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Announcements

Homework related announcements (!!)
Homework #4 is due | [:59pm (Mon) March 27
We will cover the last topics you need for QUESTION #2 today (!!)

PLEASE run your code and SUBMIT a pdf of the results of running your code (as well
as your rmd), i.e., if you submit a compiled latex pdf with your “written” answers
please submit another pdf with your code output (you can submit two pdfs on CMS!)

A key for homework #4 will be posted on Tues (March 28) (!!)

As a consequence, penalties for LATE homework #4 submissions will be considerable
(so PLEASE get your homework in on time!)

The midterm (!!) will ask you to do similar tasks as needed for homework #4 (so it is
to your advantage to spend time on it!)

For computer labs today Thurs (March 23) and tomorrow (March 24) will review and
cover what you need to complete your homework (and what you will need for the
midterm!)

| will hold office hours this coming Mon (March 27) 12:30-2:30 where | am happy to
discuss homework #4 or any other topics



Announcements

® Midterm Exam related announcements (!!)
® Available Weds (March 29)
® Due I1:59pm Fri (March 31)

® If you prepare ahead of time (!!) it should only take you a few hours to
complete!

® WeWILL have lecture this coming Tues (March 28) but we will NOT have
lecture Thurs (March 30) and we will NOT have computer labs next
week (and we will not have lectures or labs the following week = Cornell,
Ithaca Spring break)

® See next slides for more information on the midterm...



Quantitative Genomics and Genetics - Spring 2023
BTRY 4830/6830; PBSB 5201.01

Midterm Exam

Available on CMS by 11AM (ET), Weds., March 29
Due 11:59PM (ET) Fri., March 31

PLEASE NOTE THE FOLLOWING INSTRUCTIONS:

1. YOU ARE TO COMPLETE THIS EXAM ALONE! The exam is open book, so you
are allowed to use any books or information available online, your own notes and your pre-
viously constructed code, etc. HOWEVER YOU ARE NOT ALLOWED TO COM-
MUNICATE ORIN ANY WAY ASK ANYONE FOR ASSISTANCE WITH THIS
EXAM IN ANY FORM e.g., DO NOT POST PUBLIC MESSAGES ON PI-
AZZA! (the only exceptions are Mitch, Sam, and Dr. Mezey, e.g., you MAY send us a
private message on PTAZZA). As a non-exhaustive list this includes asking classmates or
ANYONE else for advice or where to look for answers concerning problems, you are not al-
lowed to ask anyone for access to their notes or to even look at their code whether constructed
before the exam or not, etc. You are therefore only allowed to look at your own materials
and materials you can access on your own. In short, work on your own! Please note that you
will be violating Cornell’s honor code if you act otherwise.




2. Please pay attention to instructions and complete ALL requirements for ALL questions, e.g.
some questions ask for R code, plots, AND written answers. We will give partial credit so it
is to your advantage to attempt every part of every question.

3. A complete answer to this exam will include R code answers, where you will submit your
.Rmd script and the results of running your code in an associated .pdf file (plus an additional
.pdf files if you have separate files for your written answers and code output). Note there will
be penalties for scripts that fail to compile (!!). Also, as always, you do not need to repeat
code for each part (i.e., if you write a single block of code that generates the answers for some
or all of the parts, that is fine, but do please label your output that answers each question!!).

4. The exam must be uploaded on CMS before 11:59PM (ET) Fri., March 31. It is your respon-
sibility to make sure that it is in uploaded by then and no excuses will be accepted (power
outages, computer problems, Cornell’s internet slowed to a crawl, etc.). Remember: you are
welcome to upload early! We will deduct points for being late for exams received after this
deadline (even if it is by minutes!!).



Summary of lecture |7: Introduction
to GWAS

® |ast lecture, we began our discussion of GWAS!

® Today, we will continue with our discussion of GWAS by
discussing statistical and experimental issues impacting the
success of a GWAS!



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



Review: Quantitative genomic
analysis |

We now know how to assess the null hypothesis as to
whether a polymorphism has a causal effect on our
phenotype

Occasionally we will assess this hypothesis for a single
genotype

In quantitative genomics, we generally do not know the
location of causal polymorphisms in the genome

We therefore perform a hypothesis test of many genotypes
throughout the genome

This is a genome-wide association study (GWAS)



Review: Manhattan plot: examples
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Linkage Disequilibrium

Mapping the position of a causal polymorphism in a GWAS requires there
to be LD for genotypes that are both physically linked and close to each
other AND that markers that are either far apart or on different
chromosomes to be in equilibrium

Note that disequilibrium includes both linkage disequilibrium AND other
types of disequilibrium (!!), e.g. gametic phase disequilibrium
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Review: Genome-Wide
Association Study (GWAYS)

For a typical GWAS, we have a phenotype of interest and we do not
know any causal polymorphisms (loci) that affect this phenotype
(but we would like to find them!)

In an “ideal” GWAS experiment, we measure the phenotype and N
genotypes THROUGHOUT the genome for n independent
individuals

To analyze a GWAS, we perform N independent hypothesis tests

When we reject the null hypothesis, we assume that we have
located a position in the genome that contains a causal
polymorphism (not the causal polymorphism!), hence a GWAS is a
mapping experiment

This is as far as we can go with a GWAS (!!) such that (often)
identifying the causal polymorphism requires additional data and or
follow-up experiments, i.e. GWAS is a starting point



Review: Interpreting “hits” from a
GWAS analysis

Resolution - the region of the genome indicated by significant tests for
a set of correlated markers in a GWAS

Recall that we often consider a set of contiguous significant markers (a
“skyscraper” on a Manhattan plot) to indicate the location of a single
causal polymorphism (although it need not indicate just one!)

Note that the marker with the most significant p-value within a set is not
necessarily closest to the causal polymorphism (!!)

In practice, we often consider a set of markers with highly significant p-
values to span the region where a causal polymorphism is located (but
this is arbitrary and need not be the case!)

In general, resolution in a GWAS is limited by the level of LD, which
means there is a trade-off between resolution and the ability to map
causal polymorphisms and that there is a theoretical limit to the
resolution of a GWAS experiment (what is this limit?)



The Manhattan plot: examples
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Review: Representing LD

® We often see LD among a set of contiguous markers, using
either r-squared or D’, with the “triangle, half-correlation
matrices” where darker squares indicating higher LD (values
of these statistics, e.g. LD in a “zoom-in” plot):
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Issues for successful mapping of
causal polymorphisms in GWAS

® For GWAS, we are generally concerned with correctly
identifying the position of as many causal polymorphisms as
possible (True Positives) while minimizing the number of
cases where we identify a position where we think there is
a causal polymorphism but there is not (False Positive)

® We are less concerned with cases where there is a causal
polymorphism but we do not detect it (why is this?)

® |ssues that affect the number of True Positives and False
Positives that we identify in a GWAS can be statistical and
experimental (or a combination)



Statistical Issues |:Type | error

Recall that Type | error is the probability of incorrectly
rejecting the null hypothesis when it is correct

A Type | error in a GWAS produces a false positive

We can control Type | error by setting it to a specified
level but recall there is a trade-off: if we set it to low, we
will not make a Type | error but we will also never reject
the null hypothesis, even when it is wrong (e.g. if Type |
error is to low, we will not detect ANY causal
polymorphisms)

In general we like to set a conservative Type | error for a
GWAS (why is this!?)

To do this, we have to deal with the multiple testing problem



Statistical Issues |1: Multiple Testing

® Recall that when we perform a GWAS, we perform N hypothesis
tests (where N is the number of measured genotype markers)

® Also recall that if we set aType | error to a level (say 0.05) this is
the probability of incorrectly rejecting the null hypothesis

® |f we performed N tests that were independent, we would
therefore expect to incorrectly reject the null N*0.05 and if N is
large, we would therefore make LOTS of errors (!!)

® This is the multiple testing problem = the more tests we perform
the greater the probability of making a Type | error

® Now in a GWAS, our tests are not independent (LD!) but we could
still make many errors by performing N tests if we do not set the
Type | error appropriately



Correcting for multiple tests |

® Since we can control the Type | error, we can correct
for the probability of making a Type | error due to
multiple tests

® There are two general approaches for doing this in a
GWAS: those that involve a Bonferroni correction and
those that involve a correction based on the estimate

the False Discovery Rate (FDR)

® Both are different techniques for controlling Type |
error but in practice, both set the Type | error to a
specified level (!!)



Correcting for multiple tests |l

® A Bonferroni correction sets the Type | error for the entire
GWAS using the following approach: for a desired type |
error (X set the Bonferroni Type | error B to the
following:

CYB:N

® We therefore use the Bonferroni Type | error to assess
EACH of our N tests in a GWAS

® For example, if we have N=100 in our GWAS and we want
an overall GWAS Type | error of 0.05, we require a test to
have a p-value less than 0.0005 to be considered significant



Correcting for multiple tests Il

A False Discovery Rated (FDR) based approach (there are many variants!)
uses the expected number of false positives to set (=control) the type |
error

For N tests and a specified Type | error, the FDR is defined in terms or
the number of cases where the null hypothesis is rejected R:

N *x «
R

Intuitively, the FDR is the proportion of cases where we reject the null
hypothesis that are false positives

FDR =

We can estimate the FDR for a GWAS, e.g. say for N=100,000 tests and a
Type | error of 0.05, we reject the null hypothesis 10,000 times, the FDR
=0.5

FDR methods for controlling for multiple tests (e.g. Benjamini-Hochberg)
set the Type | error to control the FDR to a specific level, say FDR=0.01
(what is the intuition at this FDR level?)



Correcting for multiple tests IV

Since the lower the Type | error the lower the power of our test, if we
set the Type | error too low due to a very large N, we might not get any
hits even when there are clear causal polymorphisms (is this desirable!?)

In general, a Bonferroni correction sets a lower overall GWAS Type |
error than FDR approaches (what are the trade-offs and why would we
choose one over the other?)

Both Bonferroni and FDR approaches make the implicit assumption that
all tests are independent (which we know not to be the case in GWAS!)

A strategy that can produce a more accurate Bonferroni or FDR cutoff is
to use a permutation approach (which we do not have time to cover in
this course)

Regardless of the approach, some correction for multiple tests is
necessary to guard against a case where there are no true positives in the
experiment, i.e. this is why we do not automatically assume the highest
“peak” is a true positive (unless it is significant after a multiple test
correction)



Statistical / experimental issues that
affect True Positives: power |

® Recall that power is defined as the probability of correctly
rejecting the null hypothesis when it is false (incorrect)

® Also recall that we cannot control power directly because
it depends on the true parameter value(s) that we do not
know!

® Also recall that we can indirectly control power by setting
our Type | error, where there is a trade-off between Type |
error and power (what is this trade-off!?)

® There are also a number of issues that affect power that
are a function of the GWAS experiment



Statistical / experimental issues that
affect True Positives: power |

® Power tends to increase with the increasing size of the true effect of
the genotype on phenotype (how is this quantified in terms of linear
regression parameters?)

® Power tends to increase with increasing sample size n

® Power tends to increase as the Minor Allele Frequency (MAF)
increases (why is this?)

® Power tends to increase as the LD between a causal polymorphism
and the genotype marker being tested increases (i.e. as the correlation
between the causal and marker genotype increase)

® Power also depends on other factors including the type of statistical
test applied, etc.

® Can any of these be controlled?



Experimental issues that produce
false positives

® Type | errors can produce a false positives (= places we
identify in the genome as containing a causal
polymorphism / locus that do not)

® However, there are experimental reasons why we can
correctly reject the null hypothesis (= we do not make a
Type | error) but we still get a false positive:

® Cases of disequilibrium when there is no linkage
® Genotyping errors
® Unaccounted for covariates

® There are others...



Quantile-Quantile (QQ) plots |

We will now introduce an essential tool for detecting the most
problematic covariates (and can be used to diagnose many other
problems!): a Quantile-Quantile (QQ) plot

While the definition of a QQ-plot is complex, you will see that
how we generate a QQ-plot is easy!

We will demonstrate the value of a QQ plot for detecting the
often problematic variable: population structure

In general, whenever you perform a GWAS, you should construct
a QQ plot (!!) and always include a QQ plot in your publication



Quantile-Quantile (QQ) plots |l

Consider a random variable with a continuous probability
distribution

quantile - regular, equally spaced intervals of a random variable
that divide the random variable into units of equal distribution

A Quantile-Quantile (QQ) plot (in general) plots the observed
quantiles of one distribution versus another OR plots the
observed quantiles of a distribution versus the quantiles of the
ideal distribution

We will use a QQ plot to plot our the quantile distribution of
observed p-values (on the y-axis) versus the quantile distribution
of expected p-values (what distribution is this!?)



Quantile-Quantile (QQ) plots Il

® How to construct a QQ plot for a GWAS:

® |f you performed N tests, take the -log (base 10) of each of the
p-values and put them in rank order from smallest to largest

® Create a vector of N values evenly spaces from | to | / N
(how do we do this?), take the -log of each of these values and
rank them from smallest to largest

® Take the pair of the smallest of values of each of these lists
and plot a point on an x-y plot with the observed -log p-value
on the y-axis and the spaced -log value on the x-axis

® Repeat for the next smallest pair, for the next, etc. until you
have plotted all N pairs in order



That’s it for today

® Next lecture (Tues, March 28), we will covariates in GWAS and

QQ plots!



