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Announcements
• Homework #3 and #4 have been graded - grades will be 

released later today

• Midterm will be graded soon and key will be available soon

• You only have your Project and the Final Exam (and 4 computer 
labs) to go!

• Project (!!) will be available today (see next slides for more 
information)

• Looking ahead: you final:

• Same basic format as the midterm 

• You will have to do a GWAS analysis by doing a linear 
regression with and without covariates AND a logistic 
regression with and without covariates (!!) 



BTRY 4830/6830 & PBSB.5201.01
Quantitative Genomics and Genetics Spring 2023

Project - posted April 11

Due 11:59PM May 9

1 Introduction and instructions

The goal of the class project is for you to demonstrate what you have learned by performing a
GWAS analysis on real data. To accomplish this, assume that you have been provided data by
a collaborator who wants to identify positions of causal polymorphisms (loci). You will perform
an in-depth analysis and write a report for your collaborator that explains your methods and results.

Instructions: While we provide some general guidelines for how to proceed below, the techniques
you use to analyze the data and how you construct your report will be up to you. Do however note
the following instructions (PLEASE READ THESE CAREFULLY!!):

(1) Your project must be uploaded by 11:59PM, May 9 - if it is late for any reason, standard
grading policies apply.

(2) You are allowed to work together with other students in the class to analyze these data.
However, note that turning in a report that describes exactly the same analyses as a fellow
student is not a good strategy for getting a good grade. Also note that you must write your
own report.

(3) This is an ‘open book’ assignment, such that you are allowed to use any resources online,
in books, etc. You may also ask third-party (i.e. people not in the class) for suggestions on
what analyses to perform but you cannot have a third-party do any of the analyses (or write
any code for you!).

(4) You are also allowed to use any software or programming language that you would like as
part of your analysis. However, we expect that some of the tasks will be performed in R (also
note that you are welcome to use any packages, functions, etc. in R).

(5) Your final project will include at most three files a SINGLE report file (ideally a .pdf), a
SINGLE file including all of your R code (ideally an .rmd file!) and / or commands or scripts
you used to run other software packages, and IF YOU WANT a SINGLE, a pdf or html
conversion of your .rmd. That is, for your R code, the best way to maximize your grade is to
have well commented code that we can run from the command line. If you use other software
for some of the tasks, a reasonable approach is to include commented out descriptions in your
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code that provides details on how you ran the software, e.g. what parameters did you use,
etc.

(6) The report file must be no more than 8 pages (single-sided), with NO MORE than 5 pages
of text and NO MORE than 3 pages of figures / tables.

(7) For your report, you must describe what you did in detail (a good guide is have you provided
enough detail such that someone reading your report could replicate what you have done?).
You also need to describe the results you have obtained from your analysis. You may also
wish to include some text to describe interpretations and conclusions that may be of interest
to your collaborator, including statistical and possibly, biological interpretations. For your
Figures and Tables, note that clarity and clear labels is a strategy for maximizing your grade.

(8) We will grade on two broad criteria: 1. the overall quality of the analyses / report, 2. the
amount of e↵ort put into your project. Note that ‘e↵ort’ does not mean run many analyses
without thinking carefully about why you are running them or how they fit together to provide
a clear picture of results. A guide maximizing your grade on e↵ort is to think carefully about
how to produce the best possible report that you can and then put in as many hours as you
wish to devote to the project accomplishing this objective (your e↵ort level will be clear to
us).

2 The experiment and data

The experiment: Among the recent large scale human genomics resources is Genetic European
Variation in Health and Disease (gEUVADIS) - see the following links for relevant descriptions and
information:

http://www.internationalgenome.org/data-portal/data-collection/geuvadis/

https://www.nature.com/articles/nature12531

with a samples from 4 di↵erent European populations (5 populations total). Each of these in-
dividuals were part of the 1000 Genomes project and their genomes were sequenced and analyzed
to identify SNP geno- types. For expression profiling, lympoblastoid cell lines (LCL) were generated
from each sample and mRNA levels were quantified through RNA sequencing.

Each of these gene expression measurements may be thought of as a phenotype and one can do a
GWAS analysis on each individually, which is called an ‘expression Quantitative Trait Locus’ or
‘eQTL’ analysis, an unnecessarily fancy name for a GWAS when the phenotype is gene expression!

What you have been provided is a small subset of these data that are publicly available. Specifi-
cally, you have been provided 50,000 of the SNP genotypes for 344 samples from the CEU (Utah
residents with European ancestry), FIN (Finns), GBR (British) and, TSI (Toscani) population.
For these same individuals, you have also been provided the expression levels of five genes. You
have also been provided information on the population and gender of each of these individuals, and
information regarding the position of each gene and SNP in the genome.
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The data: These have been provided to you in five total files: ‘phenotypes.csv’,‘genotypes.csv’,
‘covars.csv’, ‘gene info.csv’,‘SNP info.csv’.

‘phenotypes.csv’ contains the phenotype data for 344 samples and 5 genes.

‘genotypes.csv’ contains the SNP data for 344 samples and 50000 genotypes.

‘covars.csv’ contains the population origin and gender information for the 344 samples.

‘gene info.csv’ contains information about each gene that was measured. The ‘chromosome’ column
indicates the chromosome where the gene is located, ‘start’ marks the position in the chromosome
where the region of the gene begins and ‘end’ marks the position where the region ends, ‘symbol’
contains the common gene name of the measured transcript and ‘probe’ contains the ids of the
transcripts that match with the column names of the phenotype data.

‘SNP info.csv’ contains the additional information on the genotypes and has four columns. The
1st column contains the chromosome number of each SNP, the 2nd column contains the physical
position of the SNP on the chromosome, the 3rd column contains the abbreviation used to the
‘rsID’ = the name of each SNP in order.

3 Your assignment and hints for getting started

Your GWAS assignment is to find the position of as many causal polymorphisms as possible for the
five expressed genes using the data (note that each ‘hit’ will potentially indicate an eQTL). You
may / should use any and as many analysis approaches as you think that are useful to accomplish
this goal. In your report, you will need to describe in detail what you did, why you did it, and
describe results in a manner that your ‘non-statistical’ collaborator will be able to understand, e.g.
explain your terms, provide interpretations, etc.

A few hints:

• Apply the applicable steps of a ‘minimum GWAS’ analysis.

• In your report, justify why you applied each individual step and statistical approach.

• In your report, provide a summary of your results and what they mean.

• You may want to consider going to various resources online (e.g. genecards, UCSC genome
browser, dbSNP, many others) to incorporate biological information into your interpretation
and hypotheses concerning what you may have found.

• Ask Mitch, Sam, and Jason for thoughts and ideas!

Good luck!
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Phenotype data (gene expression = 
part of transcriptome)

Phenotypes (5 total!) are expression level of 5 genes 
measured in (immortalized) LCL cells derived from 

individuals in the (original)1000 Genome project (so GWAS 
in this case is an eQTL study!)

intragen-genomics.com



Genotype data (SNPs across the 
genome)

SNPs (original alleles are a, c, g, t) have been coded data as    
0 (=homozygote), 1 (=heterozygote), 2 (= other homozygote) 

with “rsID” for identity (and tells you where the SNP is 
located in the ref genome)



Other (Covar) data (gender and 
population)

Other data include information about the gender of each 
individual in the sample and where their ancestry group 
(GBR, FIN, CEU, TSI codes indicate different populations)



Review: Experimental issues that 
produce false positives

• Type 1 errors can produce a false positives (= places we 
identify in the genome as containing a causal 
polymorphism / locus that do not)

• However, there are experimental reasons why we can 
correctly reject the null hypothesis (= we do not make a 
Type 1 error) but we still get a false positive:

• Cases of disequilibrium when there is no linkage

• Genotyping errors

• Unaccounted for covariates

• There are others...



Review: Introduction to covariates I
• Recall that in a GWAS, we are considering the following 

regression model and hypotheses to assess a possible 
association for every marker with the phenotype 

• Also recall that with these hypotheses we are actually 
testing:

the other haplotype alleles, this is a reasonable solution for determining the number of al-
leles. Now, this might not be a very satisfying answer but it turns out that, for humans at
least, if one looks at a haplotype region, it is often relatively easy to identify 3-5 haplotype
alleles that account for all observed variation. In sum, there is no hard rule, but we define
a collapsing that makes the most sense given data we observe.

3 Fixed Covariates

Remember that when we are performing a GWAS using a GLM:

Y = �
�1(�µ +Xa�a +Xd�d) (1)

where we are testing:
H0 : �a = 0 \ �d = 0 (2)

HA : �a 6= 0 [ �d 6= 0 (3)

and where another way to consider these hypotheses is that we are actually testing:

H0 : Cov(Y,Xa) = 0 \ Cov(Y,Xd) = 0 (4)

HA : Cov(Y,Xa) 6= 0 [ Cov(Y,Xd) 6= 0 (5)

Let’s now consider a case where a marker is not linked to a causal polymorphism, so that
the null hypothesis is true, but there is another factor, which we could code as an additional
variable Xz, that has an e↵ect on Y (which we could describe with a parameter �) such
that Cov(Y,Xz) 6= 0. Let’s assume that this factor has the following relationship with the
genotype Cov(Xa, Xz) 6= 0, i.e. Xz it is correlated with Xa. In this case, when testing the
null hypothesis using equation (8), we should expect to reject the null. While this is not a
false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)
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• Let’s consider these two cases:

• For the first, the marker is not correlated with a causal polymorphism 
but the factor is correlated with BOTH the phenotype and the marker 
such that a test of the marker using our framework will produce a 
false positive (!!):

• For the second, the marker is correlated with a causal polymorphism 
and while the factor is correlated with the phenotype but not the 
marker, a test of the marker in our framework will model the effect of 
the factor in our error term (which will reduce power!):
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Y = �µ +Xa�a +Xd�d + ✏Xz (6)

Y = �µ +Xa�a +Xd�d + ✏ (7)

4

the actual error we are considering is:

✏Xz = Xz�z + ✏ (8)

✏ ⇠ N(0,�2
✏ ) (9)

which is not the correct model, i.e. the true error term is actually a mixture of normals.
Even beyond the problem that we are not applying the correct model, the result in this
case is that the error term will be larger as a consequence of the factor, so the power of
our test will be lower (compared to a case where there was no e↵ect of a factor).

These examples provide two intuitive consequences of factors contributing to our phe-
notype of interest Y , i.e. biological false positives and higher error terms. On a practical
level, there are many such factors that contribute to phenotype variation in GWAS studies,
e.g. environmental factors such as ‘smoking’ or ‘non-smoking’, gender di↵erences, multiple
causal loci, etc. The good news is when we have information about these factors, (e.g.
whether a given individual is a smoker or non-smoker) we can include an additional co-
variate term in our linear (or logistic) equation and an associate parameter to account for
the e↵ects of the factor. We call such an approach (where we have a dummy variable Xz

and parameter �z) a fixed covariate:

Y = �
�1(�µ +Xa�a +Xd�d +Xz�z) (10)

and we use the sample statistical framework (including hypothesis testing) to analyze such
a model. Note that we may code the dummy variable for the covariate as we have with
our genotypes (just a few states) or with many states, e.g. an individual fixed state for
each individual in our sample. Also note that we have arbitrarily designated the genotype
dummy variables to be what we are interested in and all other factors to be covariates but
they are modeled and handled the same way for the purposes of inference.

A few quick comments about fixed covariates. First, in practice, we may not have in-
formation in our GWAS study about an important factor contributing to our phenotype
and in such cases we are simply out of luck. Second, even if we have information on a num-
ber of possible factors that may be contributing to our phenotype, we do not know which
ones are actually covariates, i.e. have true non-zero � terms. In general, the way we handle
such situations is repeat the analysis several times including individual or combinations of
these possible covariates. If the estimates of the �’s are close to zero for given covariates,
we can leave them out of the analysis (where we decide which are close to zero using model
selection procedures). Third, if there are multiple loci contributing to the phenotype, we
could include additional markers in the model to account for these ‘covariates’. However,
this brings up an additional challenge of how to select which markers to include (again, the
problem of model selection), a subject that we will deal with in notes that we will post but
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the other haplotype alleles, this is a reasonable solution for determining the number of al-
leles. Now, this might not be a very satisfying answer but it turns out that, for humans at
least, if one looks at a haplotype region, it is often relatively easy to identify 3-5 haplotype
alleles that account for all observed variation. In sum, there is no hard rule, but we define
a collapsing that makes the most sense given data we observe.

3 Fixed Covariates

Remember that when we are performing a GWAS using a GLM:

Y = �
�1(�µ +Xa�a +Xd�d) (1)

where we are testing:
H0 : �a = 0 \ �d = 0 (2)

HA : �a 6= 0 [ �d 6= 0 (3)

and where another way to consider these hypotheses is that we are actually testing:

H0 : Cov(Y,Xa) = 0 \ Cov(Y,Xd) = 0 (4)

HA : Cov(Y,Xa) 6= 0 [ Cov(Y,Xd) 6= 0 (5)

Let’s now consider a case where a marker is not linked to a causal polymorphism, so that
the null hypothesis is true, but there is another factor, which we could code as an additional
variable Xz, that has an e↵ect on Y (which we could describe with a parameter �) such
that Cov(Y,Xz) 6= 0. Let’s assume that this factor has the following relationship with the
genotype Cov(Xa, Xz) 6= 0, i.e. Xz it is correlated with Xa. In this case, when testing the
null hypothesis using equation (8), we should expect to reject the null. While this is not a
false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)
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Review: Modeling covariates I
• Therefore, if we have a factor that is correlated with our 

phenotype and we do not handle it in some manner in our 
analysis, we risk producing false positives AND/OR reduce 
the power of our tests!

• The good news is that, assuming we have measured the 
factor (i.e. it is part of our GWAS dataset) then we can 
incorporate the factor in our model as a covariate(s):

• The effect of this is that we will estimate the covariate 
model parameter and this will account for the correlation of 
the factor with phenotype (such that we can test for our 
marker correlation without false positives / lower power!)

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ⇥ (100)
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Review: Modeling covariates II
• How do we perform inference with a covariate in our regression 

model?

• We perform MLE the same way (!!) our X matrix now simply 
includes extra columns, one for each of the additional covariates, 
where for the linear regression we have:

• We perform hypothesis testing the same way (!!) with a slight 
difference: our LRT includes the covariate in both the null 
hypothesis and the alternative (and therefore two different X 
matrices!), but we are testing the same null hypothesis:

2 Hypothesis testing with the regression model

As a reminder, our inference goal in quantitative genomics is to test the following null
hypothesis for a multiple regression model: Y = �µ +Xa�a +Xd�d + ✏ with ✏ ⇠ N(0,�2

✏ ),
which we use to assess whether there is an e↵ect of a polymorphism on a phenotype:

H0 : �a = 0 \ �d = 0 (1)

HA : �a 6= 0 [ �d 6= 0 (2)

To do this, we will construct a likelihood ratio test (LRT) with an exact distribution (in
this case, an F-test). We will not go into the details of how this test is derived, but remem-
ber that this has the same form as any LRT that we discussed in a previous lecture (and
remember that a LRT works like any other statistic, i.e. it is a function on a sample that
produces a value that we then use to determine a p-value!!). We will however consider the
components of an F-statistic so we know how to calculate it and perform our hypothesis
test.

To construct this LRT, we need the maximum likelihood estimates of the regression pa-
rameters:

MLE(✓̂) =

2

4
�̂µ

�̂a

�̂d

3

5

where recall from last lecture, this has the following form:

MLE(✓̂) = (XTX)�1XTY (3)

MLE(�̂) = (xTx)�1xTy (4)

With these estimates, we can construct the predicted phenotypic value ŷi for an individual
i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (5)

where the parameter estimates are the MLE. We will next define two functions of the
predicted values. The first is the sum of squares of the model (SSM):

SSM =
nX

i=1

(ŷi � y)2 (6)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE =
nX

i=1

(yi � ŷi)
2 (7)

2

the other haplotype alleles, this is a reasonable solution for determining the number of al-
leles. Now, this might not be a very satisfying answer but it turns out that, for humans at
least, if one looks at a haplotype region, it is often relatively easy to identify 3-5 haplotype
alleles that account for all observed variation. In sum, there is no hard rule, but we define
a collapsing that makes the most sense given data we observe.

3 Fixed Covariates

Remember that when we are performing a GWAS using a GLM:

Y = �
�1(�µ +Xa�a +Xd�d) (1)

where we are testing:
H0 : �a = 0 \ �d = 0 (2)

HA : �a 6= 0 [ �d 6= 0 (3)

and where another way to consider these hypotheses is that we are actually testing:

H0 : Cov(Y,Xa) = 0 \ Cov(Y,Xd) = 0 (4)

HA : Cov(Y,Xa) 6= 0 [ Cov(Y,Xd) 6= 0 (5)

Let’s now consider a case where a marker is not linked to a causal polymorphism, so that
the null hypothesis is true, but there is another factor, which we could code as an additional
variable Xz, that has an e↵ect on Y (which we could describe with a parameter �) such
that Cov(Y,Xz) 6= 0. Let’s assume that this factor has the following relationship with the
genotype Cov(Xa, Xz) 6= 0, i.e. Xz it is correlated with Xa. In this case, when testing the
null hypothesis using equation (8), we should expect to reject the null. While this is not a
false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)

4



• First, determine the predicted value of the phenotype of each 
individual under the null hypothesis (how do we set up x?):

• Second, determine the predicted value of the phenotype of each 
individual under the alternative hypothesis (set up x?):

• Third, calculate the “Error Sum of Squares” for each:   

• Finally, we calculate the F-statistic with degrees of freedom [2, 
n-3] (why two and n-#params degrees of freedom?):

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)

3
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)

5

pval(T (x)) =

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)X

Torder(min(T (X))

Pr(T (Torder(i))|✓ = c)

(42)

+

Torder(max(T (X))X

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)

Pr(T (Torder(i))|✓ = c) (43)

Torder(T (x)) = i|for the ith largest value of T(X) (44)

ŷi,✓̂1
= �̂µ,✓̂1

+ xi,a�̂a,✓̂1
+ xi,d�̂d,✓̂1

+
X

j=1

xi,z,j �̂z,✓̂1,j
(45)
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ŷi,✓̂0
= �̂µ,✓̂0

+
X

j=1

xi,z,j �̂z,✓̂0,j
(46)
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• Thus, for testing the null hypothesis in a linear regression, we can construct an 
F-test using a slightly different formula:

• For the null hypotheses we are testing, once you calculate this F-statistic, you 
compare to an F-distribution with 2 and n - #(alternative hypothesis 
parameters) degrees of freedom 

• The “2” df in the numerator comes from the #(alternative hypothesis model 
parameters) - #(null hypothesis model parameters)

• Note that our previous formula for an F-statistic can be represented this way 
as well (!!)

SSM =
nX
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(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error
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square model (MSM) and the mean square error (MSE) terms. These later functions
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�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.
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SSM
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SSM

2
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MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
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MSE
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F[2,n�3](y,xa,xd) =
MSM

MSE
(14)
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SSE(✓̂0)�SSE(✓̂1)
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SSE(✓̂1)
n�3

(15)

3

SSM =
nX

i=1
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l(✓̂1|y) =
nX
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[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)
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SSE(✓̂1)

n�#(✓̂1)
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Review: Modeling covariates VI
• Say you have GWAS data (a phenotype and genotypes) and your 

GWAS data also includes information on a number of covariates, 
e.g. male / female, several different ancestral groups (different 
populations!!), other risk factors, etc.

• First, you need to figure out how to code the XZ in each case for 
each of these, which may be simple (male / female) but more 
complex with others (where how to code them involves fuzzy 
rules, i.e. it depends on your context!!)

• Second, you will need to figure out which to include in your 
analysis (again, fuzzy rules!) but a good rule is if the parameter 
estimate associated with the covariate is large (=significant 
individual p-value) you should include it!

• There are many ways to figure out how to include covariates 
(again a topic in itself!!) - next lecture we will provide an 
(important!) example: population structure 



Covariate modeling example: 
population structure 

• “Population structure” or “stratification” is a case where a sample includes 
groups of people that fit into two or more different ancestry groups (fuzzy 
def!)

• Population structure is often a major issue in GWAS where it can cause 
lots of false positives if it is not accounted for in your model

• Intuitively, you can model population structure as a covariate if you know: 

• How many populations are represented in your sample

• Which individual in your sample belongs to which population

• QQ plots are good for determining whether there may be population 
structure

• “Clustering” techniques are good for detecting population structure and 
determining which individual is in which population (=ancestry group) 



Origin of population structure

© Sarver World Cultures

People geographically separate through migration and then the set 
of alleles present in the population evolves (=changes) over time



• Even if you had a case where there were NO causal polymorphisms 
for a phenotype, you can get false positives if:

• If you have more than one population in your sample (that you do 
not model with a covariate)

• If these populations differ in frequencies of genotypes at a subset of 
measured genotypes / polymorphisms

• If these populations differ in the mean value of the phenotype

• In such a case, every genotype where an MAF is different between the 
populations would be expected to produce a low p-value (=biological 
false positives!)

• Note: if you can “learn” (or know) the population information for your 
data, you can model this as a covariate and you (may) be able to 
correct this problem 

Why might (unaccounted for) structure 
be a problem in a GWAS?



Modeling population structure as a 
covariate (intuition)

• If you can determine which individual is in which pop and define 
random variables for pop assignment, e.g. for two populations 
include single covariate by setting, XZ,1(pop1) = 1, XZ,1(pop2) = 0 
(generally less optimal but can be used!)

• Use one of these approaches to model a covariate in your analysis, 
i.e. for every genotype marker that you test in your GWAS:

• How do we tell if our covariate correction “worked” well enough 
that we should interpret the results of our analysis?

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ⇥ (100)
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• To learn a population factor, analyze the genotype data

• Apply a Principal Component Analysis (PCA) where the “axes” (features) in this case 
are individuals and each point is a (scaled) genotype

• What we are interested in the projections (loadings) of the individual PCs on the axes 
(dotted arrows) on each of the individual axes, where for each, this will produce n (i.e. 
one value for each sample) value of a new independent (covariate) variable XZ 

Learning unmeasured population factors 
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Using the results of a PCA 
population structure analysis

• Once you have detected the populations (e.g. by eye in a PCA = 
fuzzy!) in your GWAS sample, set your independent variables equal 
to the loadings for each individual, e.g., for two pop covariates, set 
XZ,1 = Z1, XZ,2 = Z2

• You could also determine which individual is in which pop and 
define random variables for pop assignment, e.g. for two populations 
include single covariate by setting, XZ,1(pop1) = 1, XZ,1(pop2) = 0 
(generally less optimal but can be used!)

• Use one of these approaches to model a covariate in your analysis, 
i.e. for every genotype marker that you test in your GWAS:

• The goal is to produce a good QQ plot (what if it does not?)
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Before (top) and after including a 
population covariate (bottom)



That’s it for today

• Next lecture we will discuss minimum / minimal GWAS and begin 
our discussion of logistic regression!


