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Announcements

e Office hours this week will be TOMORROW (Fri, March 3) -
zoom information will be set today

® Homework corrections (=I| will post a correction!):

® For instructions question 2 parts [f-j] in the “PLEASE
NOTE THE FOLLOWING” section the equation: X = Z

shouldbe X = 1 LS X M

® 2g“under the null hypothesis in part [a]” - part [a] should
be part [f]!

® Homework hint (!!) for (part of) 2f:

code to answer for Hy > 0: ‘qnorm(0.95, 0, 1 / sqrt(20), lower.tail = TRUE)’



Summary of lecture | |: Introduction
to Hypothesis Testing

® |ast lecture, we almost completed our (general) discussion of
hypothesis testing (!!)

® Today, we will complete the discussion of hypothesis testing
and begin discussing genetic modeling!



Conceptual Overview

Experiment

Statistics Assumptions
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Estimators
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Hypothesis Tests
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Review: Probability models

Parameter - a constant(s) § which indexes a probability model
belonging to a family of models ® such that § € ©

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to the problem of
using a sample to make an educated guess at the value of the
parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the sample outcomes, the experiment, and the
system of interest (!!!)



Review: Inference

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



Review: Samples

Sample - repeated observations of a random variable X, generated by
experimental trials

We already have the formalism to do this and represent a sample of size n,
specifically this is a random vector:

[X — X] — [Xl — I, ,Xn — .CI?n]

As an example, for our two coin flip experiment / number of tails r.v., we
could perform n=2 experimental trials, which would produce a sample =
random vector with two elements

Note that since we have defined (or more accurately induced!) a probability
distribution Pr(X) on our random variable, this means we have induced a
probability distribution on the sample (!!):

Pr(X =x)= Pr(X; =z, Xo =29,..., X;, = x,) = Px(x) or fx(x)



Review: Observed Sample

It is important to keep in mind, that while we have made assumptions such that we
can define the joint probability distribution of (all) possible samples that could be
generated from n experimental trials, in practice we only observe one set of trials,
i.e. one sample

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]

In each of these cases, we would like to use these samples to perform inference
(i.e. say something about our parameter of the assumed probability model)

Using the entire sample is unwieldy, so we do this by defining a statistic



Review: Statistics

® As an example, consider our height experiment (reals as
approximate sample space) / normal probability model (with
true but unknown parameters 6 = |p,0°] /identity random
variable

® |f we calculate the following statistic:

T(X) — %ixz
1=1

what is Pr(7T'(X))?
® Are the distributions of Xi = xi and Pr(7T'(X)) always the same?



Hypothesis Tests

Hypothesis: T'(x), Ho:0 =c avetic sampling - pr.(7(X)|6) , 0 € ©

Distribution:

1 f
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Review: Hypothesis testing

To build this framework, we need to start with a definition of
hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null
hypothesis, which states that a parameter takes a specific value, i.e. a
constant

H():@:C

For example, for our height experiment / identity random variable,
we have Pr(X|0) ~ N(u,c?) and we could consider the following
null hypothesis:

H():,u:()



Review: p-value

We quantify our intuition as to whether we would have observed
the value of our statistics given the null is true with a p-value

p-value - the probability of obtaining a value of a statistic T(X), or
more extreme, conditional on HO being true

Formally, we can express this as follows:
pval = Pr(|T(x)| > t|Hy : 0 = ¢)

Note that a p-value is a function on a statistic (!!) that takes the
value of a statistic as input and produces a p-value as output in the
range [0, I]:

pval(T(x)) : T(x) — [0,1]



Review: p-value |

® More technically a p-value is determined not just by the probability of the
statistic given the null hypothesis is true, but also whether we are
considering a “one-sided” or “two-sided” test

® For a one-sided test (towards positive values), the p-value is:
pval(T(x)) = / Pr(T(x)|0 = c)dT'(x)
T'(x)

max(T (X))

poal(T(x)) = Y Pr(T(x)|§ =c)

T(x)

® For a two-sided test, the p-value is:

—|T(x)—median(T(X)] 00
pval(T(x)) = / Pr(T(x)|0 = c)dT(x)—I—/ Pr(T(x)|0 = c¢)dT'(x)
—0o0 |T(x)|—median(T(X)] -
—|T'(x)—median(T(X)| maz (T (X))
poal(T(x)) = > Pr(T(x)|0 = ¢) + > Pr(T(x)|0 = ¢)

min(T(X)) |T(x)—median(T'(X)]



Review: Hypothesis Testing

To build a framework to answer a question about a parameter, we need to
start with a definition of hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null hypothesis,
which states that a parameter takes a specific value, i.e. a constant

H()ZH:C

Once we have assumed a null hypothesis, we know the probability
distribution of the statistic, assuming the null hypothesis is true:

Pr(T(X = x|0 = ¢))

p-value - the probability of obtaining a value of a statistic T(x), or more
extreme, conditional on HO being true:

pval = Pr(|T(x)| > t|Hy : 0 = ¢)

pval(T(x)) : T'(x) — [0, 1]

Note that a p-value is a function of a statistic (!!)



Review: Non-Intuitive Hypothesis
Testing Concepts

We do not know what the true model is (=parameter values are) in a real
case!

We assess a null hypothesis that we define!

We assess this null hypothesis by calculating a p-value which assumes that
the null hypothesis is true!

We assess this null hypothesis by calculating a p-value from a single sample!
We make one of two decisions: cannot reject or reject!
We decide on the value p-value that allows us to decide

If we reject, we interpret this as strong evidence against the null
hypothesis being correct but we do not know for sure!

If we cannot reject, we cannot say anything (i.e., we have no evidence
that the null is wrong and we cannot say that the null is right)!



Review: Hypothesis decisions |

We use the p-value to make a decision about the null hypothesis

Specifically, we use the p-value for our sample to decide whether we “accept” (or better stated:
“cannot reject”) the null hypothesis or “reject” the null hypothesis

To do this, we use a value (X such that if the p-value is below this value we “reject”, if it is above
we “cannot reject”

Note that this value of (X corresponds to a critical value (“threshold”) of the test statistic C¢y

For example for a value @ = 0.05 we have the following for our previous examples:

One-Tailed Normal Distribution, p=0.05 Two-Tailed Normal Distribution, p=0.05

<
o

<
o

Pr(T(x) | HO)

0.1

0.0




Review: Hypothesis decisions ||

Note that there are two possible outcomes of a hypothesis test: we
reject or we cannot reject

We never know for sure whether we are right (!!)

If we cannot reject, this does not mean HO is true (why? What if our
p-value is 0.99?)

The value (¥ is called the type | error, the probability of incorrectly
rejecting HO when it is true

The value 1 — « is the probability of making a correct decision not
to reject HO

Note that we can control the level of type | error because we decide
on the value of (¥



Review: Assume HO is correct (!):[4 — 0
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Review: Results of hypothesis
decisions |: when HO is correct

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true
cannot reject Hy | 1-«, (correct)
reject Hy a, type I error
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Review: Results of hypothesis
decisions |: when HO is correct

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

‘ Hy is true ‘
cannot reject Hy | 1-a, (correct

reject Hy a, type I error
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Review: Results of hypothesis
decisions |: when HO is correct

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hj is true
cannot reject Hy | 1-a, (correct)
reject Hy a, type I error
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Review: Assume HO is wrong (!)
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Review: Results of hypothesis
decisions Il: when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true Hy is false
cannot reject Hy | 1-«, (correct) B, type 1I error
reject Hy a, type I error | 1 — 3, power (correct)
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Review: Results of hypothesis
decisions Il: when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true Hy is false
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reject Hy a, type I error ’
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Review: Results of hypothesis
decisions Il: when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true ‘ Hy is false
cannot reject Hy | 1-«, (correct) 5. type II error
reject Hy a, type I error §1 — B, power (correct)
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Technical definitions

Technically, correct decision given HO is true is (for one-sided, similar
for two-sided):

0= / " Pr(T(x)|0 = ¢)dT(x)
Type | error (HO is true) is (for one-sided):
o= / " PrT(x)[0 = 0)dT(x)
Type Il error given HO is false is (for one-sided):
B = / Pr(T(x)|0)dT (x)
Power is (for one-sided):

- 5= /Pr x)|0)dT (%)



Important concepts |

REMEMBER (!!): there are two possible outcomes of a hypothesis
test: we reject or we cannot reject

We never know for sure whether we are right (!!)
If we cannot reject, this does not mean HO is true (why?)

Note that we can control the level of type | error because we decide
on the value of (¥



Important concepts |

® Unlike type | error (¢, which we can set, we cannot control power
directly (since it depends on the actual parameter value)

® However, since power 1 — 3 depends on how far the true value of
parameter is from the HO, we can make decisions to increase power
depending on how we set up our experiment and test:

® Greater sample size = greater power 1 — 3

® Greater the value of (¥ that we set = greater power1 — 3
(trade-off!)

® One-sided or two-sided test (which is more powerful?)

® How we define our statistic (a more technical concept...)



Final general concept

We need one more concept to complete our formal introduction to
hypothesis testing: the alternative hypothesis (HA)

This defines the set (interval) of values that we are concerned with,
i.e. where we suspect our true parameter value will fall if our HO is
incorrect, i.e. for our example above:

Hp:p>0 Hp:p#0
A complete hypothesis testing setup includes both HO and HA
HA makes the concept of one- and two-tailed explicit

REMINDER (!): If you reject HO you cannot say HA is true (!!)



What if we did an infinite number
of experiments to test our null?

® Note that since we have induced a probability model on our r.v. ->
sample -> statistic, and a p-value is a function on a statistic, we also

have a probability distribution on our p-values

® This is the possible p-values we could obtain over an infinite number
of different samples (sets of experimental trials)!

® This distribution is always (!!) the uniform distribution on [0,1] when
the null hypothesis is true (!!) regardless of the statistic or
hypothesis test:

Pr(pval) ~ U0, 1]



Understanding p-values...

Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family of probability
distributions indexed by parameters) on the basis of a sample

System, Experiment, Experimental Trial, Sample Space,
Sigma Algebra, Probability Measure, Random Vector,
Parameterized Probability Model, Sample, Sampling
Distribution, Statistic, Statistic Sampling Distribution,
Estimator, Estimator Sampling distribution

Null Hypothesis, Sampling Distribution Conditional on
the Null, p-value, One-or-Two-Tailed,

Type | Error, Critical Value, Reject / Do Not Reject

| - Type l, Type Il Error, Power, Alternative Hypothesis



Likelihood ratio tests |

Since there are an unlimited number of ways to define statistics,
there are an unlimited number of ways to define hypothesis tests

However, some are more “optimal’” than others in terms of having
good power, having nice mathematical properties, etc.

The most widely used framework (which we will largely be
concerned with in this class) are Likelihood Ratio Tests (LRT)

Similar to MLE’s (and they include MLE’s to calculate the statistic!)
they have a confusing structure at first glance, however, just
remember these are simply a statistic (sample in, number out) that
we use like any other statistic, i.e. with the number out, we can
calculate a p-value etc.



Likelihood ratio tests |
Likelihood Ratio Tests use a statistic with the following structure:
L(0o|x)
L(61]x)
L(6]x) is the likelihood function

A =

0o = argmazgco, L(0|x) is the parameter that maximizes the
likelihood given the sample restricted to the set of parameters
defined by Ho, which we symbolize by O

0, = argmazgsco, L(A|x)is the parameter that maximizes the
likelihood given the sample restricted to the set of parameters
defined by HA ©; = ©4 or more usually the values ©; = O 4,UO

We will assume the following for the alternative set of hypotheses,
for example:

Hy:p=cthen Hy : p#c



Likelihood ratio tests llI

® Again, consider our simplified normal r.v. with sample n

® The likelihood is:

Zn _(mi_H)Q
=1 252

LOx) = —L e

(2mo?) 2

® and the LRT statistic for Hg : = c is:

A 1 ?—1 _(xi_H0<(f02)§2
L(eo X) - € — 2« M LE (&
o L _ (2rxMLE(62))2
A = x LRT = A = n  —(2;—MLE())?
L(Ql X) 1 e 1=l 2xMLE(62)

(QW*MLE(&Q))%

® where we have:

Ho(p) = c
MLE(j1) = mean(x) = + S0 | ;

n 1=

MLE(6%) = + 3" (x; — mean(x))?

n



Likelihood ratio tests |V

Remember, to calculate a p-value, we need to know the sampling distribution
under the null (NOTE likelihood ratio tests are two-sided tests!)

If we consider the following transformation:

LRT = —2Iin(A) = —2In (W)
L(01]x)

It turns out that, under conditions that often apply, as the sample size 7 — OO
the sampling distribution of this statistic under the null approaches (in the specific
case on the last slide, the d.f. = k = I!):

Probability density function
filz) -

N
W OO0 o= W

1A L | { |

>

Pr(LRT|Hy:0=c) — x5, o3

0.2t

0.1 %
0.0 + + . ’ + —
2 5 5 ) | b S




Likelihood ratio tests V

® There is a difference between a sampling distribution (under the null) that
approaches a distribution as 7 — 0O and a case where we know the exact
distribution for any size n (i.e., for the former, the null distribution is approximate)

® Why use a test statistic where the distribution under the null is approximate
(since we need to know this distribution to do the hypothesis test!)?

® The approximation is very close even for moderate sized n

® An LRT is a very versatile way of constructing a hypothesis test with “good”
properties for many types of cases

® Even better, for some specific tests, the sampling distribution under the null for
ANY sample size n is known exactly for a specified transformation of the
likelihood ratio statistic

® Note that this is the case for many of the tests you are familiar with (t-tests, F-
tests, tests of the linear regression slope, etc.), that is, these tests are forms of
likelihood ratio test statistic!!!



Conceptual Overview

Experiment

Statistics Assumptions




Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Genetic system |

We will reduce the complexity of a genetic system to two
components: the genome (the inherited DNA possessed by an
individual) and the phenotype (an aspect we measure)

In quantitative genetics we are interested in positions in the
genome where differences produce a difference in phenotype

These differences were originally a result of a mutation



Genetic system ||

mutation - a change in the DNA sequence of a genome

In a population of individuals (broadly defined), all differences in the
genomes among the individuals were originally due to mutations

Note: for our purposes, regardless of the cause of a mutation, we
consider any difference produced in a genome that is passed on (or could
be passed on) to the next generation to be a mutation

For example, a SNP (Single Nucleotide Polymorphism; =A, G, C, T
difference), Indels, microsatellites, etc.

Also note that we will ighore the physical structure of a mutation (e.g.
SNP, Indel, etc.) and quantify differences as Aj, Aj, etc.

More specifically, we will be concerned with causal mutations, cases
where the difference in genome is responsible for a difference in
phenotype



Genetic system |l

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



The statistical model |

® We will make the following assumptions about the system:

® At least one causal mutation affecting the phenotype of interest
has occurred during the history of the population

® At the locus (position) where the mutation occurred, there are
at least two alleles (states of DNA) among individuals in the

population (i.e. one is the original state, the other is the
mutation)

e polymorphism - the existence of more than one allele at a
locus

® These differences were originally a result of a mutation



The statistical model Il

® For most of this class, we will be discussing diploid systems (i.e.
cases where individuals have two copies of a chromosome), which
are sexual (i.e. offspring are produced that have a genome that is a
copy of half of the mother’s and half of the father’s genome), and

we will be considering polymorphisms that only have two alleles
(e.g. Al and A2)

® However, note that the formalism easily extends to ANY genetic
system (bacteria, tetraploids, cancer, etc.)

® We are also largely going to consider a natural experiment (i.e. our
sample will be selected from an existing set of individuals in
nature), although again, the formalism extends to controlled
experiments as well (!!)



That’s it for today

® Next lecture (Tues, March 7), we will begin our discussion of
quantitative genetic inference!



