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Lecture 10: Introduction to 
Hypothesis Testing II



• There will be NO CLASS THIS TUES (Feb 28 = Cornell, 
Ithaca winter break)

• Homework #3 will be assigned this evening (Feb 23)

• We will have office hours next week but day and time TBD 
(I will send a message about this next week)

Announcements



Summary of lecture 10: Introduction 
to Hypothesis Testing

• Last lecture, we completed our (general) discussion of 
estimators and confidence intervals 

• Today we will (almost) complete our (general) discussion of 
hypothesis testing (!!)
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Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).

7
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X
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�1
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Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n
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Pr(T (X))
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• Parameter - a constant(s)     which indexes a probability model 
belonging to a family of models      such that  

• Each value of the parameter (or combination of values if there is more 
than on parameter) defines a different probability model: Pr(X)

• We assume one such parameter value(s) is the true model

• The advantage of this approach is this has reduced the problem of using 
results of experiments to answer a broad question to the problem of 
using a sample to make an educated guess at the value of the 
parameter(s)

• Remember that the foundation of such an approach is still an assumption 
about the properties of the sample outcomes, the experiment, and the 
system of interest (!!!) 

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 5: Probability Models, Inference, Samples, Statistics, and Estimators

Lecture: February 14; Version 1: February 20; Version 2, March 15

1 Introduction

Last lecture, we discussed some fundamental functions of random variables/vectors and
their probability distributions, the interpretation of which does not depend on the specific
probability model under consideration: expectations (means), variances, covariances (cor-
relations). Today we will discuss some specific probability models that will be particularly
useful to us in our study of quantitative genomics. After introducing these models, we will
introduce inference and discuss the first critical concepts for making inferences: samples,
statistics, and their sampling distributions. We will then begin our discussion of estimation
(a particular class of inference), where we will make use of samples to determine the value
of the parameter of the underlying probability model that is responsible for our sample,
which we will use to (indirectly) make statements about the system we are studying.

2 Probability models

We have now discussed that by defining a probability function Pr(S) and a random variable
X(S) on a sample space S, we define a probability distribution for the random variable
Pr(X), and we can use expectations, variances, and covariance, to characterize aspects
of the probability distribution regardless of the specific form of the distribution. While
choosing a specific probability model (a specific probability distribution) is in theory only
restricted according to the axioms of probability, we in general make use of probability mod-
els that are both intuitive and allow for mathematical conveniences. One such convenience
is the ability to (mathematically) simply define a large number of possible probability mod-
els with a compact equation. For the models we will consider, the way this is done is by
making our probability distributions functions of parameters:

Parameter � a constant which indexes a probability model belonging to a family of
models � such that � ⇥ �.
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Review: Probability models



Review: Inference

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family probability 
distributions, indexed by the value of parameter(s) ) on the basis of a 
sample

• There are two major types of inference we will consider in this 
course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to 
formally define: experimental trials, samples, sample probability 
distributions (or sampling distributions), statistics, statistic probability 
distributions (or statistic sampling distributions) 



Review: Samples
• Sample - repeated observations of a random variable X, generated by 

experimental trials

• We already have the formalism to do this and represent a sample of size n, 
specifically this is a random vector:

• As an example, for our two coin flip experiment / number of tails r.v., we 
could perform n=2 experimental trials, which would produce a sample = 
random vector with two elements

• Note that since we have defined (or more accurately induced!) a probability 
distribution Pr(X) on our random variable, this means we have induced a 
probability distribution on the sample (!!):

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
essential in quantitative genomics (the latter will often be our goal but the former is re-
quired for the latter). We will discuss these in general terms in the next two lectures and in
specific terms throughout the semester. Also, note that one of the nice aspects of assuming
that the probability model of our random variable is from a family indexed in a parameter
set �, the problem of inference is reduced to the problem of learning something about the
specific parameter value of our model �. However, before we get to concepts of inference
concerning �, we need to define several fundamental concepts: samples, statistics, and their
sampling distributions.

4 Samples and i.i.d.

Recall that the starting point of our discussion is a system we want to know something
about, and an experiment that produces a sample space S. We then define a probabil-
ity function and a random variable on S, which define a specific probability distribution
Pr(X = x), where by definition, we have defined a specific probability model (by making
assumptions) indexed by �. In general, we would like to know something about the pa-
rameter of our probability model �, which is defined by the system and experiment (and
by extrapolation from our many assumptions, can be used to learn about the system),
but is unknown to us. Inference is the process of determining something about the true
parameter value, and for this we need a sample.

Sample � repeated observations of a random variable X, generated by experiments.

The ideal set of experiments would have an infinite number of observations, but since
such cases are not possible, we will consider a sample of size n. Now, we have already seen
how to represent a sample, this is simply a random vector:

[X = x] = [X1 = x1, ..., Xn = xn] (7)

where unlike the random vectors we have considered before, each of the n random variables
have the same structure, they are simply indicate di⇥erent observations of the random
variable in our sample, e.g. for n = 2 in our coin flip example(s), we do not define X1=‘#
of Tails’ and X2=‘# of Heads’ but rather X1=‘# of Tails’ of the first flip (or pair of flips)
in an experiment and X2=‘# of Tails’ in the second flip (or pair of flips) in the same
experiment. Now, as we have discussed, defining a probability function on the sample
space Pr(S) induces a probability distribution of a random variable defined on the same
sample space Pr(X) and since our random vector is considering multiple realizations of
this random variable, the Pr(X) induces a probability distribution on our sample vector,
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Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (7)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)
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• It is important to keep in mind, that while we have made assumptions such that we 
can define the joint probability distribution of (all) possible samples that could be 
generated from n experimental trials, in practice we only observe one set of trials, 
i.e. one sample

• For example, for our one coin flip experiment / number of tails r.v., we could 
produce a sample of n = 10 experimental trials, which might look like:

• As another example, for our measure heights / identity r.v., we could produce a 
sample of n=10 experimental trails, which might look like:

• In each of these cases, we would like to use these samples to perform inference 
(i.e. say something about our parameter of the assumed probability model)

• Using the entire sample is unwieldy, so we do this by defining a statistic

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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Review: Statistics

• As an example, consider our height experiment (reals as 
approximate sample space) / normal probability model (with 
true but unknown parameters                    / identity random 
variable  

• If we calculate the following statistic:

what is                  ?

• Are the distributions of Xi = xi and                  always the same?

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,�
2) = fX(x|µ,�

2) =
1p

2⇡�2
e
� (x�µ)2

2�2 (5)

This model therefore has two parameters (µ,�
2) such that ✓ is actually a parameter vec-

tor ✓ =
⇥
µ,�

2
⇤
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: ⇥ = (�1,1). The �

2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ⇥ = [0,1). As we have seen previously, our shorthand for a normal distribution is
X ⇠ N(µ,�

2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⌘ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) ✓) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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perform inference, it is not particularly easy to use the entire sample as is, i.e. in the form
of a vector. We therefore usually define a statistic:

Statistic � a function on a sample.

If we define this statistic as T , it has the following structure:

T (x) = T (x1, x2, ..., xn) = t (13)

where t can be a single number or a vector. For example, let’s define a statistic which takes
a sample and returns the mean of the sample:

T (x) =
1

n

n�

i=1

xi (14)

So for the sample in equation (9) this statistic would be T (x) = 0.5 and for equation (10),
it would be T (x) = 0.01 A statistic on a specific realization of a sample is what we use for
inference, as we will see with the next two lectures.

Let’s consider one last important concept. It is also critical to realize that, just as the
probability function on the sample space Pr(S) induces a probability distribution on the
random variable defined on the sample space Pr(X), which in turn induces a probability
distribution of i.i.d sample vector Pr(X = x), since a statistic is a function on the sample,
the probability distribution of the sample induces a probability distribution on the possible
values the statistic could take Pr(T (X)), i.e. the probability distribution of the statistic
when considering all possible samples. We call this a sampling distribution of the statistic
and as we will see, this also plays an important role in inference.

5 Estimators

Recall that we are interested in knowing about a system and to do this, we conduct an
experiment, which we use to define sample space. We define a probability function and a
random variable X on this sample space, where we assume a specific form for the proba-
bility function, which defines a probability distribution on our random variable. We write
this Pr(X) or Pr(X = x), where the large ‘X’ indicates a random variable that can take
di�erent values, and the little ‘x’ represents a specific value that the random vector takes
(which at the moment we have not assigned). We assume that the probability distribution
of the random variable X has a specific form and is in a ‘family’ of probability distribu-
tions that are indexed by parameter(s) �, e.g. X ⇥ N(µ,⇤2), which we write Pr(X|�) or
Pr(X = x|�). While we have assumed the specific form of the distribution (e.g. a ‘normal’)
we do not know the specific values of the parameters. Our goal is to perform inference to
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Estimation and Hypothesis Testing

• Thus far we have been considering a “type” of inference, estimation, 
where we are interested in determining the actual value of a 
parameter

• We could ask another question, and consider whether the 
parameter is NOT a particular value

• This is another “type” of inference called hypothesis testing

• We will use hypothesis testing extensively in this course
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X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).

7

Random Variable

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).

7

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (S) (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)
S (17)

5 Probability Functions
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2 (see figure
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We are going to define a probability function which map sample spaces to the real line
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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Review: Hypothesis testing I

• To build this framework, we need to start with a definition of 
hypothesis

• Hypothesis - an assumption about a parameter

• More specifically, we are going to start our discussion with a null 
hypothesis, which states that a parameter takes a specific value, i.e. a 
constant

• For example, for our height experiment / identity random variable, 
we have                                and we could consider the following 
null hypothesis:

our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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• As example, consider our height experiment (reals as sample space) / identity random 
variable  X  / normal probability model                    / sample n=1 (of one height 
measurement) / identity statistic T(x) = x (takes the height measured height)

• Let’s assume that                and say we are interested in testing the following null 
hypothesis                     such that we have the following probability distribution of the 
statistic under the null hypothesis:

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,�
2) = fX(x|µ,�

2) =
1p

2⇡�2
e
� (x�µ)2

2�2 (5)

This model therefore has two parameters (µ,�
2) such that ✓ is actually a parameter vec-

tor ✓ =
⇥
µ,�

2
⇤
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: ⇥ = (�1,1). The �

2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ⇥ = [0,1). As we have seen previously, our shorthand for a normal distribution is
X ⇠ N(µ,�

2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⌘ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) ✓) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

��
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ �

c↵

fX(x)dx (5)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
p-value as follows:

pval(T (x)) =

⇥ �

T (x)
Pr(T (x)|µ = 0)dT (x) (6)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

H0 : µ = 5.5 (2)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =

2
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Hypothesis testing III

• Our goal in hypothesis testing is to use a sample to reach a 
conclusion about the null hypothesis

• To do this, just as in estimation, we will make use of a statistic (a 
function on the sample), where recall we know the sampling 
distribution (the probability distribution) of this statistic

• More specifically, we will consider the probability distribution of this 
statistic, assuming that the null hypothesis is true:

• Note that this means we have a probability distribution of the 
statistic given the null hypothesis!!

• We will use this distribution to construct a p-value

Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇤ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⇥ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �⇧ < x1 < ⇧). Note that for our example, fX(x) ⇤ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ �

x1

fX(x)dx (3)

pval(T (x)) : T (x) ⌅ [0, 1] (4)
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p-value 1

• We quantify our intuition as to whether we would have observed 
the value of our statistics given the null is true with a p-value

• p-value - the probability of obtaining a value of a statistic T(x), or 
more extreme, conditional on H0 being true

• Formally, we can express this as follows:

• Note that a p-value is a function on a statistic (!!) that takes the 
value of a statistic as input and produces a p-value as output in the 
range [0, 1]:

each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇠ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⌘ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �1 < x1 < 1). Note that for our example, fX(x) ⇠ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx (2)

pval(T (x)) : T (x) ! [0, 1] (3)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx = 1� FX(x) = 1�
⇥ x1

�1
fX(x)dx (4)
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Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇤ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⇥ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), pval = Pr(|T (x)| � t|H0 : � = c) where x1
reflects the various values our sample could take (i.e. �⇧ < x1 < ⇧). Note that for our
example, fX(x) ⇤ N(0, 1) where for this particular case:

pval(T (x)) =

⇥ �

x1

fX(x)dx (3)

pval(T (x)) : T (x) ⌅ [0, 1] (4)

3



p-value II

• As an intuitive example, let’s consider a continuous sample space 
experiment / identify r.v. / normal family / n=1 sample / identity 
statistic, i.e. T(x) = x

• Assume we know              (is this realistic?), let’s say we are 
interested in testing the null hypothesis                 and let’s say that 
we assume that if we are wrong the value of     will be greater than 
zero (why?)
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where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

��
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ �

c↵

fX(x)dx (5)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
p-value as follows:

pval(T (x)) =

⇥ �

T (x)
Pr(T (x)|µ = 0)dT (x) (6)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e↵ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|✓ = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

Pn
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

Pn
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇠ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⌘ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) > x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �1 < x1 < 1). Note that for our example, fX(x) ⇠ N(0, 1) where for
this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx (3)

pval(T (x)) : T (x) ! [0, 1] (4)

3



p-value III

• Same example: let’s consider a continuous sample space 
experiment / identify r.v. / normal family / n=1 sample / identity 
statistic, i.e. T(X) = X / assume we know             / we test the null 
hypothesis                 and let’s assume that if we are wrong the value 
of     could be in either direction (again, why?)
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where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

��
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ �

c↵

fX(x)dx (5)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
p-value as follows:

pval(T (x)) =

⇥ �

T (x)
Pr(T (x)|µ = 0)dT (x) (6)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e↵ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|✓ = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

Pn
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

Pn
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇠ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
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p-value IV
• More technically a p-value is determined not just by the probability of the 

statistic given the null hypothesis is true, but also whether we are 
considering a “one-sided” or “two-sided” test

• For a one-sided test (towards positive values), the p-value is:

• For a two-sided test, the p-value is:
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Hypothesis Testing IV
• To build a framework to answer a question about a parameter, we need to 

start with a definition of hypothesis

• Hypothesis - an assumption about a parameter

• More specifically, we are going to start our discussion with a null hypothesis, 
which states that a parameter takes a specific value, i.e. a constant

• Once we have assumed a null hypothesis, we know the probability 
distribution of the statistic, assuming the null hypothesis is true:

• p-value - the probability of obtaining a value of a statistic T(x), or more 
extreme, conditional on H0 being true:

• Note that a p-value is a function of a statistic (!!)

our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇤ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⇥ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �⇧ < x1 < ⇧). Note that for our example, fX(x) ⇤ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ �

x1

fX(x)dx (3)

pval(T (x)) : T (x) ⌅ [0, 1] (4)
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⇥ x1
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fX(x)dx (4)
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Non-Intuitive Hypothesis Testing 
Concepts I

• We do not know what the true model is (=parameter values are) in a real 
case!

• We assess a null hypothesis that we define!

• We assess this null hypothesis by calculating a p-value which assumes that 
the null hypothesis is true!

• We assess this null hypothesis by calculating a p-value from a single sample!

• We make one of two decisions: cannot reject or reject!

• We decide on the value p-value that allows us to decide

• If we reject, we interpret this as strong evidence against the null 
hypothesis being correct but we do not know for sure!

• If we cannot reject, we cannot say anything (i.e., we have no evidence 
that the null is wrong and we cannot say that the null is right)! 



• We use the p-value to make a decision about the null hypothesis

• Specifically, we use the p-value for our sample to decide whether we “accept” (or better stated: 
“cannot reject”) the null hypothesis or “reject” the null hypothesis

• To do this, we use a value       such that if the p-value is below this value we “reject”, if it is above 
we “cannot reject” 

• Note that this value of      corresponds to a critical value (“threshold”) of the test statistic  

• For example for a value                we have the following for our previous examples:

Hypothesis decisions I
Pr

(T
(x

) 
| H

0)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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p-value as follows:

pval(T (x)) =

Z 1

T (x)
Pr(T (x)|µ = 0)dT (x) (7)

Such cases do occur, but although we are often in situations we might not have an ex-
pectation in either direction, where for our example we might not know whether the true
value of µ is going to be positive or negative. In such cases, it is more optimal to define a
two-sided test, where we define our p-value as follows:

pval(T (x) =

Z �T (x)

�1
Pr(T (x)|µ = 0)dT (x) +

Z 1

T (x)
Pr(T (x)|µ = 0)dT (x) (8)

where we could produce an analogous equation for a statistic with a di↵erent range (by
defining the integration over the range of the statistic) or for a statistic with a discrete
distribution (by using a summation instead of an integral).

For a two-sided test, in our example, our critical value is defined such that we reject if
x1 > c↵ or x1 6 �c↵ (or |x1| > c↵):

↵ =

Z �c↵

�1
fX(x)dx+

Z 1

c↵

fX(x)dx (9)

Note that the value of c↵ in our example is going to have to be larger (smaller) than in a
two-sided test than in a one-sided test to preserve the same amount of probability ↵. As a
side-note, while we define p-values (and ‘rejection regions’) in terms of extreme parts of the
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pval(T (x)) =
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fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4



• Note that there are two possible outcomes of a hypothesis test: we 
reject or we cannot reject

• We never know for sure whether we are right (!!)

• If we cannot reject, this does not mean H0 is true (why?  What if our 
p-value is 0.99?)

• The value      is called the type I error, the probability of incorrectly 
rejecting H0 when it is true

• The value            is the probability of making a correct decision not 
to reject H0

• Note that we can control the level of type I error because we decide 
on the value of 

Hypothesis decisions II

same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < ↵ is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. ↵ is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� ↵ is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of ↵, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di↵erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with �

2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider ↵ = 0.05 (which means c↵ = 1.65) we can calculate the probability 1 � � of
rejecting H0:

1� � =

Z 1

c↵

fX(x|µ = 1,�2 = 1)dx (10)

(see class for a diagram). We can also calculate the probability � that we will incorrectly,
not reject H0:

� =

Z c↵

�1
fX(x|µ = 1,�2 = 1)dx (11)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� � is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
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Assume H0 is correct (!): 
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than

2

T(x)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx = 1� FX(x) = 1�
⇥ x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =
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assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:
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where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

Results of hypothesis decisions I: 
when H0 is correct (!!)
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Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)
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(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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T(x)

Sample 1:

Sample 1I:

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

=0.05

=1.64

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

=0.05

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a

4

=1.96-

p = 0.005

p = 0.45

p = 0.0025

p = 0.77

T(x)= -0.755

T(x)= 2.8

on
e-

sid
ed

 te
st tw

o-sided test

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 7: Hypothesis Testing I

Lecture: February 21; Version 1: February 19; Version 2: March 15

1 Introduction

Last lecture, we discussed estimation (also called ‘point’ estimation) where the goal was to
make a reasonable guess (=estimate) concerning the true (unknown) value of a parameter
from a sample. Today, we are going to begin discussion of the other major ‘type’ of
inference which is hypothesis testing. Our goal here is not to say what the actual value of
the parameter is, but rather, to say with some confidence what this parameter value is not.
As we will see, hypothesis testing has a natural fit with the goals of quantitative genomics.
µ = 3

2 Hypothesis Testing

As a review, recall our broader set-up, where we are interested in knowing about a system.
To do this, we conduct an experiment, which produces a sample, where we define a sample
space S the elements of which include all possible sample outcomes. We assume a specific
probability model, by defining a probability function Pr(S), and a random variable X(S)
on this sample space, where defining the probability function Pr(S) induces a probabil-
ity distribution on our random variable Pr(X) or Pr(X = x). We assume that our true
probability distribution is in a ‘family’ of probability distributions that are indexed by
parameter(s) �, e.g. X � N(µ,⇥2), which we write Pr(X|�) or Pr(X = x|�), where we do
not know the specific values of the parameters. Previously, our goal was to estimate the
value of this unknown parameter value using a sample, which are i.i.d observations of our
random variable X written X = [X1, ..., Xn] or (X = x) = [X1 = x1, ..., Xn = xn]. Our
assumed probability distribution on our random variable X, induces a (joint) probability
distribution over all the possible samples that we could produce: Pr(X) = Pr(X1, ..., Xn)
or Pr(X = x) = Pr(X1 = x1, ..., Xn = xn) and when our sample is i.i.d, each of the
individual observations in our sample has a probability distribution that is the same as
our random variable Pr(Xi = xi|�). The process of estimation requires that we define a

1



• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

Results of hypothesis decisions II: 
when H0 is wrong (!!)

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)
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Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error
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Results of hypothesis decisions II: 
when H0 is wrong (!!)

• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)

1

Pr
(T

(x
) 

| H
0)

Results of hypothesis decisions II: 
when H0 is wrong (!!)

• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

T(x)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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• Technically, correct decision given H0 is true is (for one-sided, similar 
for two-sided):

• Type I error (H0 is true) is (for one-sided):

• Type II error given H0 is false is (for one-sided):

• Power is (for one-sided):

Technical definitions

(see class for a diagram). We can also calculate the probability ⇥ that we will incorrectly,
not reject H0:

⇥ =

� c↵

�1
fX(x|µ = 1,⌅2 = 1)dx (13)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� ⇥ is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
test statistic with a continuous distribution, a one sided test, and (unbeknownst to us) the
true parameter has value ⇤ = w, the power is:

1� � =

� c↵

�1
Pr(T (x)|⇤ = c)dT (x) (14)

� =

� 1

c↵

Pr(T (x)|⇤ = c)dT (x) (15)

⇥ =

� c↵

�1
Pr(T (x)|⇤)dT (x) (16)

1� ⇥ =

� 1

c↵

Pr(T (x)|⇤)dT (x) (17)

and for a two sided test:

1� ⇥ =

� �c↵

�1
Pr(T (x)|⇤ = w)dT (x) +

� 1

c↵

Pr(T (x)|⇤ = w)dT (x) (18)

A few comments:

1. ⇥ is the type II error of the test, i.e. the probability of making the incorrect decision
do not reject H0, given that H0 is false.

2. Unlike the case of �, the type I error (and 1-�), which we know exactly (and set),
we will never know the true value of 1� ⇥, the power (or ⇥, the type II error), since
these depend on the true value of the parameters, which are unknown to us.

3. However, we can use strategies to set up our hypothesis tests in ways where we can
control power and type II error compared to other alternative ways of setting up
hypothesis tests (as we will see below and discuss next lecture).

With these concepts in hand, we can write out the following cases, which depend on the
two outcomes of a hypothesis test (we reject H0 or do not reject H0) and that depend on
the two possible cases: H0 is true or H0 is false:

H0 is true H0 is false
cannot reject H0 1-�, (correct) ⇥, type II error

reject H0 �, type I error 1� ⇥, power (correct)
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• REMEMBER (!!): there are two possible outcomes of a hypothesis 
test: we reject or we cannot reject

• We never know for sure whether we are right (!!)

• If we cannot reject, this does not mean H0 is true (why?)

• Note that we can control the level of type I error because we decide 
on the value of 

Important concepts

same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < ↵ is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. ↵ is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� ↵ is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of ↵, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di↵erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with �

2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider ↵ = 0.05 (which means c↵ = 1.65) we can calculate the probability 1 � � of
rejecting H0:

1� � =

Z 1

c↵

fX(x|µ = 1,�2 = 1)dx (10)

(see class for a diagram). We can also calculate the probability � that we will incorrectly,
not reject H0:

� =

Z c↵

�1
fX(x|µ = 1,�2 = 1)dx (11)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� � is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
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That’s it for today

• Next lecture (Thurs, March 2), we will begin our discussion of 
quantitative genetics (and genomics)!


