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Announcements

® Homework #4 will be assigned soon...

e FORTHOSE IN NYC... Lab TODAY (Thurs., March 9) will
NOT take place 4-5PM (usual time) - we are looking into
finding a room 5:30-6:30 OR we will schedule a zoom lab
WEWILL LET YOU KNOW BY PIAZZA MESSAGE THIS

AFTERNOON



Summary of lecture |3: Introduction
to Genetic Inference

® |ast lecture, we began discussion of genetic modeling

® Today, we will discuss genetic inference!



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



Review: The statistical model |

As with any statistical experiment, we need to begin by defining our sample space

In the most general sense, our sample space is:

() = { Possible Individuals }

More specifically, each individual in our sample space can be quantified as a pair
of sample outcomes so our sample space can be written as:

0 ={0,NQp}

Where Qg is the genotype sample space at a locus and {) p is the phenotype
sample space

Note that genotype g; = Aj Ay is the set of possible genotypes, where for a
diploid, with two alleles:

Qg ={A1A1,A1A2, Az Ao}

For the phenotype, this can be any type of measurement (e.g. sick or healthy,
height, etc.)



Review: The statistical model |l

Next, we need to define the probability model on the sigma
algebra of the sample space (/¢  p1 ):

PT(.F{g,p})

Which defines the probability of each possible genotype and
phenotype pair:
Pr{g, P}

We will define two (types) or random variables (* = state
does not matter):

Y:(*,Qp)%R
X :(Qg,%x) =R

Note that the probability model induces a (joint) probability
distribution on this random vector (these random variables):

Pr(Y, X)



Review: The statistical model |l

The goal of quantitative genomics and genetics is to identify cases
of the following relationship:

Pr(YNX)=PrY,X)# Pr(Y)Pr(X)

Remember that, regardless of the probability distribution of our
random vector, we can define the expectation:

E[Y,X] — [EY, EX]
and the variance:

Var(Y) Covu(Y,X)

VarlY, X| = Cov(Y,X) Var(X)

The goal of quantitative genomics can be rephrased as assessing
the following relationship:

Cov(Y,X) #£ 0



Review: The statistical model IV

We are going to consider a parameterized model to represent the
probability model of X and Y (that is the true statistical model of
genetics!!!)

Specifically, we will consider a regression model

For the moment, let’s consider a regression model with normal
error:

Y =060+ XB1+e¢
e ~ N(0,07)

Note that in this model, we considerY to be the dependent or
response variable and X to be the independent variable (what are
the parameters!?)

Also note implicitly assumes the following:

Pr(Y,X) = Pr(Y|X)



Review: Linear regression is a
bivariate distribution

® We've seen bivariate (multivariate) distributions before:

rho=0.5




Review: Linear regression |

® |et’s review the structure of a linear regression (not
necessarily a genetic model):

Y =080+ XpB1+e€ GNN(ONT?)

Density




Review: Linear regression |l




The genetic probability model |

® The quantitative genetic model is a multiple regression model
with the following independent (“dummy”) variables:

Xo(A1A1) = —1, Xa(A1As) = 0, X (AsAs) = 1

Xa(A1A1) = -1, X43(A145) =1, X3(AzA42) = —1

1 A Ay
—1 A1A1 AQAQ
-1 0 1

® and the following “multiple” regression equation:

Y:5M‘|‘Xaﬁa‘|‘Xd6d‘|‘€
e ~ N(0,07)



The genetic probability model |l

The probability distribution of this model, is therefore:
Pr(Y|X) ~ N(B, + XaBa + XaB4,02)

Which has four parameters:

2
B,Lw 6&7 de O¢

The threeﬁ parameters are required to model the three
separate genotypes (AIAI,Al1A2,A2A2)

The € can be thought of as a random variable that describes
the probability an individual will have a specific value of Y,
conditional on the genotype AiAj, where the probability is
normally distributed around the value determined by the X’s
and 3 s

e ~ N(0,07)



The genetic probability model Il

® Let’s consider a specific example where we are interested modeling
the relationship between a genotype and a phenotype (such as height)
where the latter is well approximated by a normal distribution

® For this case, the (unknown) conditions of the experiment define the
true values of the parameters (unknown to us!), which we will say are
the following (note these are the same for all individuals in the
population since they are parameters of the probability distribution):

B, =0.3,8,=-0.2,8;=11,02=1.1
® Consider an individual i with gi = A1A2 such that we have:

X, (A142) = 0, X4(A1A42) = 1

® |[f this individual has a phenotype value yi = 2.] then we have the
epsilon value ¢; = ().7 where the probability of this particular value
(i.e. the interval surrounding this value) is defined by ¢ ~ N (0, o)

2.1=0.3+(0)(—0.2) + (1)(1.1) + 0.7



The genetic probability model IV

® Note that, while somewhat arbitrary, the advantage of the Xa
and Xd coding is the parameters 5, and (35 map directly on
to relationships between the genotype and phenotype that
are important in genetics:

o |f 5, # 0,85 =0 then this is a “purely” additive case

o If 3, =0,847#0 then this is only over- or under-
dominance (homozygotes have equal effects on phenotype)

® |[f both are non-zero, there are both additive and
dominance effects

® |f both are zero, there is no effect of the genotype on the
phenotype (the genotype is not causal!)



Review: Genetic example |

® As an example, consider the following of a “purely addltlve
case (= no dominance): 5# =2,8,=05,8;,=0, O' =1

Q

— — - -
© @O OO0

' 0.0 40 00 1.0 40 00 1.0
-0.5 Xa Xd

1.0 -05 00 05 10"
Xa



Review: Genetic example ||

® An example of “dominance” (= not a “pure additive” case):

B =0,Ba=4,80=—1,0; =1

6 -4 -2 0 2 4 6 8 10
OCOTMIENITD (D
y
0

10 05 00 05 1.0 = e =
Xa



Review: Genetic example I

® A case of NO genetic effect:

6#2275a2076d2070-62: 1

o
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Xa



Quantitative genetic formalism

® For those of you who have been exposed to classic quantitative
genetics, you have seen a different notation for this model:

P=G+E
® Pis the phenotypic value - the value of the aspect measured

® G is the genotypic value - the expected value of the phenotype
conditional on the genotype

e [ is the environmental value - the value of the phenotype that
we cannot explain given the genotype

® These translate as follows for our one locus case (although note the
formalism extends to any multiple locus case):

Y =P

G:EP:EYZBM+Xa5a+XdBd
e=F



Linear regression ||

® The linear regression model allows calculation of the
(interval) probability of observations (!!)

Y =+ Xp+e e~ N(0,07)




Linear regression |V

A multiple regression model has the same structure, with a
single dependent variable Y and more than one independent
variable Xi, X, e.g.,




Genetic inference |

® For our model focusing on one locus:

Y:5u+Xa5a+Xd6d‘|'€
e ~ N(0,07)

® We have four possible parameters we could estimate:

0 = [B,Lw Baa 6d7 0-62}

® However, for our purposes, we are only interested in the
genetic parameters and testing the following null hypothesis:

Hy: Cov(X,,Y)=0NCov(Xy4,Y) =0 OR Hy:8,=0NpG3=0
Hy:Cov(X,,Y)#0UCov(Xyg,Y)#0 Hp: B, #0UBg #0



Genetic inference |l

Recall that inference (whether estimation or hypothesis testing)
starts by collecting a sample and defining a statistic on that
sample

In this case, we are going to collect a sample of n individuals
where for each we will measure their phenotype and their
genotype (i.e. at the locus we are focusing on)

That is an individual i will have phenotype yi and genotype
gi = AjAk (where we translate these into xaand xd)

Using the phenotype and genotype we will construct both an
estimator (a statistic!) and we will additionally construct a test
statistic

Remember that our regression probability model defines a
sampling distribution on our sample and therefore on our
estimator and test statistic (!!)



That’s it for today

® Next lecture (Tues, March 14), we complete our initial discussion of
genetic inference and begin our discussion of GVWAS!



