \text { Distribution: }\end{aligned} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta$

Review: Probability models

- Parameter - a constant(s) θ which indexes a probability model belonging to a family of models Θ such that $\theta \in \Theta$
- Each value of the parameter (or combination of values if there is more than on parameter) defines a different probability model: $\operatorname{Pr}(X)$
- We assume one such parameter value(s) is the true model
- The advantage of this approach is this has reduced the problem of using results of experiments to answer a broad question to the problem of using a sample to make an educated guess at the value of the parameter(s)
- Remember that the foundation of such an approach is still an assumption about the properties of the sample outcomes, the experiment, and the system of interest (!!!)

Review: Inference

- Inference - the process of reaching a conclusion about the true probability distribution (from an assumed family probability distributions, indexed by the value of parameter(s)) on the basis of a sample
- There are two major types of inference we will consider in this course: estimation and hypothesis testing
- Before we get to these specific forms of inference, we need to formally define: experimental trials, samples, sample probability distributions (or sampling distributions), statistics, statistic probability distributions (or statistic sampling distributions)

Review: Samples

- Sample - repeated observations of a random variable X, generated by experimental trials
- We already have the formalism to do this and represent a sample of size n, specifically this is a random vector:

$$
[\mathbf{X}=\mathbf{x}]=\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

- As an example, for our two coin flip experiment / number of tails r.v., we could perform $n=2$ experimental trials, which would produce a sample $=$ random vector with two elements
- Note that since we have defined (or more accurately induced!) a probability distribution $\operatorname{Pr}(X)$ on our random variable, this means we have induced a probability distribution on the sample (!!):

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=P_{\mathbf{X}}(\mathbf{x}) \text { or } f_{\mathbf{X}}(\mathbf{x})
$$

Review: Observed Sample

- It is important to keep in mind, that while we have made assumptions such that we can define the joint probability distribution of (all) possible samples that could be generated from n experimental trials, in practice we only observe one set of trials, i.e. one sample
- For example, for our one coin flip experiment / number of tails r.v., we could produce a sample of $\mathrm{n}=10$ experimental trials, which might look like:

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

- As another example, for our measure heights / identity r.v., we could produce a sample of $\mathrm{n}=10$ experimental trails, which might look like:

$$
\mathbf{x}=[-2.3,0.5,3.7,1.2,-2.1,1.5,-0.2,-0.8,-1.3,-0.1]
$$

- In each of these cases, we would like to use these samples to perform inference (i.e. say something about our parameter of the assumed probability model)
- Using the entire sample is unwieldy, so we do this by defining a statistic

Review: Statistics

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta=\left[\mu, \sigma^{2}\right] /$ identity random variable
- If we calculate the following statistic:

$$
T(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

what is $\operatorname{Pr}(T(\mathbf{X}))$?

- Are the distributions of $X_{i}=x_{i}$ and $\operatorname{Pr}(T(\mathbf{X}))$ always the same?

Estimation and Hypothesis Testing

- Thus far we have been considering a "type" of inference, estimation, where we are interested in determining the actual value of a parameter
- We could ask another question, and consider whether the parameter is NOT a particular value
- This is another "type" of inference called hypothesis testing
- We will use hypothesis testing extensively in this course

Estimators

$$
\begin{aligned}
& \text { Estimator: } T(\mathbf{x})=\hat{\theta} \quad \begin{array}{l}
\text { Estimator (Statistic) } \\
\text { Sampling Distribution: }
\end{array} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta \\
& {\left[\begin{array}{l:l}
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]} & \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right)
\end{array}\right.} \\
& X=x \quad \text { ノ } \operatorname{Pr}(X) \\
& \xrightarrow[\substack{\text { Random Variable } \\
X(\omega), \omega \in \Omega}]{X} \\
& \uparrow \quad \uparrow \quad \uparrow \\
& \text { Experiment —— } \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

Hypothesis Tests

Hypothesis: $T(\mathbf{x}), H_{0}: \theta=c$

$$
\begin{aligned}
& \begin{array}{c}
\uparrow \\
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]}
\end{array} \\
& X=x \quad \not \quad \operatorname{Pr}(X)
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow \quad \uparrow \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Random Variable } \\
& \text { Experiment —— } \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

$\begin{aligned} & \text { Statistic Sampling } \\ & \text { Distribution: }\end{aligned} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta$

Review: Hypothesis testing I

- To build this framework, we need to start with a definition of hypothesis
- Hypothesis - an assumption about a parameter
- More specifically, we are going to start our discussion with a null hypothesis, which states that a parameter takes a specific value, i.e. a constant

$$
H_{0}: \theta=c
$$

- For example, for our height experiment / identity random variable, we have $\operatorname{Pr}(X \mid \theta) \sim N\left(\mu, \sigma^{2}\right)$ and we could consider the following null hypothesis:

$$
H_{0}: \mu=0
$$

Review: Hypothesis testing II

- As example, consider our height experiment (reals as sample space) / identity random variable $X /$ normal probability model $\theta=\left[\mu, \sigma^{2}\right] /$ sample $n=I$ (of one height measurement) / identity statistic $T(x)=x$ (takes the height measured height)
- Let's assume that $\sigma^{2}=1$ and say we are interested in testing the following null hypothesis $H_{0}: \mu=5.5$ such that we have the following probability distribution of the statistic under the null hypothesis:

Hypothesis testing III

- Our goal in hypothesis testing is to use a sample to reach a conclusion about the null hypothesis
- To do this, just as in estimation, we will make use of a statistic (a function on the sample), where recall we know the sampling distribution (the probability distribution) of this statistic
- More specifically, we will consider the probability distribution of this statistic, assuming that the null hypothesis is true:

$$
\operatorname{Pr}(T(\mathbf{X}=\mathbf{x} \mid \theta=c))
$$

- Note that this means we have a probability distribution of the statistic given the null hypothesis!!
- We will use this distribution to construct a p-value

p-value I

- We quantify our intuition as to whether we would have observed the value of our statistics given the null is true with a p-value
- p-value - the probability of obtaining a value of a statistic $T(\mathbf{x})$, or more extreme, conditional on H 0 being true
- Formally, we can express this as follows:

$$
p v a l=\operatorname{Pr}\left(|T(\mathbf{x})| \geqslant t \mid H_{0}: \theta=c\right)
$$

- Note that a p-value is a function on a statistic (!!) that takes the value of a statistic as input and produces a p-value as output in the range [0, I]:

$$
\operatorname{pval}(T(x)): T(x) \rightarrow[0,1]
$$

p-value II

- As an intuitive example, let's consider a continuous sample space experiment / identify r.v. / normal family / $n=\mid$ sample / identity statistic, i.e. $T(x)=x$
- Assume we know $\sigma^{2}=1$ (is this realistic?), let's say we are interested in testing the null hypothesis $H_{0}: \mu=0$ and let's say that we assume that if we are wrong the value of μ will be greater than zero (why?)

p-value III

- Same example: let's consider a continuous sample space experiment / identify r.v. / normal family / $n=\mid$ sample / identity statistic, i.e. $T(X)=X /$ assume we know $\sigma^{2}=1 /$ we test the null hypothesis $H_{0}: \mu=0$ and let's assume that if we are wrong the value of μ could be in either direction (again, why?)

P -value IV

- More technically a p-value is determined not just by the probability of the statistic given the null hypothesis is true, but also whether we are considering a "one-sided" or "two-sided" test
- For a one-sided test (towards positive values), the p-value is:

$$
\begin{aligned}
& \operatorname{pval}(T(\mathbf{x}))=\int_{T(\mathbf{x})}^{\infty} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c) d T(\mathbf{x}) \\
& \operatorname{pval}(T(\mathbf{x}))=\sum_{T(\mathbf{x})}^{\max (T(\mathbf{X}))} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c)
\end{aligned}
$$

- For a two-sided test, the p -value is:

$$
\begin{aligned}
\operatorname{pval}(T(\mathbf{x}))= & \int_{-\infty}^{-\mid T(\mathbf{x})-\operatorname{median}(T(\mathbf{X}) \mid} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c) d T(\mathbf{x})+\int_{|T(\mathbf{x})|-\operatorname{median}(T(\mathbf{X}) \mid}^{\infty} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c) d T(\mathbf{x}) \\
& \operatorname{pval}(T(\mathbf{x}))=\sum_{\min (T(\mathbf{X}))}^{-\mid T(\mathbf{x})-\operatorname{median}(T(\mathbf{X}) \mid} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c)+\sum_{\mid T(\mathbf{x})-\operatorname{median}(T(\mathbf{X}) \mid}^{\max (T(\mathbf{X}))} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c)
\end{aligned}
$$

Hypothesis Testing IV

- To build a framework to answer a question about a parameter, we need to start with a definition of hypothesis
- Hypothesis - an assumption about a parameter
- More specifically, we are going to start our discussion with a null hypothesis, which states that a parameter takes a specific value, i.e. a constant

$$
H_{0}: \theta=c
$$

- Once we have assumed a null hypothesis, we know the probability distribution of the statistic, assuming the null hypothesis is true:

$$
\operatorname{Pr}(T(\mathbf{X}=\mathbf{x} \mid \theta=c))
$$

- \mathbf{p}-value - the probability of obtaining a value of a statistic $T(\mathbf{x})$, or more extreme, conditional on H 0 being true:

$$
\begin{aligned}
p v a l= & \operatorname{Pr}\left(|T(\mathbf{x})| \geqslant t \mid H_{0}: \theta=c\right) \\
& \operatorname{pval}(T(x)): T(x) \rightarrow[0,1]
\end{aligned}
$$

- Note that a p-value is a function of a statistic (!!)

Non-Intuitive Hypothesis Testing Concepts I

- We do not know what the true model is (=parameter values are) in a real case!
- We assess a null hypothesis that we define!
- We assess this null hypothesis by calculating a p-value which assumes that the null hypothesis is true!
- We assess this null hypothesis by calculating a p-value from a single sample!
- We make one of two decisions: cannot reject or reject!
- We decide on the value p-value that allows us to decide
- If we reject, we interpret this as strong evidence against the null hypothesis being correct but we do not know for sure!
- If we cannot reject, we cannot say anything (i.e., we have no evidence that the null is wrong and we cannot say that the null is right)!

Hypothesis decisions I

- We use the p-value to make a decision about the null hypothesis
- Specifically, we use the p-value for our sample to decide whether we "accept" (or better stated: "cannot reject") the null hypothesis or "reject" the null hypothesis
- To do this, we use a value α such that if the p-value is below this value we "reject", if it is above we "cannot reject"
- Note that this value of α corresponds to a critical value ("threshold") of the test statistic C_{α}
- For example for a value $\alpha=0.05$ we have the following for our previous examples:

Two-Tailed Normal Distribution, $\mathrm{p}=0.05$

Hypothesis decisions II

- Note that there are two possible outcomes of a hypothesis test: we reject or we cannot reject
- We never know for sure whether we are right (!!)
- If we cannot reject, this does not mean H 0 is true (why? What if our p -value is 0.99 ?)
- The value α is called the type I error, the probability of incorrectly rejecting HO when it is true
- The value $1-\alpha$ is the probability of making a correct decision not to reject H0
- Note that we can control the level of type I error because we decide on the value of α

Assume H 0 is correct (!): $\mu=0$

Sample I:
$\mathrm{T}(\mathbf{x})=-0.755 \hat{\vdots}$
Sample II:

$$
\mathrm{T}(\mathbf{x})=2.8 \hat{\vdots}
$$

two-sided test

Results of hypothesis decisions I: when H0 is correct (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

	H_{0} is true
cannot reject H_{0}	$1-\alpha$, (correct)
reject H_{0}	α, type I error

Results of hypothesis decisions I: when H 0 is correct (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

	H_{0} is true
cannot reject H_{0}	$1-\alpha$, (correct)
reject H_{0}	α, type I error

Results of hypothesis decisions I: when H 0 is correct (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

Assume H 0 is wrong (!): $\mu=3$

Sample I:
$T(\mathbf{x})=-0.755$

Sample II:
$\mathrm{T}(\mathbf{x})=2.8$
two-sided test

Results of hypothesis decisions II: when H 0 is wrong (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

	H_{0} is true	H_{0} is false
cannot reject H_{0}	$1-\alpha$, (correct)	β, type II error
reject H_{0}	α, type I error	$1-\beta$, power (correct)

Results of hypothesis decisions II: when H 0 is wrong (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

	H_{0} is true	H_{0} is false
cannot reject H_{0}	$1-\alpha,($ correct $)$	β, type II error
reject H_{0}	α, type I error	$1-\beta$, power (correct)

Results of hypothesis decisions II: when H 0 is wrong (!!)

- There are only two possible decisions we can make as a result of our hypothesis test: reject or cannot reject

	H_{0} is true	H_{0} is false
cannot reject H_{0}	$1-\alpha,($ correct $)$	β, type II error
reject H_{0}	α, type I error	$1-\beta$, power (correct)

Technical definitions

- Technically, correct decision given H 0 is true is (for one-sided, similar for two-sided):

$$
1-\alpha=\int_{-\infty}^{c_{\alpha}} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c) d T(\mathbf{x})
$$

- Type I error (H0 is true) is (for one-sided):

$$
\alpha=\int_{c_{\alpha}}^{\infty} \operatorname{Pr}(T(\mathbf{x}) \mid \theta=c) d T(\mathbf{x})
$$

- Type II error given H 0 is false is (for one-sided):

$$
\beta=\int_{-\infty}^{c_{\alpha}} \operatorname{Pr}(T(\mathbf{x}) \mid \theta) d T(\mathbf{x})
$$

- Power is (for one-sided):

$$
1-\beta=\int_{c_{\alpha}}^{\infty} \operatorname{Pr}(T(\mathbf{x}) \mid \theta) d T(\mathbf{x})
$$

Important concepts

- REMEMBER (!!): there are two possible outcomes of a hypothesis test: we reject or we cannot reject
- We never know for sure whether we are right (!!)
- If we cannot reject, this does not mean H 0 is true (why?)
- Note that we can control the level of type I error because we decide on the value of α

That's it for today

- Next lecture (Thurs, March 2), we will begin our discussion of quantitative genetics (and genomics)!

