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Announcements

There will be NO CLASS THIS TUES (Feb 28 = Cornell,
Ithaca winter break)

Homework #3 will be assigned this evening (Feb 23)

We will have office hours next week but day and time TBD
(I will send a message about this next week)



Summary of lecture |0: Introduction
to Hypothesis Testing

® |ast lecture, we completed our (general) discussion of
estimators and confidence intervals

® Today we will (almost) complete our (general) discussion of
hypothesis testing (!!)



Conceptual Overview

Experiment

Statistics Assumptions
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Hypothesis Tests
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Review: Probability models

Parameter - a constant(s) § which indexes a probability model
belonging to a family of models ® such that § € ©

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to the problem of
using a sample to make an educated guess at the value of the
parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the sample outcomes, the experiment, and the
system of interest (!!!)



Review: Inference

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



Review: Samples

Sample - repeated observations of a random variable X, generated by
experimental trials

We already have the formalism to do this and represent a sample of size n,
specifically this is a random vector:

[X — X] — [Xl — I, ,Xn — .CI?n]

As an example, for our two coin flip experiment / number of tails r.v., we
could perform n=2 experimental trials, which would produce a sample =
random vector with two elements

Note that since we have defined (or more accurately induced!) a probability
distribution Pr(X) on our random variable, this means we have induced a
probability distribution on the sample (!!):

Pr(X =x)= Pr(X; =z, Xo =29,..., X;, = x,) = Px(x) or fx(x)



Review: Observed Sample

It is important to keep in mind, that while we have made assumptions such that we
can define the joint probability distribution of (all) possible samples that could be
generated from n experimental trials, in practice we only observe one set of trials,
i.e. one sample

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]

In each of these cases, we would like to use these samples to perform inference
(i.e. say something about our parameter of the assumed probability model)

Using the entire sample is unwieldy, so we do this by defining a statistic



Review: Statistics

® As an example, consider our height experiment (reals as
approximate sample space) / normal probability model (with
true but unknown parameters 6 = |p,0°] /identity random
variable

® |f we calculate the following statistic:

T(X) — %ixz
1=1

what is Pr(7T'(X))?
® Are the distributions of Xi = xi and Pr(7T'(X)) always the same?



Estimation and Hypothesis Testing

Thus far we have been considering a “type” of inference, estimation,
where we are interested in determining the actual value of a
parameter

We could ask another question, and consider whether the
parameter is NOT a particular value

This is another “type” of inference called hypothesis testing

We will use hypothesis testing extensively in this course
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Hypothesis Tests

Hypothesis: T'(x), Ho:0 =c avetic sampling - pr.(7(X)|6) , 0 € ©
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Review: Hypothesis testing |

To build this framework, we need to start with a definition of
hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null
hypothesis, which states that a parameter takes a specific value, i.e. a
constant

H():@:C

For example, for our height experiment / identity random variable,
we have Pr(X|0) ~ N(u,c?) and we could consider the following
null hypothesis:

H():,u:()



Review: Hypothesis testing

As example, consider our height experiment (reals as sample space) / identity random
variable X / normal probability model § = [u,aﬂ / sample n=| (of one height
measurement) / identity statistic T(x) = x (takes the height measured height)

Let’s assume that g2 = 1 and say we are interested in testing the following null
hypothesis Hy : 1 = 5.5 such that we have the following probability distribution of the
statistic under the null hypothesis:

X
o
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Hypothesis testing |

Our goal in hypothesis testing is to use a sample to reach a
conclusion about the null hypothesis

To do this, just as in estimation, we will make use of a statistic (a
function on the sample), where recall we know the sampling
distribution (the probability distribution) of this statistic

More specifically, we will consider the probability distribution of this
statistic, assuming that the null hypothesis is true:

Pr(T'(X = x|0 = ¢))

Note that this means we have a probability distribution of the
statistic given the null hypothesis!!

We will use this distribution to construct a p-value



p-value |

We quantify our intuition as to whether we would have observed
the value of our statistics given the null is true with a p-value

p-value - the probability of obtaining a value of a statistic T(X), or
more extreme, conditional on HO being true

Formally, we can express this as follows:
pval = Pr(|T(x)| > t|Hy : 0 = ¢)

Note that a p-value is a function on a statistic (!!) that takes the
value of a statistic as input and produces a p-value as output in the
range [0, I]:

pval(T(x)) : T(x) — [0,1]



p-value |l

® As an intuitive example, let’s consider a continuous sample space
experiment / identify r.v./ normal family / n=1 sample / identity
statistic, i.e. T(x) = x

® Assume we know o? = 1 (is this realistic?), let’s say we are

interested in testing the null hypothesis Hy : 1 = 0 and let’s say that
we assume that if we are wrong the value of 1 will be greater than
zero (why?)

One-Tailed Normal Distribution, p=0.1 One-Tailed Normal Distribution, p=0.05
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p-value I

® Same example: let’s consider a continuous sample space
experiment / identify r.v./ normal family / n=1 sample / identity
statistic, i.e. T(X) = X / assume we know ¢ = 1/ we test the null
hypothesis Hj : 1 = 0 and let’s assume that if we are wrong the value
of [t could be in either direction (again, why?)

Two-Tailed Normal Distribution, p=0.1 Two-Tailed Normal Distribution, p=0.05
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p-value |V

® More technically a p-value is determined not just by the probability of the
statistic given the null hypothesis is true, but also whether we are
considering a “one-sided” or “two-sided” test

® For a one-sided test (towards positive values), the p-value is:
pval(T(x)) = / Pr(T(x)|0 = c)dT'(x)
T'(x)

max(T (X))

poal(T(x)) = Y Pr(T(x)|§ =c)

T(x)

® For a two-sided test, the p-value is:

—|T(x)—median(T(X)] 00
pval(T(x)) = / Pr(T(x)|0 = c)dT(x)—I—/ Pr(T(x)|0 = c¢)dT'(x)
—0o0 |T(x)|—median(T(X)] -
—|T'(x)—median(T(X)| maz (T (X))
poal(T(x)) = > Pr(T(x)|0 = ¢) + > Pr(T(x)|0 = ¢)

min(T(X)) |T(x)—median(T'(X)]



Hypothesis Testing IV

To build a framework to answer a question about a parameter, we need to
start with a definition of hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null hypothesis,
which states that a parameter takes a specific value, i.e. a constant

H()ZH:C

Once we have assumed a null hypothesis, we know the probability
distribution of the statistic, assuming the null hypothesis is true:

Pr(T(X = x|0 = ¢))

p-value - the probability of obtaining a value of a statistic T(x), or more
extreme, conditional on HO being true:

pval = Pr(|T(x)| > t|Hy : 0 = ¢)

pval(T(x)) : T'(x) — [0, 1]

Note that a p-value is a function of a statistic (!!)



Non-Intuitive Hypothesis Testing
Concepts |

We do not know what the true model is (=parameter values are) in a real
case!

We assess a null hypothesis that we define!

We assess this null hypothesis by calculating a p-value which assumes that
the null hypothesis is true!

We assess this null hypothesis by calculating a p-value from a single sample!
We make one of two decisions: cannot reject or reject!
We decide on the value p-value that allows us to decide

If we reject, we interpret this as strong evidence against the null
hypothesis being correct but we do not know for sure!

If we cannot reject, we cannot say anything (i.e., we have no evidence
that the null is wrong and we cannot say that the null is right)!



Hypothesis decisions |

We use the p-value to make a decision about the null hypothesis

Specifically, we use the p-value for our sample to decide whether we “accept” (or better stated:
“cannot reject”) the null hypothesis or “reject” the null hypothesis

To do this, we use a value (X such that if the p-value is below this value we “reject”, if it is above
we “cannot reject”

Note that this value of (X corresponds to a critical value (“threshold”) of the test statistic C¢y

For example for a value @ = 0.05 we have the following for our previous examples:

One-Tailed Normal Distribution, p=0.05 Two-Tailed Normal Distribution, p=0.05

<
o

<
o

0.3
|

Pr(T(x) | HO)

0.1

0.0




Hypothesis decisions |

Note that there are two possible outcomes of a hypothesis test: we
reject or we cannot reject

We never know for sure whether we are right (!!)

If we cannot reject, this does not mean HO is true (why? What if our
p-value is 0.99?)

The value (¥ is called the type | error, the probability of incorrectly
rejecting HO when it is true

The value 1 — « is the probability of making a correct decision not
to reject HO

Note that we can control the level of type | error because we decide
on the value of (¥



one-sided test

Assume HO is correct (!):
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Results of hypothesis decisions |:
when HO is correct (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true
cannot reject Hy | 1-«, (correct)
reject Hy a, type I error
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Results of hypothesis decisions |:
when HO is correct (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject
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cannot reject Hy | 1-a, (correct
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Results of hypothesis decisions |:
when HO is correct (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hj is true
cannot reject Hy | 1-a, (correct)
reject Hy a, type I error
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one-sided test

Assume HO is wrong (!):
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Results of hypothesis decisions |l:
when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true Hy is false
cannot reject Hy | 1-«, (correct) B, type 1I error
reject Hy a, type I error | 1 — 3, power (correct)
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Results of hypothesis decisions |l:
when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true Hy is false
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Results of hypothesis decisions |l:
when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true ‘ Hy is false

cannot reject Hy

1-a, (correct) 5. type 11 error

reject Hy
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Technical definitions

Technically, correct decision given HO is true is (for one-sided, similar
for two-sided):

0= / " Pr(T(x)|0 = ¢)dT(x)
Type | error (HO is true) is (for one-sided):
o= / " PrT(x)[0 = 0)dT(x)
Type Il error given HO is false is (for one-sided):
B = / Pr(T(x)|0)dT (x)
Power is (for one-sided):

- 5= /Pr x)|0)dT (%)



Important concepts

REMEMBER (!!): there are two possible outcomes of a hypothesis
test: we reject or we cannot reject

We never know for sure whether we are right (!!)
If we cannot reject, this does not mean HO is true (why?)

Note that we can control the level of type | error because we decide
on the value of (¥



That’s it for today

® Next lecture (Thurs, March 2), we will begin our discussion of
quantitative genetics (and genomics)!



