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Announcements

For those in NYC taking computer lab Thurs (TODAY!)
Changed to 5:30-6:30pm every Thurs
We WILL offer a zoom option

TODAY (!!) we may only have a zoom option (stay tuned...)

We wiill have office hours

Tomorrow (March 17) 12-2pm

Mon, March 27 (TBA)
Homework #4

Due | 1:59pm March 27

WEWILL COVER THE MATERIAL FOR QUESTION #2 during the next
three lectures, two computer labs, and two office hours

Lectures next week (March 21 and March 23) will be by zoom (!!)



Summary of lecture |5: Introduction
to Genetic Inference

® |ast lecture, we completed our general discussion of genetic
modeling and began discussing genetic inference

® Today, we will complete our initial discussion of genetic
inference!



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



Review: Genetic inference |

® For our model focusing on one locus:

Y:5u+Xa5a+Xd6d‘|'€
e ~ N(0,07)

® We have four possible parameters we could estimate:

0 = [B,Lw Baa 6d7 0-62}

® However, for our purposes, we are only interested in the
genetic parameters and testing the following null hypothesis:

Hy: Cov(X,,Y)=0NCov(Xy4,Y) =0 OR Hy:8,=0NpG3=0
Hy:Cov(X,,Y)#0UCov(Xyg,Y)#0 Hp: B, #0UBg #0



Review: Genetic inference ||

® For notation convenience, we are going to use vector / matrix
notation to represent a sample:

Vi = By + Tiafa + Tiadfa + €

Y1 _5,& + 1,084 + T1,484 + €1 |
Y2 B,u + 5(32,&5@ + an,d/Bd + €9
| Yn | _5/1J + Znafa + J/’n,dﬁd T €n_
K 1 214 T14| . €1 |
Y2 I x2, w24 B €2
— | ; . Ba | +

. o . _/Bd_
| Yn | _1 Ln,a In,d] | €En |

y =xB+e



Review: Genetic estimation

® |et’s look at the structure of this estimator:

y =X0 +¢€
Y1 1 T4 T14] _ €1 |
Y2 I w2, x24 B €2
— 5a +
e
_yn_ _1 CIjn,a xn,d_ _En_




Genetic hypothesis testing |

We are going to test the following hypothesis:
Hy:Ba=0NG3=0

Hyp:Bo 70U By #0

To do this, we need to construct the following test statistic (for which
we know the distribution!):

T(y,Xq,%q|Ho : Ba = 0N g =0)
Specifically, we are going to construct a likelihood ratio test (LRT)

This is calculated using the same structure that we have discussed (i.e.
ratio of likelihoods that take values of parameters maximized under
the null and alternative hypothesis)

In the case of a regression (not all cases!) we can write the form of
the LRT for our null in an alternative (but equivalent!) form

In addition, our LRT has an exact distribution for all sample sizes n (!!)



Genetic hypothesis testing |l

We now have everything we need to construct a hypothesis test

for:
Hozﬁa:()ﬂﬁd:()

Hy: Ba 70U Bg # 0

This is equivalent to testing the following:
Hy:Cov(X,Y)=0

For a linear regression, we use the F-statistic for our sample:
MSM

MSE
We then determine a p-value using the distribution of the F-
statistic under the null:

F[2,n—3] (¥, Xa,Xq) =

PUCLZ(F[Q,n—S] (¥, Xa,Xd))



Genetic hypothesis testing |

To construct our LRT for our null, we will need several components, first the
predicted value of the phenotype for each individual:

Yi = BAM + xi,aga + Zl?‘i,dgd

Second, we need the “Sum of Squares of the Model” (SSM) and the “Sum of
Squares of the Error” (SSE):

SSM =Y (-9  SSE= (yi—i)
1=1 n=1

Third, we need the “Mean Squared Model” (MSM) and the “Mean Square
Error” (MSE) with degrees of freedom (df) df(M) =3 -1 =2 and

df(F) =n—3

E E
MSM:SS—M:SS_M MSE:ﬂzss

df (M) 2 df(E) n-—3

Finally, we calculate our (LRT!) statistic, the F-statistic with degrees of

freedom [2, n-3]: MSM



Genetic hypothesis testing |V

® |n general, the F-distribution (continuous random variable!) under
the HO has variable forms that depend on d.f.:

F Distribution PDF

— h=4, m=4

__ n=10, m=4

— n=10, m=10
n=4, m=10

Random Variable

® Note when calculating a p-value for the genetic model, we consider
the value of the F-statistic we observe or more extreme towards
positive infinite (!!) using the F-distribution with [2,n=3] d.f.

® However, also this is actually a two-tailed test (what is going on
here (!?)



Genetic hypothesis testingV

® An F-statistic is a Likelihood Ratio Test (LRT) statistic
after a simple (monotonic) transformation

F—statistic = f(A)

® Note that an F-statistic has an exact pdf under many
conditions (note that we do not always produce a LRT
that has an exact pdf that we can state easily)

® Also note that a t-test is actually an F-statistic (and
therefore a transformed LRT) for a case where we are
comparing the means of just two groups (when might
this apply in genetic testing!?), similarly for a t-test of the
slope of a regression)



Side-topic: Alternative (ANOVA)
formulation |

® Note that we can construct an equivalent formulation
to our linear regression using an ANOVA coding

® ANOVA stands for ANalysis Of VAriance and, despite
the name, it is really a test of whether “means” of
groups are different

® A genetic ANOVA model is the same as our linear
regression, except the “dummy’ variables are coded
differently (everything else is the same!)



Side-topic: Alternative (ANOVA)
formulation |l

Remember the independent (dummy) variable coding for a regression
IS. Xu(A1 A1) =1, X, (A1 A7) = 1, X,,(A24,) = 1
Xo(A1 A1) = —1, Xo(A1 As) = 0, Xo(As4s) = 1

Xa(A1A1) = —1, Xg(A1Az) = 1, Xg(AsAs) = —1

The ANOVA coding is the following:

Xaa, (A1A1) =1, X4,4,(A1A2) =0, X 4,4, (A2A9)
Xa,4,(A1A1) =0, X4,4,(A1A42) =1, X 4,4,(A2A9)
Xa,a,(A1A1) =0, Xa,4,(A1A42) =0, X 4,4, (A2A2)

0
0
1

The models corresponding to a linear regression and ANOVA are:

Y = X,uﬁ,u + XoBa + XgBa + €
Y = Xa,4,84,4, + Xa,4,84,4, + Xa,4,84,4, + €



Side-topic: Alternative (ANOVA)
formulation Il

® For the ANOVA formulation, the parameters are:
0 = [Ba,Ay, BayAy5 Baga,]
® And we test the null hypothesis:
Ho: fBaja, = Baja, = Pasa,
Hy: Baa, # Baa,  jk # Im

® Note that estimation (MLE) and the hypothesis test (F-
test) construction are the same (=same equations)!!

® Why would we use an ANOVA formulation (what is
the difference)?



Quantitative genomic analysis |

We now know how to assess the null hypothesis as to
whether a polymorphism has a causal effect on our
phenotype

Occasionally we will assess this hypothesis for a single
genotype

In quantitative genomics, we generally do not know the
location of causal polymorphisms in the genome

We therefore perform a hypothesis test of many genotypes
throughout the genome

This is a genome-wide association study (GWAS)



Quantitative genomic analysis ||

® Analysis in a GWAS raises (at least) two issues we have not
yet encountered:

® An analysis will consist of many hypothesis tests (not just
one)

® We often do not test the causal polymorphism (usually)

® Note that this latter issue is a bit strange (!?) - how do we
assess causal polymorphisms if we have not measured the
causal polymorphism?

® Also note that causal genotypes will begin to be measured
in our GWAS with next-generation sequencing data (but
the issue will still be present!)



Correlation among genotypes

® |f we test a (non-causal) A -
genotype that is correlated with ok N3 Exon 3

the causal genotype AND if - T__

A349G

correlated genotypes are in the azrer \
same position in the genome i "
THEN we can identify the

genomic position of the casual

genotype (!!)

® This is the case in genetic =
systems (why!?)

® Do we know which genotype is
causal in this scenario?

Copyright: Journal of Diabetes and its Complications; Science
Direct;Vendramini et al



Linkage Disequilibrium

Mapping the position of a causal polymorphism in a GWAS requires there
to be LD for genotypes that are both physically linked and close to each
other AND that markers that are either far apart or on different
chromosomes to be in equilibrium

Note that disequilibrium includes both linkage disequilibrium AND other
types of disequilibrium (!!), e.g. gametic phase disequilibrium

LD
A<—> equilibrium, linkage C
l
I

B <« —>

Chr. | A

D equilibrium,
no linkage

Chr. 2 v




Genome-Wide Association Study
(GWAYS)

For a typical GWAS, we have a phenotype of interest and we do not
know any causal polymorphisms (loci) that affect this phenotype
(but we would like to find them!)

In an “ideal” GWAS experiment, we measure the phenotype and N
genotypes THROUGHOUT the genome for n independent
individuals

To analyze a GWAS, we perform N independent hypothesis tests

When we reject the null hypothesis, we assume that we have
located a position in the genome that contains a causal
polymorphism (not the causal polymorphism!), hence a GWAS is a
mapping experiment

This is as far as we can go with a GWAS (!!) such that (often)
identifying the causal polymorphism requires additional data and or
follow-up experiments, i.e. GWAS is a starting point



The Manhattan plot: examples
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That’s it for today

® Next lecture (Thurs, March 14), we will continue our discussion of
GWAS!



