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Announcements

® Office hours will be rescheduled for this Fri (March 17)
from 12-2PM (!!) | will announce this by Piazza post / email
as we get closer

® Homework #4 will be posted later today / this evening (this
is your last homework!)

® For those in NYC, we need to permanently switch the
Thurs lab time (we probably will go with 5:30-6:30) - please
stay tuned for more information



Summary of lecture |4: Introduction
to Genetic Inference

® |ast lecture, we completed our general discussion of genetic
modeling and began discussing genetic inference

® Today, we will (almost) complete our initial discussion of
genetic inference!



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



Review: The statistical model |

As with any statistical experiment, we need to begin by defining our sample space

In the most general sense, our sample space is:

() = { Possible Individuals }

More specifically, each individual in our sample space can be quantified as a pair
of sample outcomes so our sample space can be written as:

0 ={0,NQp}

Where Qg is the genotype sample space at a locus and {) p is the phenotype
sample space

Note that genotype g; = Aj Ay is the set of possible genotypes, where for a
diploid, with two alleles:

Qg ={A1A1,A1A2, Az Ao}

For the phenotype, this can be any type of measurement (e.g. sick or healthy,
height, etc.)



Review: The statistical model |l

Next, we need to define the probability model on the sigma
algebra of the sample space (/¢  p1 ):

PT(.F{g,p})

Which defines the probability of each possible genotype and
phenotype pair:
Pr{g, P}

We will define two (types) or random variables (* = state
does not matter):

Y:(*,Qp)%R
X :(Qg,%x) =R

Note that the probability model induces a (joint) probability
distribution on this random vector (these random variables):

Pr(Y, X)



Review: The statistical model |l

The goal of quantitative genomics and genetics is to identify cases
of the following relationship:

Pr(YNX)=PrY,X)# Pr(Y)Pr(X)

Remember that, regardless of the probability distribution of our
random vector, we can define the expectation:

E[Y,X] — [EY, EX]
and the variance:

Var(Y) Covu(Y,X)

VarlY, X| = Cov(Y,X) Var(X)

The goal of quantitative genomics can be rephrased as assessing
the following relationship:

Cov(Y,X) #£ 0



Review: The genetic probability
model |

® The quantitative genetic model is a multiple regression model
with the following independent (“dummy”) variables:

Xo(A1A1) = —1, Xa(A1As) = 0, X (AsAs) = 1

Xa(A1A1) = -1, X43(A145) =1, X3(AzA42) = —1

1 A Ay
—1 A1A1 AQAQ
-1 0 1

® and the following “multiple” regression equation:

Y:5M‘|‘Xa6a‘|‘Xd6d‘|‘€
e ~ N(0,07)



Review: The genetic probability
model |l

® Note that, while somewhat arbitrary, the advantage of the Xa
and Xd coding is the parameters 5, and (35 map directly on
to relationships between the genotype and phenotype that
are important in genetics:

o |f 5, # 0,85 =0 then this is a “purely” additive case

o If 3, =0,847#0 then this is only over- or under-
dominance (homozygotes have equal effects on phenotype)

® |[f both are non-zero, there are both additive and
dominance effects

® |f both are zero, there is no effect of the genotype on the
phenotype (the genotype is not causal!)



Genetic inference |

® For our model focusing on one locus:

Y:5u+Xa5a+Xd6d‘|'€
e ~ N(0,07)

® We have four possible parameters we could estimate:

0 = [B,Lw Baa 6d7 0-62}

® However, for our purposes, we are only interested in the
genetic parameters and testing the following null hypothesis:

Hy: Cov(X,,Y)=0NCov(Xy4,Y) =0 OR Hy:8,=0NpG3=0
Hy:Cov(X,,Y)#0UCov(Xyg,Y)#0 Hp: B, #0UBg #0



Genetic inference |l

Recall that inference (whether estimation or hypothesis testing)
starts by collecting a sample and defining a statistic on that
sample

In this case, we are going to collect a sample of n individuals
where for each we will measure their phenotype and their
genotype (i.e. at the locus we are focusing on)

That is an individual i will have phenotype yi and genotype
gi = AjAk (where we translate these into xaand xd)

Using the phenotype and genotype we will construct both an
estimator (a statistic!) and we will additionally construct a test
statistic

Remember that our regression probability model defines a
sampling distribution on our sample and therefore on our
estimator and test statistic (!!)



Matrix Basics

a
- Vi Y my. . mp ~
V=V = M, =M, = M,=M,=|b
my My
C

We will also follow statistics convention where the first subscript will index rows and the
second will index columns (note this is usually reversed in mathematics literature).

. my, +m, my, +m,
Matrix sum: M, + M, = -

my, +my My, +m,,

, . [a b ¢
Matrix transpose: M, =
S |d e f
. . cmy,  Ccmy,
Scalar times a matrix: cM, =

Chy . Chiy,

Matrix multiplication:
am,, +dm,, —am, +dm,,

M,M, =|bm, +em,  bm, +em,,

MIMI =l

mymy, +my,m,,  mmp, +m2|mzzl

My 1y + My My, My My, + My, 1,
cmy, + fmy, cmy, + fm,

1% v,V v,V v
whi=|"b, wl=| " T Vvl v =y vy,
V2 i Vv, W, Va
V,
If the following holds: v,Tv2 = [v, VQ{ ’l =0 then v4 and v, are orthogonal.
Vs

1 0
The identity matrix is defined as follows: I = [0 1] , i.e. diagonal elements are “1” and
all other elements are “0”.

The inverse of a matrix M™" has a structure such that is satisfies the following relationship
(for a “square”, k x k matrix): MM~ =T and M"'M =1.



Genetic inference |l

® For notation convenience, we are going to use vector / matrix
notation to represent a sample:

Vi = By + Tiafa + Tiadfa + €

Y1 | _5,& + 1,084 + T1,484 + €1 |
Y2 B,u + 5(32,&5@ + an,d/Bd + €9
| Yn | _5/1J + Znafa + J/’n,dﬁd T €n_
K 1 214 T14| . €1 |
Y2 I x2, w24 B €2
— | ; . Ba | +

. o . _/Bd_
| Yn | _1 Ln,a Ind | €En |

y =xB+e



Genetic estimation |

We will define a MLE for our parameters:

5 — [6/“ ﬁaa Bd]

Recall that an MLE is simply a statistic (a function that takes a
sample in and outputs a number that is our estimate)

In this case, our statistic will be a vector valued function that takes
in the vectors that represent our sample

T(Y7Xa7Xd) — B — [Buaéaaéd]

Note that we calculate an MLE for this case just as we would any
case (we use the likelihood of the fixed sample where we identify
the parameter values that maximize this function)

In the linear regression case (just as with normal parameters) this
has a closed form:

MLE(8) = (x"x)"'x"y



Genetic estimation ||

® |et’s look at the structure of this estimator:

y =X0 +¢€
Y1 1 T4 T14] _ €1 |
Y2 I w2, x24 B €2
— ﬁa +
e
_yn_ _1 CIjn,a xn,d_ _En_




Genetic hypothesis testing |

We are going to test the following hypothesis:
Hy:Ba=0NG3=0

Hyp:Bo 70U By #0

To do this, we need to construct the following test statistic (for which
we know the distribution!):

T(y,Xq,%q|Ho : Ba = 0N g =0)
Specifically, we are going to construct a likelihood ratio test (LRT)

This is calculated using the same structure that we have discussed (i.e.
ratio of likelihoods that take values of parameters maximized under
the null and alternative hypothesis)

In the case of a regression (not all cases!) we can write the form of
the LRT for our null in an alternative (but equivalent!) form

In addition, our LRT has an exact distribution for all sample sizes n (!!)



Genetic hypothesis testing |l

We now have everything we need to construct a hypothesis test

for:
Hozﬁa:()ﬂﬁd:()

Hy: Ba 70U Bg # 0

This is equivalent to testing the following:
Hy:Cov(X,Y)=0

For a linear regression, we use the F-statistic for our sample:
MSM

MSE
We then determine a p-value using the distribution of the F-
statistic under the null:

F[2,n—3] (¥, Xa,Xq) =

PUCLZ(F[Q,n—S] (¥, Xa,Xd))



Genetic hypothesis testing |

To construct our LRT for our null, we will need several components, first the
predicted value of the phenotype for each individual:

Yi = BAM + xi,aga + Zl?‘i,dgd

Second, we need the “Sum of Squares of the Model” (SSM) and the “Sum of
Squares of the Error” (SSE):

SSM =Y (-9  SSE= (yi—i)
1=1 n=1

Third, we need the “Mean Squared Model” (MSM) and the “Mean Square
Error” (MSE) with degrees of freedom (df) df(M) =3 -1 =2 and

df(F) =n—3

E E
MSM:SS—M:SS_M MSE:ﬂzss

df (M) 2 df(E) n-—3

Finally, we calculate our (LRT!) statistic, the F-statistic with degrees of

freedom [2, n-3]: MSM



Genetic hypothesis testing |V

® |n general, the F-distribution (continuous random variable!) under
the HO has variable forms that depend on d.f.:

F Distribution PDF

— h=4, m=4

__ n=10, m=4

— n=10, m=10
n=4, m=10

Random Variable

® Note when calculating a p-value for the genetic model, we consider
the value of the F-statistic we observe or more extreme towards
positive infinite (!!) using the F-distribution with [2,n=3] d.f.

® However, also this is actually a two-tailed test (what is going on
here (!?)



Genetic hypothesis testingV

® An F-statistic is a Likelihood Ratio Test (LRT) statistic
after a simple (monotonic) transformation

F—statistic = f(A)

® Note that an F-statistic has an exact pdf under many
conditions (note that we do not always produce a LRT
that has an exact pdf that we can state easily)

® Also note that a t-test is actually an F-statistic (and
therefore a transformed LRT) for a case where we are
comparing the means of just two groups (when might
this apply in genetic testing!?), similarly for a t-test of the
slope of a regression)



That’s it for today

® Next lecture (Thurs, March 14), we will complete our discussion of
genetic inference and begin our discussion of GVWAS!



