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Summary of lecture 12: Introduction 
to Genetic Modeling

• Last lecture, we completed our (general) discussion of 
hypothesis testing and began our just began discussion of 
genetic modeling

• Today, we will continue our discussion of genetic modeling!
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Review: Genetic system 1

• We will reduce the complexity of a genetic system to two 
components: the genome (the inherited DNA possessed by an 
individual) and the phenotype (an aspect we measure)

• In quantitative genetics we are interested in positions in the 
genome where differences produce a difference in phenotype

• These differences were originally a result of a mutation



Review: Genetic system 1I

• mutation - a change in the DNA sequence of a genome

• In a population of individuals (broadly defined), all differences in the 
genomes among the individuals were originally due to mutations

• Note: for our purposes, regardless of the cause of a mutation, we 
consider any difference produced in a genome that is passed on (or could 
be passed on) to the next generation to be a mutation

• For example, a SNP (Single Nucleotide Polymorphism; = A, G, C, T 
difference), Indels, microsatellites, etc.

• Also note that we will ignore the physical structure of a mutation (e.g. 
SNP, Indel, etc.) and quantify differences as Ai, Aj, etc.

• More specifically, we will be concerned with causal mutations, cases 
where the difference in genome is responsible for a difference in 
phenotype



Review: Genetic system III

• causal mutation - a position in the genome where an experimental 
manipulation of the DNA would produce an effect on the phenotype 
under specifiable conditions

• Formally, we may represent this as follows:

• Note: that this definition considers “under specifiable” conditions” so the 
change in genome need not cause a difference under every manipulation 
(just under broadly specifiable conditions)

• Also note the symmetry of the relationship

• Identifying these is the core of quantitative genetics/genomics (why do we 
want to do this!?) 

• What is the perfect experiment?

• Our experiment will be a statistical experiment (sample and inference!)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)
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Review: The statistical model 1

• We will make the following assumptions about the system:

• At least one causal mutation affecting the phenotype of interest 
has occurred during the history of the population

• At the locus (position) where the mutation occurred, there are 
at least two alleles (states of DNA) among individuals in the 
population (i.e. one is the original state, the other is the 
mutation)

• polymorphism - the existence of more than one allele at a 
locus

• These differences were originally a result of a mutation



Review: The statistical model II

• For most of this class, we will be discussing diploid systems (i.e. 
cases where individuals have two copies of a chromosome), which 
are sexual (i.e. offspring are produced that have a genome that is a 
copy of half of the mother’s and half of the father’s genome), and 
we will be considering polymorphisms that only have two alleles 
(e.g. A1 and A2)

• However, note that the formalism easily extends to ANY genetic 
system (bacteria, tetraploids, cancer, etc.)

• We are also largely going to consider a natural experiment (i.e. our 
sample will be selected from an existing set of individuals in 
nature), although again, the formalism extends to controlled 
experiments as well (!!)



The statistical model III
• As with any statistical experiment, we need to begin by defining our sample space

• In the most general sense, our sample space is:

• More specifically, each individual in our sample space can be quantified as a pair 
of sample outcomes so our sample space can be written as:

• Where        is the genotype sample space at a locus and        is the phenotype 
sample space

• Note that genotype                      is the set of possible genotypes, where for a 
diploid, with two alleles:

• For the phenotype, this can be any type of measurement (e.g. sick or healthy, 
height, etc.)
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The statistical model IV
• Next, we need to define the probability model on the sigma 

algebra of the sample space (           ):

• Which defines the probability of each possible genotype and 
phenotype pair:

• We will define two (types) or random variables (* = state 
does not matter):

• Note that the probability model induces a (joint) probability 
distribution on this random vector (these random variables):

For this sample space, we define a probability function (model):

Pr(S) = Pr(Sg, SP ) (5)

One could intuitively look at this as defining distinct probability functions for each of
these sample spaces Sg and SP , although these probability functions would be related and
would actually define a single (joint) pdf for the sample space S = {Sg, SP }, S = {Sg\SP }.

We will define the following two (types) of random variables Y and X, where Y takes
the value of the phenotype to the reals (regardless of the genotype) and X takes the value
of the genotype to the reals (regardless of phenotype):

Y : (⇤, SP ) ! R (6)

X : (Sg, ⇤) ! R (7)

where ⇤ indicates the state of the given subset does not matter. Again, we could intuitively
think of this as defining individual random variables for each sample space Sg and SP where
each element of these random vectors is associated with only one probability function, i.e.
a single random variable cannot be associated with more than one probability function.
A more accurate way to think about this set-up is that we have defined a random vector
[Y,X], where the probability function on S actually defines a joint probability function
over the random variables Y and X:

Pr(Y,X) (8)

and note we could have random vectors that include both discrete and continuous random
variables, such that the joint probability distributions could combine discrete and contin-
uous models.

As we discussed, regardless of the probability model describing our random variables /
vectors, we can use expectations and variances to describe basic aspects of the models. If
we can take the expectation of the random vector [X,Y ] we obtain:

E [Y,X] = [EY,EX] (9)

and the variance of this random vector is:

V ar [Y,X] =


V ar(Y ) Cov(Y,X)

Cov(Y,X) V ar(X)

�

If X reflects a causal mutation (=causal allele =causal polymorphism), then Cov(Y,X) 6= 0
(or Corr(Y,X) 6= 0). Our goal with quantitative genomic inference can therefore be broadly
stated as determining whether Cov(Y,X) 6= 0 using a sample and we will do this using a
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The statistical model V

• The goal of quantitative genomics and genetics is to identify cases 
of the following relationship:

• Remember that, regardless of the probability distribution of our 
random vector, we can define the expectation:

• and the variance:

• The goal of quantitative genomics can be rephrased as assessing 
the following relationship:
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The statistical model VI
• We are going to consider a parameterized model to represent the 

probability model of X and Y (that is the true statistical model of 
genetics!!!)

• Specifically, we will consider a regression model

• For the moment, let’s consider a regression model with normal 
error:

• Note that in this model, we consider Y to be the dependent or 
response variable and X to be the independent variable (what are 
the parameters!?)

• Also note implicitly assumes the following:

hypothesis testing framework. Note that while we are going to consider a specific prob-
ability model as the basis for testing this hypothesis, any hypothesis test that assesses
Cov(Y,X) is a legitimate approach to the same goal (and many are used in quantitative
genomic analysis).

So far, we have not described the specific form of the probability model Pr(Y,X) that
we are going to consider. While there are many ways of defining the probability model
that will allow us to accomplish our purpose, we are going to consider the most versatile
and widely used formulation. We will begin our introduction to this model by consider-
ing a phenotype that we can model as continuous, and more specifically, with a normal
probability model, e.g. height (later we will introduce the broad class of models that can
apply to continuous and discrete phentoypes). For such cases, we are going to consider a
linear regression model. We are going to use a form of the same linear regression model
that you likely learned about in your introductory statistics class. Recall that a linear re-
gression mode assumes a similar set-up to the case we have considered, we have measured
a dependent or response variable Y and an independent variable X for each individual in
a sample. We can visualize this sample by plotting X versus Y (see your class notes for a
diagram). We are going to define a probability model that has the following form:

Y = �0 +X�1 + ✏ (10)

✏ ⇠ N(0,�2
✏ ) (11)

where Y and X are the values taken for each individual in the sample, �0 and �1 are
parameters (constants) with some true value that we will estimate from the sample, ✏

is the ‘error’ term and is a random variable with a normal distribution with parameters
µ = 0 and �

2 = �
2
✏ which is unknown (which we generally do not estimate). Note that this

equation is a line (hence ‘linear regression’) and intuitively defines a line through the the
points on the graph of X versus Y , with a slope defined by �1 and which intersects the
Y-axis at �0. Note that the sample points are more ‘scattered’ around this line the greater
the �2

✏ , i.e. we assume that the true probability model is gaussian (normal) where the mean
value of the normal distribution is the value X (the model depends on the value X of an
individual). This means that our probability model actually has the following form:

Pr(Y,X) = Pr(Y |X) (12)

i.e. we assume that X is fixed. This latter point is often not presented in introductory
statistics classes but it is implicit in all regression models.

We can write the value for single individual i in our sample as:

yi = �0 + xi�1 + ✏i (13)
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Linear regression is a bivariate 
distribution

• We’ve seen bivariate (multivariate) distributions before:



Linear regression I

• Let’s review the structure of a linear regression (not 
necessarily a genetic model):
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Linear regression II



That’s it for today

• Next lecture (Thurs, March 9), we will begin our discussion of 
quantitative genetic inference!


