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Summary of lecture 23: Mixed
Models

® |ast lecture, we largely completed our discussion of logistic
regression

® Today, we will complete our logistic regression discussion
with a quick review and by briefly introducing the broader
family of models that linear and logistic regression belong to:

generalized linear models!

® We will also (briefly) introduce Mixed Models!



Review: Case / Control
Phenotypes |

While a linear regression may provide a reasonable model for
many phenotypes, we are commonly interested in analyzing
phenotypes where this is NOT a good model

As an example, we are often in situations where we are
interested in identifying causal polymorphisms (loci) that
contribute to the risk for developing a disease, e.g. heart disease,
diabetes, etc.

In this case, the phenotype we are measuring is often “has
disease” or “does not have disease” or more precisely “case” or
“control”

Recall that such phenotypes are properties of measured
individuals and therefore elements of a sample space, such that
we can define a random variable such as Y(case) = | and
Y(control) =0



Review: Logistic regression |

® |nstead, we're going to consider a logistic regression model
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Review: Logistic regression ||

® |t may not be immediately obvious why we choose regression
“line” function of this “shape”

® The reason is mathematical convenience, i.e. this function can be
considered (along with linear regression) within a broader class
of models called Generalized Linear Models (GLM) which we will
discuss next lecture

® However, beyond a few differences (the error term and the
regression function) we will see that the structure and out
approach to inference is the same with this model!



Review: Logistic regression: error
term |l

® This may look complicated at first glance but the intuition is
relatively simple

® |f the logistic regression line is near zero, the probability
distribution of the error term is set up to make the probability of
Y being zero greater than being one (and vice versa for the
regression line near one!):

¢ = Z — E(Y)|X) 4 o OO
Pr(Z) ~ bern(p) Y ,
p = logistic(B,, + XuBa + XaBa) = ) ,(}--\:' 5
\___ . \__/ )




Review: Logistic regression: link
function

® Next, we have to consider the function for the regression line of
a logistic regression (remember below we are plotting just versus
Xa but this really is a plot versus Xa AND Xd!!):

E(Y;|X;) = logistic(By + XiaBa + XiaBd) - o O, (}:
66u+Xi,a5a+Xi,dBd Y |
E(E‘XZ) — 14+ eButXiafatX; abd - O\ (“\,
L . =




Notation

® Remember that while we are plotting this versus just Xa, the true
plot is versus BOTH Xa and Xd (harder to see what is going on)

® For an entire sample, we can use matrix notation as follows:

eX0 B 1
14+ eX8 14 e X5

E(Y[X) =~"1(X8) =

eﬁu—i—wl,aﬁa—l—wl,dﬁd

1_|_e,3,u—|—$1,a5a—|—$1’d5d

E(ylx) = 7 (x5) =

€5u+$n,aﬂa+$n,d5d

1_|_€B,u—|—$n,a5a+90n,d5d



Inference

Recall that our goal with using logistic regression was to model the probability
distribution of a case / control phenotype when there is a causal polymorphism

To use this for a GWAS, we need to test the null hypothesis that a genotype is not
a causal polymorphism (or more accurately that the genetic marker we are testing
is not in LD with a causal polymorphism!):

/B'LL — C /Ba — O /Bd — O T O O

Hy:Ba=0Npa=0 - (00

A1/A1  A1/A2  A2/A2

To assess this null hypothesis, we will use the same approach as in linear

regression, i.e. we will construct a LRT = likelihood ratio test (recall that an F-test
is an LRT!)

We will need MLE for the parameters of the logistic regression for the LRT



Review: logistic MLE

® Recall that an MLE is simply a statistic (a function that takes the sample
as an input and outputs the estimate of the parameters)!

® |n this case, we want to construct the following MLE:
MLE(B) = MLE(Bu, Ba, Ba)

® To do this, we need to maximize the log-likelihood function for the
logistic regression, which has the following form (sample size n):

n

1(B) = Z [yiln(v_l(ﬁu + Zi.aBa + 7i984)) + (1 — yi)In(1l — W_l(ﬁu + % 080 + i dBd))
i=1

® Unlike the case of linear regression, where we had a “closed-form”
equation that allows us to plug in the Y’s and X’s and returns the beta
values that maximize the log-likelihood, there is no such simple
equation for a logistic regression

® We will therefore need an algorithm to calculate the MLE



Review: IRLS algorithm |

® For logistic regression (and GLM’s in general!) we will construct an
algorithm to find the parameters that correspond to the maximum
of the log-likelihood:

n

[(B) = Z [yiln (v (By + iaBa + TiaBa)) + (1 — yi)in(1 — v (By + i aBa + TidBd))
i—1

® For logistic regression (and GLM’s in general!) we will construct an
Iterative Re-weighted Least Squares (IRLS) algorithm, which has the
following structure:

1. Choose starting values for the 8’s. Since we have a vector of three 8’s in our case,
we assign these numbers and call the resulting vector 9.

2. Using the re-weighting equation (described next slide), update the S vector.

3. At each step t > 0 check if gt ~ glt! (i.e. if these are approximately equal) using
an appropriate function. If the value is below a defined threshold, stop. If not, repeat

steps 2,3.



Review: Step |: IRLS algorithm

1. Choose starting values for the 3’s. Since we have a vector of three 3’s in our case,
we assign these numbers and call the resulting vector 319

® These are simply values of the vector that we assign (!!)

® |n one sense, these can be anything we want (!!) although for
algorithms in general there are usually some restrictions and / or
certain starting values that are “better” than others in the sense that
the algorithm will converge faster, find a more “optimal” solution etc.

® |n our case, we can assign our starting values as follows:

Bl = |0




Review: Step 2: IRLS algorithm

2. Using the re-weighting equation (described next slide), update the B4 vector.

® At step 2, we will update (= produce a new value of the vector) using
the following equation (then do this again and again until we stop!):

A = 514 W (y - 9 (x81)

1 @10 714 o ’ . B ol s 4Bl
1 @34 T4 7B+ wiabal + wiaby’) = Bl g gl gy gl
X = . . . 1 + ePu i,aPa 1,dPq
: ) : ot
~1(xglthy = _©

1 Zna Tnd] v (xBY) = | 4 oxB0

; Bl Wi =8 4+ wiaBl) + wiaB) (1 = v (B + w0 + i)
2

y = | . gl = Bc[f] - B+ i B i 4By B i B i 4By

. i = 1 —

y _Bc[lt]_ 1+ eﬁ;[f]+$i,aﬁc[zt]+xi,dﬁg] ( 1+ eﬁg]‘Fmi,aﬁc[zt]‘in,dﬂgt] )

= n—

(Wij :0f0ri7éj)



Review: Step 3: IRLS algorithm

3. At each step t > 0 check if B+ ~ Bl (i.e. if these are approximately equal) using
an appropriate function. If the value is below a defined threshold, stop. If not, repeat
steps 2,3.
® At step 3, we “check” to see if we should stop the algorithm and, if we

decide not to stop, we go back to step 2

If we decide to stop, we will assume the final values of the vector are
the MLE (it may not be exactly the true MLE, but we will assume that
it is close if we do not stop the algorithm to early!),e.g. git+1] gl

® There are many stopping rules, using change in Deviance is one way to
construct a rule (note the issue with In(0)!!:

AD=|D[t+1]—-DJ[t]| AD< 106

Yi 1— yz
= E 1—y;
=2 [ylln( ( /[for[tJrl + zaﬁ [t]or[t+1] ‘I’ Zig Bd or| t+1])) +( Y )ln(l _ 7—1(65]0r[t+1] + aﬁa or[t+1] . Tid 6d or| t+1])>:|
- Yi 1 =y
D:2§j[-zn - +(1—y;)In : ]
— Yi IBL]or[t-i-l] ’aﬁg]or[t-i-l]+mi,d6£lt]or[t-|-1] ( y'L) | BL]or[t+1]+ Z,aﬁ([lt]or[t—l-l] z; ﬂ&]or[t-i-l]
o or 1 or 1 or 1 - or 1 or 1 or 1
T R GOl PO e BT R SO PO e



Review: Logistic hypothesis testing |

® Recall that our null and alternative hypotheses are:
Ho: B, =0NpG3=0
Hap:Ba #0UBg #0

® We will use the LRT for the null (0) and alternative (1):

LRT = —2In\ = —2ln—— LRT = —2inA = 21(0,|y) — 21(6o|y)

® For our case, we need the following:
[(61]y) = 1By Bas Baly)
[(Boly) = (B, 0,0y)



Review: Logistic hypothesis testing ||

® For the alternative, we use our MLE estimates of our
logistic regression parameters we get from our IRLS
algorithm and plug these into the log-like equation

L(br]y) = Z {yiln(v_l(ﬁu + TiaBa + i.dBa)) + (1 — y)in(l =7 (By + iafa + %‘,d@d))}
=1 . eButTiafatziafa
Y (Bu + Tiafa + xiaba) =

1 + eButiabatzidfa

® For the null, we plug in the following parameter estimates
into this same equation
l(90|y) = Z {yiln(’y_l(ﬁmo +Zio*04+2,4%0)) + (1 —y;)ln(l - 7_1(Bu,0 + 20 x 0+ 2 q % O))}
1=1
® where we use the same IRLS algorithm to provide estimates
of by running the algorithm EXACTLY the same with 5,
EXCEPT we set 5. = 0,54 = 0 and we do not update these!



Review: Logistic hypothesis testing

® TJo calculate our p-value, we need to know the
distribution of our LRT statistic under the null hypothesis

® There is no simple form for this distribution for any given

n (contrast with F-statistic
to infinite, we know the di

s!!) but we know that as n goes
stribution is i.e. (17 — 00):

LRT = —2InA = 21(d1]y) — 21(do|y)

LRT

— Xaf

® What’s more, it is a reasonably good assumption that

under our (not all!!) null, t
chi-square distribution wit

his LRT is (approximately!) a
n 2 degrees of freedom (d.f.)

assuming n is not too small!



Review: Logistic Regression p-value

® To calculate our p-value, we need to know the
distribution of our LRT statistic under the null hypothesis

® There is no simple form for this distribution for any given
n (contrast with F-statistics!!) but we know that as n goes
to infinite, we know the distribution is i.e. (17 — OQ):

LRT = —2InA = 21(6:]y) — 21(6o|y)
LRT — X?Zf‘




Review: logistic covariates |

® Therefore, if we have a factor that is correlated with our
phenotype and we do not handle it in some manner in our
analysis, we risk producing false positives AND/OR reduce
the power of our tests!

® The good news is that, assuming we have measured the
factor (i.e.it is part of our GWAS dataset) then we can
incorporate the factor in our model as a covariate:

Y =97 (Bu + XaBa + XaBa + X.5:)

® The effect of this is that we will estimate the covariate
model parameter and this will account for the correlation of
the factor with phenotype (such that we can test for our
marker correlation without false positives / lower power!)



Review: logistic covariates ||

® For our a logistic regression, our LRT (logistic) we have the same
equations:

LRT = —2inA = 21(6:|y) — 21(do|y)

l<é1|}’) = Z {yiln<7_1(5u + xi,aBa + xi,dBd + xz,sz)) + (1 - yz>ln(1 - 7_1<Bu + xi,aBa + szz',ale + xz,sz))

1=1
n

[(Boly) =) [yiln(vl(ﬁu +3i20:)) + (1= yi)In(1 — 771 (B + x@-,zéz»]

1=1
® Using the following estimates for the null hypothesis and the alternative
making use of the IRLS algorithm (just add an additional parameter!):

éO — {B,LHBCL — O)Bd — OaBZ}
él — {B/MBCL?deéz}

® Under the null hypothesis, the LRT is still distributed as a Chi-square with
2 degree of freedom (why?):

LRT — X3—s



Summary |:logistic (no covariates)
® Test the null hypothesis: Hy: B, =0NGg =0 vs Hp:B, 00Uy #0

® Step l:use IRLS algorithm to get MLE(S) = Bu which is the MLE under HO (i.e., éo) by
using X matrix with one column that is all ones!)

® Step 2:substitute this MLE into:

1(Bly) = Zn: [yln( QBUB ) +(1 —yi)<1 __ )]

1 1+ ePu 1+ ePu

® Step 3:use IRLS algorithm to get MLE(B) = [By, Ba, Ba) which is the MLE under HO
(i.e., 81) by using x matrix with first column that is all ones, second column with Z; ¢ ’s and
third column with the x; 4’s )

® Step 4:substitute these MLE into:

n Bu‘i‘l’z aBa+xi dBd, Bu‘i‘xz aBa"‘xi d,Bd
A e ; ; e ; ;
(br]y) =D [yzln< ) +(1—yz')(1— )]

i—1 14+ eéu‘FﬂZi,aBa‘in,dBd 1+ 63u+$i,a3a+:vi,d[§d

® Step 5:use results from step 2 and step 4 to calculate:

LRT = —2InA = 21(6:|y) — 21(6oly)

® Use LRT and appropriate function in R (which?) to calculate p-value under chi-square df = 2!



Summary 2: logistic (covariates)
® Test the null hypothesis: Hy: B, =0NGg =0 vs Hp:B, 00Uy #0

® Step |:use IRLS algorithm to get M LE(f) = [, 3.] which is the MLE under HO (i.e., éo) by
using X matrix with one column that is all ones!)

® Step 2:substitute this MLE into:

n Bu"‘mi sz z Bu"‘xi sz z
A e 2121, e 12191,
[(0 = n A . +(1—y)1-— . -
( 0|y> ; [y'l (1 _|_ €6u+wi,zﬁi,z ) ( yZ) ( 1 + G/Bu‘i‘xi,zﬁi,z )]

® Step 3:use IRLS algorithm to get MLE(B) = [B,L, Ba, Ba, B:] which is the MLE under HO
(i.e., 01) by using x matrix with first column that is all ones, second column with Z; 4 ’s and
third column with the x; 4’s )

® Step 4:substitute these MLE into:

; n 6Bu+xz’,a/éa+xi,d6d+xi,z3i,z eéu"‘xi,aéa+xi,d/éd+$i,zléi,z
[ = In . ~ . . +(1—y;) | 1— . . . .
( ! ‘Y) ; [yz (1 i eButziaBatziafatxi,.Pi,z > ( yz) ( 1+ eButxiaBatziafatxi -Pi,z )]

® Step 5:use results from step 2 and step 4 to calculate:

LRT = —2InA = 21(6:|y) — 21(6oly)

® Use LRT and appropriate function in R (which?) to calculate p-value under chi-square df = 2!



Introduction to Generalized
Linear Models (GLMs) |

We have introduced linear and logistic regression models for
GWAS analysis because these are the most versatile framework for
performing a GWAS (there are many less versatile alternatives!)

These two models can handle our genetic coding (in fact any genetic
coding) where we have discrete categories (although they can also
handle X that can take on a continuous set of values!)

They can also handle (the sampling distribution) of phenotypes that
have normal (linear) and Bernoulli error (logistic)

How about phenotypes with different error (sampling)
distributions? Linear and logistic regression models are members of
a broader class called Generalized Linear Models (GLMs), where
other models in this class can handle additional phenotypes (error
distributions)



Introduction to Generalized
Linear Models (GLMs) Il

® To introduce GLMs, we will introduce the overall structure first, and second
describe how linear and logistic models fit into this framework

® There is some variation in presenting the properties of a GLM, but we will present
them using three (models that have these properties are considered GLMs):

® The probability distribution of the response variable Y conditional on the
independent variable X is in the exponential family of distributions

Pr(Y|X) ~ expfamily

® A link function relating the independent variables and parameters to the
expected value of the response variable (where we often use the inverse!!)

v:E(Y|X) = X3
Y(E(Y[X)) = Xp
E(Y|X) =y H(X8)

® The error random variable € has a variance which is a function of ONLY Xﬁ



Exponential family |

The exponential family is includes a broad set of probability distributions that can
be expressed in the following "natural’ form:

Y 0—b(0)
c(Y,
PT(Y) ~e & T (Y,9)
As an example, for the normal distribution, we have the following:

62 Y2
9 = [, ¢ — 0-27[)(9) — Evc(ya Qb) — _% ( + lO.g(zﬂ-gb))

Note that many continuous and discrete distributions are in this family (normal,
binomial, poisson, lognormal, multinomial, several categorical distributions,
exponential, gamma distribution, beta distribution, chi-square) but not all
(examples that are not!?) and since we can model response variables with these

distributions, we can model phenotypes with these distributions in a GWAS using
a GLM (")

Note that the normal distribution is in this family (linear) as is Bernoulli or more
accurately Binomial (logistic)



Exponential family |l

Instead of the "natural’ form, the exponential family is often expressed in the
following form:

k

Pr(Y) ~ h(Y)s(f)eXi=1 wi0)t(Y)

To convert from one to the other, make the following substitutions:

(9)
k=1, 0(Y) = Y9 s(0) = e o ,w(f) = g,t(Y) —Y

Note that the dispersion parameter is now no longer a direct part of this
formulation

Which is used depends on the application (i.e., for glm’s the "natural’ form has an
easier to use form + the dispersion parameter is useful for model fitting, while the
form on this slide provides advantages for other types of applications)



GLM link function

® A“link” function is just a function (!!) that acts on the expected
value of Y given X:

® This function is defined in such a way such that it has a useful form
for a GLM although there are some general restrictions on the form
of this function, the most important is that they need to be
monotonic such that we can define an inverse:

Y= f(X)  [Y)=X

® For the logistic regression, we have selected the following link
function, which is a logit function (a “canonical link) where the
inverse is the logistic function (but note that others are also used
for binomial response variables):

X5 X5
1+eXB _ €
YE(Y[X)) = In| — %, B(YX) =77'(X8) = x5
- 7x5 e

® What is the link function for a normal distribution?



GLM error function

® The variance of the error term in a GLM must be function of
ONLY the independent variable and beta parameter vector:

Var(e) = f(Xp)

® This is the case for a linear regression (note the variance of the
error is constant!!):

e ~ N (0, 0?)
Var(e) = f(XB) = o7

® As an example, this is the case for the logistic regression (note
the error changes depending on the value of X!!):

Var(e) =y H(XB)(1 — v~ H(XB))
Var(e) =7 By + XiaBa + XiaBa) (1 — v 1By + Xiaba + XiaBa)



Inference with GLMs

® We perform inference in a GLM framework using the
same approach, i.e. MLE of the beta parameters using an
IRLS algorithm (just substitute the appropriate link
function in the equations, etc.)

® We can also perform a hypothesis test using a LRT
(where the sampling distribution as the sample size
goes to infinite is chi-square)

® |n short, what you have learned can be applied for most
types of regression modeling you will likely need to

apply (!!)



(Brief) introduction to mixed
models |

® A mixed model describes a class of models that have played an
important role in early quantitative genetic (and other types) of
statistical analysis before genomics (if you are interested, look up
variance component estimation)

® These models are now used extensively in GWAS analysis as a tool
for model covariates (often population structure!)

® These models considered effects as either “fixed” (they types of
regression coefficients we have discussed in the class) and “random”
(which just indicates a different model assumption) where the
appropriateness of modeling covariates as fixed or random depends

on the context (fuzzy rules!) - you will generally not have to deal
with these issues in GWAS



Introduction to mixed models |l

® Recall that for a linear regression of sample size n, we model the
distributions of n total yi phenotypes using a linear regression
model with normal error:

Yi = B,u =+ Xi,aﬁa + Xi,dﬁd +€ G N(()? 062)

® A reminder about how to think about / visualize multivariate
(bivariate) normal distributions and marginal normal distributions:

rho=0

1.0

0.8

0.6

5)

04

0.0

>

X

® VWe can therefore consider the entire sample of yi and their
associated error in an equivalent multivariate setting:

y = XB + € € ~ multiN(O,Ia?)



Introduction to mixed models lll

® Recall our linear regression model has the following structure:
Yi — 5,u - Xi,aﬁa + Xz',dﬁd + € €~ N(()? (7?)

® For example, for n=2:

Y1 = B+ X1,084 + X1.484 + €1

€2 7
Yz — 5,u -+ X2,a6a =+ X2,d6d + €2
® What if we introduced a correlation?
y1 = By + X1,08a + X184 + a1 0
9

Yo = B, + X2 4B + X2 4Bq + a2




Introduction to mixed models |V

® The formal structure of a mixed model is as follows:

y = Xﬁ -+ Za —+ €
e ~ multiN(0,Ic?) a ~ multiN (0, Acy)

Y1 1 Xia Xia 1 0 0 0 0f |ag €1
Y2 I Xia Xig By 0 1 0 0 0] |ag €9
ys| = |1 Xia Xia| [B,| +]|0 0 1 0 0] |az| 4 |€3
: S : Ld] S : : :
| Yn | _1 Xz',a Xi,d_ _O 1_ | Anp | | €n |

® Note that X is called the “design” matrix (as with a GLM), Z is
called the “incidence” matrix, the a is the vector of random effects
and note that the A matrix determines the correlation among the
ai values where the structure of A is provided from external
information (!!)



Introduction to mixed modelsV

® The matrix A is an nxn covariance matrix (what is the form of
a covariance matrix?)

® Where does A come from?! This depends on the modeling
application...

® |n GWAS, the random effect is usually used to account for
population structure OR relatedness among individuals

® For population structure, a matrix is constructed from the
covariance (or similarity) among individuals based on their
genotypes

® For relatedness, we use estimates of identity by descent,
which can be estimated from a pedigree or genotype data



Introduction to mixed models VI

® We perform inference (estimation and hypothesis testing)
for the mixed model just as we would for a linear
regression (!!)

2
a

® Note that in some applications, people might be o2, o
interested in estimating the variance components
but for GWAS, we are generally interested in regression
parameters for our genotype (as before!): 5. 3,

® For a GWAS, we will therefore determine the MLE of the
genotype association parameters and use a LRT for the
hypothesis test, where we will compare a null and
alternative model (what is the difference between these
models?)



Mixed models: inference |

® TJo estimate parameters, we will use the MLE, so we are
concerned with the form of the likelihood equation

O
L(ﬁaCTgaU?‘Y) :/ PT(Y‘B,a’ J?)Pr(a‘Agg)da
— 00
—Ly —XB—-7Z T —XB—-Z 1 TA—l
L(B, 02, o2ly) = [To2| b 22 XOZally=XB-2a] \ o} —5za ATa
! 1

® Unfortunately, there is no closed form for the MLE since they
have the following form:

A

MLEB) = (XV ' XT)"1XTv 'y
MLE(V) = f(X, V.Y, A)
V = 02A + 01



Mixed models: inference |l

® \We therefore need an algorithm to find the MLE for the
mixed model

® We will discuss the use of an EM (Expectation-
Maximization) algorithm for this purpose, which is an
algorithm with good theoretical and practical
properties, e.g. hill-climbing algorithm, guaranteed to

converge to a (local) maximum, it is a stable algorithm,
etc.

® We do not have time to introduce these properties in
detail so we will just show the steps / equations you
need to implement this algorithm (such that you can
implement it yourself = see computer lab this week!)



Algorithm Basics

e algorithm - a sequence of instructions for taking an input and
producing an output

® We often use algorithms in estimation of parameters where the
structure of the estimation equation (e.g., the log-likelihood) is so
complicated that we cannot

® Derive a simple (closed) form equation for the estimator

® Cannot easily determine the value the estimator should take by
other means (e.g., by graphical visualization)

® We will use algorithms to “search” for the parameter values that
correspond to the estimator of interest

® |n general: algorithms are not guaranteed to produce the correct value
of the estimator (!!), because the algorithm may “converge” (=return)
the wrong answer (e.g., converges to a “local” maximum or does not
converge!) and because the compute time to converge to exactly the
same answer is impractical for applications



Mixed models: EM algorithm

1. At step [t] for t = 0, assign values to the parameters: 5% = [BM : o] : [0]} : 02’[0], o0,

These need to be selected such that they are possible values of the parameters (e.g.
no negative values for the variance parameters).

2. Calculate the expectation step for [t]:

2011y -1
all = (ZTZ + AJm) z"(y — xpl)

1] T LodINT [t—1]
Va =|Z"Z + A m o.’
Oaq

3. Calculate the maximization step for [t]:

5[1&] _ (XTX)—le(y o Za[t])

s _ L {a[t]A—la[t] _'_tT(A—lvit])}

1
o2l — 2 [ _ x4 Zaﬂ [ _xglt — Za[t] +ir(ZTZV

n
where tr is a trace function, which is equal to the sum of the diagonal elements of a
matrix.

4. Iterate steps 2, 3 until (5[1*],02’[“,03’[“) ~ (6[t+1],02’[t+1],062’[t+1]) (or alternatively

InLlt ~ InL 1),



Mixed Model hypothesis testing |

® Recall that our null and alternative hypotheses are:
Ho: B, =0NpG3=0
Hap:Ba #0UBg #0

® We will use the LRT for the null (0) and alternative (1):

L6 ) )
LRT — —QZTLA — —2ln (AOIY) LRT = —QZTLA = 2[((91’}7) — 2l(90|y)
L(61]y)

® To do this, run the EM algorithm twice, once for the null
hypothesis (again what is this?) and once for the alternative
(i.e. all parameters unrestricted) and then substitute the

parameter values into the log-likelihood equations and
calculate the LRT



Mixed Model p-value

® To calculate our p-value, we need to know the
distribution of our LRT statistic under the null hypothesis

® There is no simple form for this distribution for any given
n (contrast with F-statistics!!) but we know that as n goes
to infinite, we know the distribution is i.e. (17 — OQ):

LRT = —2InA = 21(6:]y) — 21(6o|y)
LRT — X?Zf‘




Mixed models: inferenceV

® |n general,a mixed model is an advanced methodology for
GWAS analysis but is proving to be an extremely useful
technique for covariate modeling

® There is software for performing a mixed model analysis (e.g.
R-package: Irgpr, EMMAX, FAST-LMM, TASSEL, etc.)

® Mastering mixed models will take more time than we have to
devote to the subject in this class, but what we have covered
provides a foundation for understanding the topic



Construction of A matrix |

® The matrix A is an nxn covariance matrix (what is the form of
a covariance matrix?)

® Where does A come from?! This depends on the modeling
application...

® |n GWAS, the random effect is usually used to account for
population structure OR relatedness among individuals

® For relatedness, we use estimates of identity by descent,
which can be estimated from a pedigree or genotype data

® For population structure, a matrix is constructed from the
covariance (or similarity) among individuals based on their
genotypes



Construction of A matrix Il

211 .- 21k Y11 -~ Yim | 11 ... TIN
Data =

Znl - Znk Ynl -+ Ynm | 11 .- TnN|

® Calculate the nxn (n=sample size) covariance matrix for the
individuals in your sample across all genotypes - this is a
reasonable A matrix!

® There is software for calculating A and for performing a
mixed model analysis (e.g. EMMAX, FAST-LMM, etc.)

® Mastering mixed models will take more time than we have to
devote to the subject in this class, but what we have covered
provides a foundation for understanding the topic



That’s it for today

® Next OPTIONAL lectures: Bayesian Statistics (!!)



