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Announcements

Homework #3 and #4 have been graded - grades will be
released later today

Midterm will be graded soon and key will be available soon

You only have your Project and the Final Exam (and 4 computer
labs) to go!

Project (!!) will be available today (see next slides for more
information)

Looking ahead: you final:
® Same basic format as the midterm

® You will have to do a GWAS analysis by doing a linear
regression with and without covariates AND a logistic
regression with and without covariates (!!)



BTRY 4830/6830 & PBSB.5201.01
Quantitative Genomics and Genetics Spring 2023

Project - posted April 11

Due 11:59PM May 9

1 Introduction and instructions

The goal of the class project is for you to demonstrate what you have learned by performing a
GWAS analysis on real data. To accomplish this, assume that you have been provided data by
a collaborator who wants to identify positions of causal polymorphisms (loci). You will perform
an in-depth analysis and write a report for your collaborator that explains your methods and results.

Instructions: While we provide some general guidelines for how to proceed below, the techniques
you use to analyze the data and how you construct your report will be up to you. Do however note
the following instructions (PLEASE READ THESE CAREFULLY!!):

(1)

(2)

Your project must be uploaded by 11:59PM, May 9 - if it is late for any reason, standard
grading policies apply.

You are allowed to work together with other students in the class to analyze these data.
However, note that turning in a report that describes exactly the same analyses as a fellow
student is not a good strategy for getting a good grade. Also note that you must write your
own report.

This is an ‘open book’ assignment, such that you are allowed to use any resources online,
in books, etc. You may also ask third-party (i.e. people not in the class) for suggestions on
what analyses to perform but you cannot have a third-party do any of the analyses (or write
any code for you!).

You are also allowed to use any software or programming language that you would like as
part of your analysis. However, we expect that some of the tasks will be performed in R (also
note that you are welcome to use any packages, functions, etc. in R).

Your final project will include at most three files a SINGLE report file (ideally a .pdf), a
SINGLE file including all of your R code (ideally an .rmd file!) and / or commands or scripts
you used to run other software packages, and IF YOU WANT a SINGLE, a pdf or html
conversion of your .rmd. That is, for your R code, the best way to maximize your grade is to
have well commented code that we can run from the command line. If you use other software
for some of the tasks, a reasonable approach is to include commented out descriptions in your



code that provides details on how you ran the software, e.g. what parameters did you use,
ete.

(6) The report file must be no more than 8 pages (single-sided), with NO MORE than 5 pages
of text and NO MORE than 3 pages of figures / tables.

(7) For your report, you must describe what you did in detail (a good guide is have you provided
enough detail such that someone reading your report could replicate what you have done?).
You also need to describe the results you have obtained from your analysis. You may also
wish to include some text to describe interpretations and conclusions that may be of interest
to your collaborator, including statistical and possibly, biological interpretations. For your
Figures and Tables, note that clarity and clear labels is a strategy for maximizing your grade.

(8) We will grade on two broad criteria: 1. the overall quality of the analyses / report, 2. the
amount of effort put into your project. Note that ‘effort’ does not mean run many analyses
without thinking carefully about why you are running them or how they fit together to provide
a clear picture of results. A guide maximizing your grade on effort is to think carefully about
how to produce the best possible report that you can and then put in as many hours as you
wish to devote to the project accomplishing this objective (your effort level will be clear to
us).

2 The experiment and data

The experiment: Among the recent large scale human genomics resources is Genetic European
Variation in Health and Disease (gEUVADIS) - see the following links for relevant descriptions and
information:

http://www.internationalgenome.org/data-portal/data-collection/geuvadis/
https://www.nature.com/articles/nature12531

with a samples from 4 different European populations (5 populations total). Each of these in-
dividuals were part of the 1000 Genomes project and their genomes were sequenced and analyzed
to identify SNP geno- types. For expression profiling, lympoblastoid cell lines (LCL) were generated
from each sample and mRNA levels were quantified through RNA sequencing.

Each of these gene expression measurements may be thought of as a phenotype and one can do a
GWAS analysis on each individually, which is called an ‘expression Quantitative Trait Locus’ or
‘eQTL’ analysis, an unnecessarily fancy name for a GWAS when the phenotype is gene expression!

What you have been provided is a small subset of these data that are publicly available. Specifi-
cally, you have been provided 50,000 of the SNP genotypes for 344 samples from the CEU (Utah
residents with European ancestry), FIN (Finns), GBR (British) and, TSI (Toscani) population.
For these same individuals, you have also been provided the expression levels of five genes. You
have also been provided information on the population and gender of each of these individuals, and
information regarding the position of each gene and SNP in the genome.



The data: These have been provided to you in five total files: ‘phenotypes.csv’,‘genotypes.csv’,
‘covars.csv’, ‘gene_info.csv’,*SNP _info.csv’.

‘phenotypes.csv’ contains the phenotype data for 344 samples and 5 genes.
‘genotypes.csv’ contains the SNP data for 344 samples and 50000 genotypes.
‘covars.csv’ contains the population origin and gender information for the 344 samples.

‘gene_info.csv’ contains information about each gene that was measured. The ‘chromosome’ column
indicates the chromosome where the gene is located, ‘start’ marks the position in the chromosome
where the region of the gene begins and ‘end’ marks the position where the region ends, ‘symbol’
contains the common gene name of the measured transcript and ‘probe’ contains the ids of the
transcripts that match with the column names of the phenotype data.

‘SNP_info.csv’ contains the additional information on the genotypes and has four columns. The
1st column contains the chromosome number of each SNP, the 2nd column contains the physical
position of the SNP on the chromosome, the 3rd column contains the abbreviation used to the
‘rsID’ = the name of each SNP in order.

3 Your assignment and hints for getting started

Your GWAS assignment is to find the position of as many causal polymorphisms as possible for the
five expressed genes using the data (note that each ‘hit’ will potentially indicate an eQTL). You
may / should use any and as many analysis approaches as you think that are useful to accomplish
this goal. In your report, you will need to describe in detail what you did, why you did it, and
describe results in a manner that your ‘non-statistical’ collaborator will be able to understand, e.g.
explain your terms, provide interpretations, etc.

A few hints:

e Apply the applicable steps of a ‘minimum GWAS’ analysis.
e In your report, justify why you applied each individual step and statistical approach.
e In your report, provide a summary of your results and what they mean.

e You may want to consider going to various resources online (e.g. genecards, UCSC genome
browser, dbSNP, many others) to incorporate biological information into your interpretation
and hypotheses concerning what you may have found.

e Ask Mitch, Sam, and Jason for thoughts and ideas!

Good luck!



Phenotype data (gene expression =
part of transcriptome)

ENSG00000164308.12

phenotypes

ENSG00000124587.9 ENSGO00000180185.7 ENSG00000168827.9 ENSGO00000136536.9

HG00096
HGO00097
HG00099
HG00100
HG00101

-1.16633689696683
-1.04580261431236
1.04580261431236

-0.685935753049393
-0.178957574493853
-0.894574678593869

-0.306242139658105
-1.03333046420892
-2.52426034364226

0.927584408622131
-0.667664420705464
-2.75904239094674

0.360008763945335
-1.77825295709656
-2.52426034364226

0.223446000722478 | -0.0982432620682955  1.15211124629477 0.2533471031358  0.054518914848101
-0.223446000722478  0.862512064376565 1.3782829603729 1.0842344300009  0.260856854090312
gene_info

probe chromosome start end symbol
ENSG00000136536.9 2 159712456 159768582 MARCH?7
ENSG00000180185.7 16 1827223 1840206 FAHD1
ENSG00000124587.9 6 | 42963872 42979242 | PEX6
ENSG00000164308.12 5 96875939 96919702 ERAP2
ENSG00000168827.9 3 | 158644496 158692571  GFM1
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Phenotypes (5 total!) are expression level of 5 genes
measured in (immortalized) LCL cells derived from
individuals in the (original) |I000 Genome project (so GWAS

in this case is an eQTL study!)



Genotype data (SNPs across the
genome)

SNP_info

rs10399749 rs62641299 rs115523412 rsi O

e 0 5 o 1| 55298 rs10399749
HG00097 0 9 0 1| 79049 rs62641299
HG00099 1 1 0 1| 826577 rs115523412
HG00100 0 2 0 1| 861386 rs75932129
HG00101 1 2 0 1| 863019 rs10900604
HG00102 0 2 0 1| 875399 rs58686784
HG00103 0 2 0 1| 898443 rs28484835
HQ00104 0 2 0 1| 920718 rs28534711
sl 1 2 0 1| 934936 rs28451560
HG00108 ! 2 0 1| 990303 ' rs6605061
HG00109 0 2 0

1| 1129421 | rs2298216
HG00110 0 1 1

1| 1152302 | rs9442380
HG00111 0 2 0

1| 1174572  rs11260540
HG00112 0 2 0
HG00114 0 » o 1| 1203354 rs11466698
HGOO118 0 5 0 1| 1229940  rs143841174
HGO00117 0 2 0 1| 1292284 rs3831920
HG00118 0 1 0 1| 1330124 rs35946613
HG00119 0 2 0 1| 1362041 | rs2765021

1| 1568427 rs11578409

SNPs (original alleles are a, ¢, g, t) have been coded data as
0 (=homozygote), | (=heterozygote), 2 (= other homozygote)
with “rsID” for identity (and tells you where the SNP is
located in the ref genome)



Other (Covar) data (gender and

covars

Population Sex

HG00096
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HG00099
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HG00110
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HG00112
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GBR
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GBR
GBR
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GBR
GBR
GBR
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GBR
GBR
GBR
GBR
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MALE
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FEMALE
FEMALE
MALE
FEMALE
MALE
FEMALE
FEMALE
MALE
MALE
FEMALE
FEMALE
MALE
MALE
MALE

population)

Human Migration

about 80,000
about 50,000 years ago
years ago
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years ago
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Other data include information about the gender of each

individual in the sample and where their ancestry group
(GBR, FIN, CEU, TSI codes indicate different populations)



Review: Experimental issues that
produce false positives

® Type | errors can produce a false positives (= places we
identify in the genome as containing a causal
polymorphism / locus that do not)

® However, there are experimental reasons why we can
correctly reject the null hypothesis (= we do not make a
Type | error) but we still get a false positive:

® Cases of disequilibrium when there is no linkage
® Genotyping errors
® Unaccounted for covariates

® There are others...



Review: Introduction to covariates |

® Recall that in a GWAS, we are considering the following
regression model and hypotheses to assess a possible
association for every marker with the phenotype

Y:5M+Xa6a‘|‘Xd6d‘|‘€
Hy:B8,=0NpGg=0
Hy:Ba Z0UBg #0

® Also recall that with these hypotheses we are actually
testing:
Hy:Cov(Y, X,) =0NCov(Y,Xy) =0

Hy:Cou(Y,X,) #0UCou(Y, X4) # 0



Review: Introduction to covariates ||

® |et’s consider these two cases:

® For the first, the marker is not correlated with a causal polymorphism
but the factor is correlated with BOTH the phenotype and the marker
such that a test of the marker using our framework will produce a

false positive (!!):
COU(Y,XZ)#O Hy:8,=0Nnp;=0
Hy: 8, 70U Bq #0
Y:5M+Xaﬁa+Xdﬁd+€

Cov(Xg, X;) #0

® For the second, the marker is correlated with a causal polymorphism
and while the factor is correlated with the phenotype but not the
marker, a test of the marker in our framework will model the effect of

the factor in our error term (which will reduce power!):

Y = Xafa + X
€EX, — Xzﬁz + €

Cov(X,,X,) =0 e ~ N(0,0?)



Review: Modeling covariates |

® Therefore, if we have a factor that is correlated with our
phenotype and we do not handle it in some manner in our
analysis, we risk producing false positives AND/OR reduce
the power of our tests!

® The good news is that, assuming we have measured the
factor (i.e.it is part of our GWAS dataset) then we can
incorporate the factor in our model as a covariate(s):

Y = B,u - Xaﬁa, + Xdﬁd + Xz,lﬁz,l + Xz,25z,2 + €

® The effect of this is that we will estimate the covariate
model parameter and this will account for the correlation of
the factor with phenotype (such that we can test for our
marker correlation without false positives / lower power!)



Review: Modeling covariates |

® How do we perform inference with a covariate in our regression
model?

® We perform MLE the same way (!!) our X matrix now simply
includes extra columns, one for each of the additional covariates,
where for the linear regression we have:

N (T N\—1,T
MLE(f) = (x"x)"x'y
® We perform hypothesis testing the same way (!!) with a slight
difference: our LRT includes the covariate in both the null

hypothesis and the alternative (and therefore two different X
matrices!), but we are testing the same null hypothesis:

Hy:B8,=0NGs=0
Hy: Bq 70U By # 0



Review: Modeling covariates |V

First, determine the predicted value of the phenotype of each
individual under the null hypothesis (how do we set up x?):

Uiy = Buge T D Ti2iBo gy
J=1

Second, determine the predicted value of the phenotype of each
individual under the alternative hypothesis (set up x?):
Uiy = B, + TiaBog, +TiaBeg, + D 7023810,
j=1
Third, calculate the “Error Sum of Squares” for each:

SSE(f0) =Y (i —,5)°  SSE0) =) (yi— 84,
1=1 1=1
Finally, we calculate the F-statistic with degrees of freedom [2,
n-3] (why two and n-#params degrees of freedom?):

SSE(0y)—SSE(61)
2
SSE(6,)
n—#(61)

Flam—s (0, (Y Xar Xa) =



Review: Modeling covariates V

® Thus, for testing the null hypothesis in a linear regression, we can construct an
F-test using a slightly different formula:

n
SSE(@A()) — (y oy )2
; ¢ 4,00 SSE(éO)ESSE(él)
A n 2 F[Q,n—#(él)]<Y7xa’Xd) B SSE—(QAQ
SSE61) =Y (vi— 9,4, n# ()
i=1

® For the null hypotheses we are testing, once you calculate this F-statistic, you
compare to an F-distribution with 2 and n - #(alternative hypothesis
parameters) degrees of freedom

® The “2” df in the numerator comes from the #(alternative hypothesis model
parameters) - #(null hypothesis model parameters)

® Note that our previous formula for an F-statistic can be represented this way
as well (1)



Review: Modeling covariates VI

Say you have GWAS data (a phenotype and genotypes) and your
GWAS data also includes information on a number of covariates,
e.g. male / female, several different ancestral groups (different
populations!!), other risk factors, etc.

First, you need to figure out how to code the Xz in each case for
each of these, which may be simple (male / female) but more
complex with others (where how to code them involves fuzzy
rules, i.e. it depends on your context!!)

Second, you will need to figure out which to include in your
analysis (again, fuzzy rules!) but a good rule is if the parameter
estimate associated with the covariate is large (=significant
individual p-value) you should include it!

There are many ways to figure out how to include covariates
(again a topic in itself!!) - next lecture we will provide an
(important!) example: population structure



Covariate modeling example:
population structure

“Population structure” or “stratification” is a case where a sample includes

groups of people that fit into two or more different ancestry groups (fuzzy
def!)

Population structure is often a major issue in GWAS where it can cause
lots of false positives if it is not accounted for in your model

Intuitively, you can model population structure as a covariate if you know:
® How many populations are represented in your sample
® Which individual in your sample belongs to which population

QQ plots are good for determining whether there may be population
structure

“Clustering” techniques are good for detecting population structure and
determining which individual is in which population (=ancestry group)



Origin of population structure
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© Sarver World Cultures

People geographically separate through migration and then the set
of alleles present in the population evolves (=changes) over time



Why might (unaccounted for) structure
be a problem in a GWAS!?

® Even if you had a case where there were NO causal polymorphisms
for a phenotype, you can get false positives if:

® |f you have more than one population in your sample (that you do
not model with a covariate)

® |[f these populations differ in frequencies of genotypes at a subset of
measured genotypes / polymorphisms

® |f these populations differ in the mean value of the phenotype

® |n such a case, every genotype where an MAF is different between the
populations would be expected to produce a low p-value (=biological
false positives!)

® Note:if you can “learn” (or know) the population information for your
data, you can model this as a covariate and you (may) be able to
correct this problem



Modeling population structure as a
covariate (intuition)

® |f you can determine which individual is in which pop and define
random variables for pop assignment, e.g. for two populations
include single covariate by setting, Xz 1(popl) = I, Xz1(pop2) = 0
(generally less optimal but can be used!)

® Use one of these approaches to model a covariate in your analysis,
i.e. for every genotype marker that you test in your GWAS:

Y = 6# + Xaﬁa + Xdﬁd =+ Xz,lﬂz,l + Xz,2ﬁz,2 + €

® How do we tell if our covariate correction “worked” well enough
that we should interpret the results of our analysis!?



Learning unmeasured population factors

® To learn a population factor, analyze the genotype data

211 .- 21k Y11 -~ Yim | 11 ... TIN
Data =

Zpl -+ “nk Ynl -+ Ynm | 11 ..o IpN

® Apply a Principal Component Analysis (PCA) where the “axes” (features) in this case
are individuals and each point is a (scaled) genotype

\ Feature 2 \ Feature 2

Principal comp Principal comy

vdirection 2 direction 1

L Zi2

Algebra: orthonormal transform
Geomelry. axis rotation

® What we are interested in the projections (loadings) of the individual PCs on the axes
(dotted arrows) on each of the individual axes, where for each, this will produce n (i.e.

one value for each sample) value of a new independent (covariate) variable Xz

Y = B,u + Xaﬁa =+ Xdﬁd + Xz,l@z,l + Xz,25z,2 + €



Using the results of a PCA
population structure analysis

Once you have detected the populations (e.g. by eye in a PCA =
fuzzy!) in your GWAS sample, set your independent variables equal

to the loadings for each individual, e.g., for two pop covariates, set
Xz, =2Z1,Xz2 =22

You could also determine which individual is in which pop and
define random variables for pop assighment, e.g. for two populations
include single covariate by setting, Xz 1(popl) = I, Xz1(pop2) = 0
(generally less optimal but can be used!)

Use one of these approaches to model a covariate in your analysis,
i.e. for every genotype marker that you test in your GWAS:

Y = 5/1 + Xaﬁa + Xdﬁd + Xz,lﬁz,l + XZ,ZBZ,Q + €

The goal is to produce a good QQ plot (what if it does not?)



Before (top) and after including a
population covariate (bottom)
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That’s it for today

® Next lecture we will discuss minimum / minimal GWAS and begin
our discussion of logistic regression!



