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Times and Locations I
• Lectures are every Tues. / Thurs. 8:05-9:20AM - see class schedule (to be 

posted)

• In-person lecture locations:

• Ithaca:  All in-person lectures in Weill Hall 226

• NYC:  Many different locations (!!) - schedule to be posted (i.e., you will 
have to check every lecture!)

• Zoom option:

• Remote (to both Ithaca / NYC) students are joining by zoom now (please 
mute / unmute to ask questions)

• By next week, we will have a zoom option for everyone (we will discuss)

• Lectures will be recorded:

• These will be posted along with slides / notes

• I encourage you to come to class...



• There is a REQUIRED computer lab 

•FIRST COMPUTER LAB WILL BE NEXT WEEK (Thurs. Feb 
2 / Fri. Feb 3) - more information to come next week!

• PLEASE NOTE (!!): LAB TIMES ARE DIFFERENT THAN LISTED

• For those IN ITHACA (= Labs Mitch!): 

• Lab 1: 5:30-6:30PM on Thurs. (Weill Hall 226)

• Lab 2: 8-9AM on Fri. (Weill Hall 226)

• For those IN NYC (= Labs taught by Sam!):

• Lab 1: 4-5PM on Thurs. (In WCMC1300 Classroom; G [B215], H [B217])

• Lab 2: 9-10AM on Fri.  (By zoom - please stay tuned for invite)

• You may skip the first 2 labs without penalty

Times and Locations II



• I (Jason) will hold office hours for both campuses by 
zoom 

• No office hours this week OR next week

• My first office hours will be Feb 6 (Mon) 

• You may also set up individual sessions with me by 
appointment

Times and Locations IV



Class Resources: Piazza

• MAKE SURE YOU SIGN UP ON PIAZZA whether you officially 
register or not = all communication for the course (!!)

• Class: https://piazza.com/cornell/spring2023/btry4830btry6830

• If you received the Piazza test message / email last night - you should 
be good to go

• If you are having an issue getting on Piazza, please see me after class / 
email me directly at jgm45@cornell.edu and I will get you on

• EVERYBODY PLEASE GET REGISTERED ASAP (!!)

mailto:jgm45@cornell.edu


Class Resources: 
website and CMS

• The class website: https://mezeylab.biohpc.cornell.edu

• This has not yet been updated (we are still working on it…)

• Assignments and computer labs (!!) will be posted on 
Cornell CMS (as BTRY 4830)

• This is not yet setup… - please DO NOT TRY to register 
yet (and stay tuned for information on how to register)

https://mezeylab.biohpc.cornell.edu


Summary of lecture 2: Introduction 
to probability basics

• In this class, we will be concerned with the most basic problem of 
quantitative genomics: how to identify genotypes where differences 
among individual genomes produce differences in individual 
phenotypes (i.e. genetic association studies)

• Today we will discuss the rigorous conceptual set-up of probability 
and essential math concepts 



Definitions: Probability / Statistics

• Probability (non-technical def) - a mathematical framework 
for modeling under uncertainty

• Statistics (non-technical def) - a system for interpreting data 
for the purposes of prediction and decision making given 
uncertainty 

These frameworks are particularly appropriate for modeling genetic 
systems, since we are missing information concerning the complete set 
of components and relationships among components that determine 
genome-phenotype relationships 
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Starting point: a system

• System - a process, an object, etc. which we would like to 
know something about

• Example: Genetic contribution to height 

Genome Height

SNP {
A

T

Taller (on average)

Shorter (on average)
?



Starting point: a system

• System - a process, an object, etc. which we would like to 
know something about

• Examples: (1) coin, (2) heights in a population 

Coin - same amount of metal on both sides?

Heights - what is the average height in the US?



Experiments (general)

• To learn about a system, we generally pose a specific question 
that suggests an experiment, where we can extrapolate a 
property of the system from the results of the experiment

• Examples of “ideal” experiments (System / Experiment):

• SNP contribution to height / directly manipulate A -> T 
keeping all other genetic, environmental, etc. components the 
same and observe result on height

• Coin / cut coin in half, melt and measure the volume of each 
half

• Height / measure the height of every person in the US



Experiments (general)

• To learn about a system, we generally pose a specific question 
that suggests an experiment, where we can extrapolate a 
property of the system from the results of the experiment

• Examples of “non-ideal” experiments (System / Experiment):

• SNP contribution to height / measure heights of individuals 
that have an A and individuals that have a T

• Coin / flip the coin and observe “Heads” and “Tails”

• Height / measure some people in the US



Experiments and Outcomes

• Experiment - a manipulation or measurement of a system 
that produces an outcome we can observe

• Experiment Outcome - a possible result of the experiment

• Example (Experiment / Outcomes):

• Coin flip /  “Heads” or “Tails”

• Two coin flips / HH,  HT,  TH,  TT

• Measure heights in this class / 1.5m, 1.71m, 1.85m, …



Sets / Set Operations / Definitions
• Set - any collection, group, or conglomerate

• Element - a member of a set

• A Special Set: 

• Set Operations:

• Important Definitions:

Union (⇧) � an operator on sets which produces a single set containing all elements
of the sets.

Intersection (⌃) � an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ‘or’ and ‘and’. A simple example of applying the union
operator is {5�, 5�3��} ⇧ {5�3��, 5�5���} = {5�, 5�3��, 5�5���} and a simple example of intersection
is {5�, 5�3��} ⌃ {5�3��, 5�5���} = {5�3��}. Note that we can write the following generalizations
of these operators:

⇥�

i=1

Ai = A1 ⇧A2 ⇧ ... (1)

⇥⇥

i=1

Ai = A1 ⌃A2 ⌃ ... (2)

where each Ai is a set. Before we leave sets and sample spaces, let’s provide a few other
important definitions:

Subset (⇥) � a set that is contained within another set, e.g. {H} ⇥ {H,T}

Complement (Ac) � the set containing all other elements of a set other than A, e.g.
{H}c = {T}.

Empty Set (⇤) � the set with no elements.

The empty set is unique and is sometimes represented as { }.

Disjoint Sets � sets with no elements in common.

Note that for disjoint sets Ai and Aj , the following holds: Ai ⌃Aj = ⇤.

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.
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Union ([) ⌘ an operator on sets which produces a single set containing all elements
of the sets.

Intersection (\) ⌘ an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ‘or’ and ‘and’. A simple example of applying the union
operator is {50, 50300} [ {50300, 505000} = {50, 50300, 505000} and a simple example of intersection
is {50, 50300} \ {50300, 505000} = {50300}. Note that we can write the following generalizations
of these operators:
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Ai = A1 \A2 \ ... (2)

where each Ai is a set. Before we leave sets and sample spaces, let’s provide a few other
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Complement (Ac) ⌘ the set containing all other elements of a set other than A, e.g.
{H}c = {T}.
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Empty Set (;) ⌘ the set with no elements (the empty set is unique and is sometimes
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.
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where each Ai is a set. Before we leave sets and sample spaces, let’s provide a few other
important definitions:

Element of (2) ⌘ an object within a set, e.g. H 2 {H,T}

Subset (⇢) ⌘ a set that is contained within another set, e.g. {H} ⇢ {H,T}
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Disjoint Sets ⌘ sets with no elements in common.

Note that for disjoint sets Ai and Aj , the following holds: Ai \Aj = ;.

N = {1, 2, 3, ...} (3)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (4)

R = { 0!} (5)

�1 > x >1 (6)
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Some Special Sets

• The following sets have properties that align with our intuitive 
conception about how we represent and use groups

• The Natural Numbers and the Integers:

• The Reals:

• Note that these sets are infinite (although they represent two 
different “sizes” of infinite: countable and uncountable), where 
we often make use of the following symbols in both cases:

Union ([) ⌘ an operator on sets which produces a single set containing all elements
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where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ✏ (195)
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Sample Spaces
• Sample Space (   ) - set comprising all possible outcomes associated 

with an experiment

• (Note: we have not defined a Sample - we will do this later!)

• Examples (Experiment / Sample Space):

• “Single coin flip” / {H, T}

• “Two coin flips” / {HH, HT, TH, TT}

• “Measure Heights” / any actual measurement OR we could use 

• Events - a subset of the sample space

• Examples (Sample Space / Examples of Events):

• “Single coin flip” /   , {H}, {H, T}

• “Two coin flips” / {TH}, {HH, TH}, {HT, TH, TT}

• “Measure Heights” / {1.7m}, {1.5m, ..., 2.2m} OR [1.7m], (1.5m,1.8m)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(S) : S ! R (10)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ S, Pr(A) > 0.

2. Pr(S) = 1.

3. For A1,A2, ... 2 S, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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Functions

• Now that we have formalized the concept of a sample space, we 
need to define what “probability”means 

• To do this, we need the concept of a mathematical function

• Function (formally) - a binary relation between every 
member of a domain to exactly one member of the codomain

• Function (informally) - ?



Example of a function

X

Y

Y = X2



Probability functions (intuition)

• Probability Function (intuition) - we would like to 
construct a function that assigns a number to each event such 
that it matches our intuition about the “chance” the event will 
happen (as a result of an experiment) 

• To be useful, we need to assign a number not just to each 
individual ELEMENT of the sample space but to every EVENT 

• To accomplish this, we will need the concept of a            
Sigma Algebra (or Sigma Field)

• What’s more, we need to make sure the function that we use 
to assign these numbers adheres to a specific set of 
“rules” (axioms)



Sample Spaces / Sigma Algebra

• Sigma Algebra (    ) - a collection of events (subsets) of     of interest with the following 
three properties: 1.            , 2.                                 , 3.                                                             

Note that we are interested in a particular Sigma Algebra for each sample space...

• Examples (Sample Space / Sigma Algebra):

• {H, T}  /

• {HH, HT, TH, TT}  / 

•       / more complicated to define the sigma algebra of interest (see next slide…)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(S) : S ! R (10)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ S, Pr(A) > 0.

2. Pr(S) = 1.

3. For A1,A2, ... 2 S, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:
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Problem 2 (Medium)

Assume that the system we are interested in is a coin. The experiment we will consider is two flips

of the coin. Note: for parts (d)-(j) use the probability model in part (c).

a. What is the sample space of this experiment?

⌦ = {HH,HT, TH, TT}

b. What is the Sigma-algebra (containing all events) for this sample space? Which of these

events is the event ‘the first flip is heads’? Which of these events is the event ‘the second flip

is heads’?

F =

;, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH}, {HH,TT}, {HT, TH}, {HT, TT},
{TH, TT}{HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {TH,HT, TT}{HH,TH,HT, TT}

{H1st} = {HH,HT}

{H2nd} = {HH,TH}

c. Define a probability model such that the probability of a ‘heads’ on the first flip and the

second flip is Pr(H1st) = Pr(H2nd) = 0.5, where the probability of heads on both the first

and second flip is Pr(H1st\H2nd) = 0.3. Write out the probabilities for all possible outcomes

of an experimental trial. Write down the formulas or relationships you used to calculate these

probabilities as part of your answer.

H2nd T2nd

H1st Pr(H1st \H2nd) Pr(H1st \ T2nd) Pr(H1st)

T1st Pr(T1st \H2nd) Pr(T1st \ T2nd) Pr(t1st)

Pr(H2nd) Pr(T2nd)

H2nd T2nd

H1st 0.3 Pr(H1st) - Pr(H1st \H2nd) 0.5

T1st Pr(H2nd) - Pr(H1st \H2nd) Eq 0.5

0.5 0.5

Eq = 1 - Pr(H1st \H2nd) + Pr(H1st \ T2nd) + Pr(T1st \H2nd)

H2nd T2nd

H1st 0.3 0.2 0.5

T1st 0.2 0.3 0.5

0.5 0.5
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The (appropriate) Sigma Algebra 
on the Reals

• For probability, we need an appropriate Sigma Algebra on the Reals 
(remember there are many possible Sigma Algebra!)

• Interestingly, this Sigma Algebra does not include all subsets of the reals

• One problem is this would include “more sets than we need” for what 
we need in probability

• Another problem is these subsets include “non-measurable sets” such 
that if they were included, we could not define a probability measure (!!)

• A way of describing the appropriate Sigma Algebra for the Reals is all 
open and closed intervals (where a and b may be any number) and all 
unions and intersections of these intervals:

• It seems like these should include all subsets of the Reals, but they don’t...

An important question to consider is what approximations we are making when approxi-
mating a discrete sample space such as human height? We actually, make two. The first is
that the sample space does indeed contain a continuous set of values between the heights
we could observe (say 4’ to 7’). The second is that we assume heights could actually take
any continuous value between �⇥ and ⇥. At first glance, this latter assumption may
seem to be a poor one. However, the way we make this approximation work is by defining
a probability function (model) that places a very small probability on heights outside of
the range we can observe.

Now, before we take advantage of the mathematical tricks at our disposal when we use
a continuous sample space (approximation), we have to deal with some additional issues.
It turns out that segments of the real line are ‘compact’ and this introduces a number of
problems for defining probability functions (you can get an intuitive idea of what compact
means by considering that there are infinite number of points between any two points you
could define on the real line). How we deal with these issues are actually the provence of
the field of real analysis or, more specifically, measure theory. We are therefore not going to
consider them in detail in this course and, beyond the discussion here, we will not discuss
measure theory again and it will not impact the concepts that we discuss.

The ‘problem’ with the real line for our purpose is that there are ‘too many’ subsets.
This can lead to strange intuitive (but not mathematical) contradictions, e.g. a small con-
tinuous three dimensional space R3 can be taken apart and put back together again into
a much larger space (without any spaces in between the pieces). Interestingly, this means
that the set of all subsets of the real line is therefore not the best approximation of how
we think about how we model reality with probability. To produce a set of R subsets that
we can use to approximate how we think about real systems, we will define a set called a
sigma field. For our case, the sigma field contains the following subsets of the real line:

[a, b], (a, b], [a, b), (a, b) (4)

where a and b are any two constants. Note that that a square bracket means the inter-
val contains the value and a curved bracket means that the interval does not contain the
value but rather values that are infinitely close to the bracketed value. Now, it is hard
imagine that this subset of the real line would not include all subsets, but it does not.
Imagining what these un-included subsets ‘look like’ is however not intuitive and we in
general do not specifically describe them but prove that they exist. With a sigma field in
hand, we can define a ‘measure space’ which includes a sample space S (also represented as
�), a sigma field F , and a probability measure Pr, which satisfies the axioms of probability.

One last historical side note. The rigorous conceptualization of probability is not actu-
ally that old, arguably beginning with Kolmogorov in the 1930’s (who defined the axioms
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• Probability Function - maps a Sigma Algebra of a sample to a subset of the 
reals:

• Not all such functions that map a Sigma Algebra to [0,1] are probability functions, 
only those that satisfy the following Axioms of Probability (where an axiom is a 
property assumed to be true):

• Note that since a probability function takes sets as an input and is restricted in 
structure, we often refer to a probability function as a probability measure

⌦ (7)

F (8)

; 2 F (9)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(⌦) : F ! [0, 1] (11)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ ⌦, P r(A) > 0

2. Pr(⌦) = 1

3. For A1,A2, ... 2 ⌦, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A)
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Probability functions
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�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)
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• For “two coin flips” a probability function will assign a probability to 
each subset of the Sigma Field:

• We could define a probability function as follows:

• Not that this is one possible probability model - what other possible 
probability models could be assumed for this system / experiment?

Probability function: example 1

Problem 2 (Medium)

Assume that the system we are interested in is a coin. The experiment we will consider is two flips

of the coin. Note: for parts (d)-(j) use the probability model in part (c).

a. What is the sample space of this experiment?

⌦ = {HH,HT, TH, TT}

b. What is the Sigma-algebra (containing all events) for this sample space? Which of these

events is the event ‘the first flip is heads’? Which of these events is the event ‘the second flip

is heads’?

F =

;, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH}, {HH,TT}, {HT, TH}, {HT, TT},
{TH, TT}{HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {TH,HT, TT}{HH,TH,HT, TT}

{H1st} = {HH,HT}

{H2nd} = {HH,TH}

c. Define a probability model such that the probability of a ‘heads’ on the first flip and the

second flip is Pr(H1st) = Pr(H2nd) = 0.5, where the probability of heads on both the first

and second flip is Pr(H1st\H2nd) = 0.3. Write out the probabilities for all possible outcomes

of an experimental trial. Write down the formulas or relationships you used to calculate these

probabilities as part of your answer.

H2nd T2nd

H1st Pr(H1st \H2nd) Pr(H1st \ T2nd) Pr(H1st)

T1st Pr(T1st \H2nd) Pr(T1st \ T2nd) Pr(t1st)

Pr(H2nd) Pr(T2nd)

H2nd T2nd

H1st 0.3 Pr(H1st) - Pr(H1st \H2nd) 0.5

T1st Pr(H2nd) - Pr(H1st \H2nd) Eq 0.5

0.5 0.5

Eq = 1 - Pr(H1st \H2nd) + Pr(H1st \ T2nd) + Pr(T1st \H2nd)

H2nd T2nd

H1st 0.3 0.2 0.5

T1st 0.2 0.3 0.5

0.5 0.5

2

etc.

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH} [ {HT}) = 0.5, P r({HH} [ {TH}) = 0.5, P r({HH} [ {TT}) = 0.5, (59)

Pr({HT} [ {TH}) = 0.5, P r({HT} [ {TT}) = 0.5, P r({TH} [ {TT}) = 0.5, (60)

Pr({HH} [ {HT} [ {TH}) = 0.75, (61)

Pr({HH} [ {HT} [ {TH} [ {TT}) = 1.0 (62)

6
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Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)

6



Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH} [ {HT}) = 0.5, P r({HH} [ {TH}) = 0.5, P r({HH} [ {TT}) = 0.5, (59)

Pr({HT} [ {TH}) = 0.5, P r({HT} [ {TT}) = 0.5, P r({TH} [ {TT}) = 0.5, (60)

Pr({HH} [ {HT} [ {TH}) = 0.75, (61)

Pr({HH} [ {HT} [ {TH} [ {TT}) = 1.0 (62)
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• The following is (one example) of a probability function (on the sigma 
algebra) for the two coin flip experiment:

• The following is an example of a function (on the sigma algebra) of 
the two coin flip experiment but is not a probability function:

Probability function: example II

etc.

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH} [ {HT}) = 0.5, P r({HH} [ {TH}) = 0.5, P r({HH} [ {TT}) = 0.5, (59)

Pr({HT} [ {TH}) = 0.5, P r({HT} [ {TT}) = 0.5, P r({TH} [ {TT}) = 0.5, (60)

Pr({HH} [ {HT} [ {TH}) = 0.75, (61)

Pr({HH} [ {HT} [ {TH} [ {TT}) = 1.0 (62)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH} [ {HT}) = 0.5, P r({HH} [ {TH}) = 0.5, P r({HH} [ {TT}) = 0.5, (59)

Pr({HT} [ {TH}) = 0.5, P r({HT} [ {TT}) = 0.5, P r({TH} [ {TT}) = 0.5, (60)

Pr({HH} [ {HT} [ {TH}) = 0.75, (61)

Pr({HH} [ {HT} [ {TH} [ {TT}) = 1.0 (62)

Pr(;) = 0 (63)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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etc.

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH} [ {HT}) = 0.5, P r({HH} [ {TH}) = 0.5, P r({HH} [ {TT}) = 0.5, (59)

Pr({HT} [ {TH}) = 0.5, P r({HT} [ {TT}) = 0.5, P r({TH} [ {TT}) = 0.5, (60)

Pr({HH} [ {HT} [ {TH}) = 0.75, (61)

Pr({HH} [ {HT} [ {TH} [ {TT}) = 1.0 (62)

Pr(;) = 0 (63)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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That’s it for today

• Next lecture, we will continue our discussion of probability by 
introducing concept of conditional probability and random 
variables!


