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• PLEASE NOTE (!!): 

• Thurs,  April 27, no classroom in NYC (please join by zoom if in NYC)!

• Tues, May 2, will be by zoom (!!) = no Ithaca or NYC classroom!

• Thurs, May 4, will be by zoom (!!) = no Ithaca or NYC classroom!

• Tues, May 9 (last lecture) I will lecture from Ithaca (regular classroom) with 
no classroom in NYC (please join by zoom)!

• We only have 2 computer labs left (!!)

• Thurs / Fri (April 27 / 28) EM algorithm for mixed models

• Thurs / Fri (May 4 / 5) MCMC algorithm for Bayesian inference

• NO COMPUTER LAB last week of class Thurs / Fri (May 11 / 12)

• Reminder:all lectures and computer labs from now on are OPTIONAL (!!)

• Office hours (!!) tomorrow (Fri,  April 28) 12:30-2:30 (see Piazza message!)

Announcements



Summary of lecture 24: Introduction 
to Bayesian Statistics

• Last lecture, we almost completed our discussion of mixed 
models

• Today, we will complete our discuss of mixed models AND 
we will introduce concepts in Bayesian Statistics!



Review: (Brief) introduction to 
mixed models I

• A mixed model describes a class of models that have played an 
important role in early quantitative genetic (and other types) of 
statistical analysis before genomics (if you are interested, look up 
variance component estimation)

• These models are now used extensively in GWAS analysis as a tool 
for model covariates (often population structure!)

• These models considered effects as either “fixed” (they types of 
regression coefficients we have discussed in the class) and “random” 
(which just indicates a different model assumption) where the 
appropriateness of modeling covariates as fixed or random depends 
on the context (fuzzy rules!) - you will generally not have to deal 
with these issues in GWAS



• Recall that for a linear regression of sample size n, we model the 
distributions of n total yi phenotypes using a linear regression 
model with normal error:

• A reminder about how to think about / visualize multivariate 
(bivariate) normal distributions and marginal normal distributions:

• We can therefore consider the entire sample of yi and their 
associated error in an equivalent multivariate setting:

normal distribution). We use a di↵erent approach to incorporate random e↵ects into our

linear (and logistic) regression models, where we consider a model that includes both fixed

and random e↵ects to be a mixed model. Note that this should not be a very satisfying

discussion of fixed and random e↵ects, but the distinction between these is not particu-

larly intuitive when you first encounter them (and can be philosophically subtle), so I will

leave this discussion for a course focused on linear models (which I encourage you to take!)

and limit the discussion here to the structure of mixed models. Also note that while we

can consider mixed models for logistic (and other glm), these models introduce additional

complexities compared to a linear model. We will therefore restrict our discussion in this

course to a linear mixed model (but again, I encourage you to take an advanced course on

glm, which will cover mixed model glm in detail).

yi = �µ +Xi,a�a +Xi,d�d + ✏i (1)

✏i ⇠ N(0,�2
✏ ) (2)

yi = �µ +Xi,a�a +Xi,d�d + ✏i (3)

yj = �µ +Xj,a�a +Xj,d�d + ✏j (4)

✏i (5)

✏j (6)

yi = �µ +Xi,a�a +Xi,d�d + ai (7)

yj = �µ +Xj,a�a +Xj,d�d + aj (8)

ai (9)

aj (10)

Recall that our linear regression model has the following structure:

Y = �µ +Xa�a +Xd�d + ✏ (11)

where ✏ ⇠ N(0,�2
✏ ), such that for a sample of size n we can write:

y = X� + ✏ (12)

where ✏ ⇠ multiN(0, I�2
✏ ) and where 0 is a vector of n zeros and I is an n by n identity

matrix (see class for a discussion and diagram illustrating this point). In contrast, a mixed

(linear) model has the following structure:

y = X� + Za+ ✏ (13)

2
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Using matrix notation, matrix multiplication, and matrix addition, we can re-write this as:

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

1 x1,a x1,d
1 x2,a x2,d
...

...
. . .

1 xn,a xn,d

⇥

⌃⌃⌃⌅

�

⇤
�µ
�a
�d

⇥

⌅+

�

⇧⇧⇧⇤

⇥1
⇥2
...
⇥n

⇥

⌃⌃⌃⌅

which we can write using the following compact matrix notation:

y = x� + ⇥ (14)

for a specific sample and
Y = X� + ⇥ (15)

for an arbitrary sample, where the � and ⇥ here are vectors.

Recall that there are true values of � = [�µ,�a,�d] that describe the true relationship
between genotype and phenotype (specifically the true genotypic values), which in turn
describe the variation in Y in a given sample of size n, given genotype states X. Just as
with our general estimation framework, we are interested in defining a statistic (a function
on a sample) that takes a sample as input and returns a vector, where the elements of the
vector provide an estimate of �, i.e. we will define a statistic T (y,xa,xd) = �̂ = [�̂µ, �̂a, �̂d].
More specifically we will define a maximum likelihood estimate (MLE) of these parameters
(again, recall that for all the complexity of how MLE’s are calculated, they are simply
statistics that take a sample as an input and provide an estimator as an output). We will
not discuss the derivation of the MLE for the � parameters of a multiple regression model
(although it is not that di⇥cult to derive), but will rather just provide the form of the MLE.
Note that this MLE has a simple form, such that we do not have to go through the process
of maximizing a likelihood, rather, we can write down a simple formula that provides an
expression that we know is the (single) maximum of the likelihood of the regression model.

With the vector and matrix notation introduced above, we can write the MLE as follows:

MLE(�̂) =

�

⇤
�̂µ
�̂a
�̂d

⇥

⌅

where the formula is as follows:

MLE(�̂) = (XTX)�1XTY (16)

As a side-note, this is also the ‘least-squares’ estimate of the regression parameters and
the ‘Best Linear Unbiased Estimate’ (BLUE) of these parameters, i.e. several statistics
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Review: mixed models II



• Recall our linear regression model has the following structure:

• For example, for n=2:

• What if we introduced a correlation?
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Review: mixed models III



• The formal structure of a mixed model is as follows:

• Note that X is called the “design” matrix (as with a GLM), Z is 
called the “incidence” matrix, the a is the vector of random effects 
and note that the A matrix determines the correlation among the 
ai values where the structure of A is provided from external 
information (!!)

where Z and a are new terms. In equation (3), we call the matrix X the ‘design’ matrix,

which accounts for the fixed covariates with the vector of � parameters, and we call the

matrix Z the ‘incidence’ matrix, which accounts for the random covariates with the vector

of random e↵ects a. For our purposes here, the incidence matrix is actually going to be

an n by n identity matrix (which indicates each individual has its own random e↵ect),

although this is not the case with mixed models in general.

To provide some intuition concerning the structure of the mixed model before we introduce

the other critical components, let’s write out a mixed model for a sample of n individuals

in matrix form for the analysis of a marker genotype:
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In this model ✏ ⇠ multiN(0, I�2
✏ ), where 0 is a vector of n zeros and I is an n by n identity

matrix as before. The new component is the random e↵ects vector a which is also multi-

variate normal a ⇠ multiN(0,A�2
a), where the matrix A is a non-diagonal but symmetric

matrix, which is assumed to be given (we will briefly discuss a strategy for determining

the A matrix using identity by descent estimates below and in our optional lecture on

pedigrees, but we will not have time to consider the complex issue of defining A matrices

in this course). Note that for our purposes, Z is the identity matrix and can be ignored in

the equations we consider here (although we include it for completeness).

Now, just as with our linear regression (=fixed e↵ects) model, our goal with a mixed

model is to perform inference, specifically a hypothesis test. Again, just as before, this

requires that we estimate parameters and we will do this by using a maximum likelihood

estimator (MLE). We therefore require a likelihood function for the mixed model, which

has the following general form:
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Note that the structure of this likelihood is something we haven’t seen before, i.e. it

includes an integral. Intuitively what is going on here is that we have not observed the

random e↵ects a so we are going to integrate over all possible values that these can take

based on the matrix A and the parameter �2
a. The actual likelihood has the following form:
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normal distribution). We use a di↵erent approach to incorporate random e↵ects into our

linear (and logistic) regression models, where we consider a model that includes both fixed

and random e↵ects to be a mixed model. Note that this should not be a very satisfying

discussion of fixed and random e↵ects, but the distinction between these is not particu-

larly intuitive when you first encounter them (and can be philosophically subtle), so I will

leave this discussion for a course focused on linear models (which I encourage you to take!)

and limit the discussion here to the structure of mixed models. Also note that while we

can consider mixed models for logistic (and other glm), these models introduce additional

complexities compared to a linear model. We will therefore restrict our discussion in this

course to a linear mixed model (but again, I encourage you to take an advanced course on

glm, which will cover mixed model glm in detail).

yi = �µ +Xi,a�a +Xi,d�d + ✏i (1)

✏i ⇠ N(0,�2
✏ ) (2)

y1 = �µ +X1,a�a +X1,d�d + ✏1 (3)

y2 = �µ +X2,a�a +X2,d�d + ✏2 (4)

✏1 (5)

✏2 (6)

y1 = �µ +X1,a�a +X1,d�d + a1 (7)

y2 = �µ +X2,a�a +X2,d�d + a2 (8)

a1 (9)

a2 (10)

Recall that our linear regression model has the following structure:

Y = �µ +Xa�a +Xd�d + ✏ (11)

where ✏ ⇠ N(0,�2
✏ ), such that for a sample of size n we can write:

y = X� + ✏ (12)

where ✏ ⇠ multiN(0, I�2
✏ ) and where 0 is a vector of n zeros and I is an n by n identity

matrix (see class for a discussion and diagram illustrating this point). In contrast, a mixed

(linear) model has the following structure:

y = X� + Za+ ✏ (13)
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matrix, which is assumed to be given (we will briefly discuss a strategy for determining

the A matrix using identity by descent estimates below and in our optional lecture on

pedigrees, but we will not have time to consider the complex issue of defining A matrices

in this course). Note that for our purposes, Z is the identity matrix and can be ignored in

the equations we consider here (although we include it for completeness).
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Review: mixed models IV



• The matrix A is an nxn covariance matrix (what is the form of 
a covariance matrix?)

• Where does A come from?  This depends on the modeling 
application...

• In GWAS, the random effect is usually used to account for 
population structure OR relatedness among individuals

• For population structure, a matrix is constructed from the 
covariance (or similarity) among individuals based on their 
genotypes

• For relatedness, we use estimates of identity by descent, 
which can be estimated from a pedigree or genotype data

Review: mixed models V



• We perform inference (estimation and hypothesis testing) 
for the mixed model just as we would for a linear 
regression (!!)

• Note that in some applications, people might be 
interested in estimating the variance components            
but for GWAS, we are generally interested in regression 
parameters for our genotype (as before!):

• For a GWAS, we will therefore determine the MLE of the 
genotype association parameters and use a LRT for the 
hypothesis test, where we will compare a null and 
alternative model (what is the difference between these 
models?)
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Review: mixed models VI



• To estimate parameters, we will use the MLE, so we are 
concerned with the form of the likelihood equation

• Unfortunately, there is no closed form for the MLE since they 
have the following form:

where the |M| is the determinant of the matrix M (do not worry about the definition of

a determinant, intuitively, consider it as a function that takes in a matrix and outputs a

single number). The log-likelihood for the mixed model is:
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Now, it turns out that finding the MLE of parameters in the mixed model is a bit tricky.

To give an intuitive sense of the problem, let’s define V = �2
aA + �2

✏ I. Note that V is

a function of parameters �2
a and �2

✏ so if we were to estimate these parameters, we could

produce a MLE(V̂). As with our fixed e↵ect model, what we are actually interested in

are the � parameters, which we can estimate as follows:

MLE(�̂) = (XV̂
�1

XT
)
�1XTV̂

�1
Y (19)

which has the same form as for a fixed e↵ect model but with the addition of the MLE(V̂)

terms. Clearly to determine MLE(�̂) we therefore need:

MLE(V̂) = f(X, V̂,Y,A) (20)

where f is a function of the terms listed. Now however, we have run into a problem. Note

that equation (6) includes MLE(V̂) in the ‘input’ and ‘output’ so we cannot simply solve

for this estimate. It turns out we will need an algorithm to accomplish this estimation

problem and next lecture, we will discuss an Expectation-Maximization (EM) algorithm

that can be used for this purpose.

3 The Mixed Model EM Algorithm

There are a number of algorithms that we could apply to find the MLE for the mixed model.

However, we are going to use this opportunity to introduce an expectation-maximization

(EM) algorithm. EM algorithms define there own class of algorithms (although they have

strong connections to other classes) and are widely used for many problems in statistics

and computer science. They are ‘hill climbing’ algorithms, in the sense that they are guar-

anteed to find a local maximum given a starting point (for most well-behaved applications)

and provide a good balance between e�ciency and robustness. We will not have time to

go into detail concerning the foundation and properties of these algorithms but we will

provide a brief, intuitive discussion of how they work below. For the moment however,

let’s describe the algorithm for the mixed model.

In general, an EM algorithm has an ‘expectation’ step, where the expected values of miss-

ing data are calculated given the current values of parameters, and a ‘maximization’ step,
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where Z and a are new terms. In equation (3), we call the matrix X the ‘design’ matrix,

which accounts for the fixed covariates with the vector of � parameters, and we call the

matrix Z the ‘incidence’ matrix, which accounts for the random covariates with the vector

of random e↵ects a. For our purposes here, the incidence matrix is actually going to be

an n by n identity matrix (which indicates each individual has its own random e↵ect),

although this is not the case with mixed models in general.
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In this model ✏ ⇠ multiN(0, I�2
✏ ), where 0 is a vector of n zeros and I is an n by n identity

matrix as before. The new component is the random e↵ects vector a which is also multi-

variate normal a ⇠ multiN(0,A�2
a), where the matrix A is a non-diagonal but symmetric

matrix, which is assumed to be given (we will briefly discuss a strategy for determining

the A matrix using identity by descent estimates below and in our optional lecture on

pedigrees, but we will not have time to consider the complex issue of defining A matrices

in this course). Note that for our purposes, Z is the identity matrix and can be ignored in

the equations we consider here (although we include it for completeness).

Now, just as with our linear regression (=fixed e↵ects) model, our goal with a mixed

model is to perform inference, specifically a hypothesis test. Again, just as before, this
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where Z and a are new terms. In equation (3), we call the matrix X the ‘design’ matrix,

which accounts for the fixed covariates with the vector of � parameters, and we call the

matrix Z the ‘incidence’ matrix, which accounts for the random covariates with the vector

of random e↵ects a. For our purposes here, the incidence matrix is actually going to be

an n by n identity matrix (which indicates each individual has its own random e↵ect),

although this is not the case with mixed models in general.

To provide some intuition concerning the structure of the mixed model before we introduce

the other critical components, let’s write out a mixed model for a sample of n individuals

in matrix form for the analysis of a marker genotype:
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In this model ✏ ⇠ multiN(0, I�2
✏ ), where 0 is a vector of n zeros and I is an n by n identity

matrix as before. The new component is the random e↵ects vector a which is also multi-

variate normal a ⇠ multiN(0,A�2
a), where the matrix A is a non-diagonal but symmetric

matrix, which is assumed to be given (we will briefly discuss a strategy for determining

the A matrix using identity by descent estimates below and in our optional lecture on

pedigrees, but we will not have time to consider the complex issue of defining A matrices

in this course). Note that for our purposes, Z is the identity matrix and can be ignored in

the equations we consider here (although we include it for completeness).

Now, just as with our linear regression (=fixed e↵ects) model, our goal with a mixed

model is to perform inference, specifically a hypothesis test. Again, just as before, this

requires that we estimate parameters and we will do this by using a maximum likelihood

estimator (MLE). We therefore require a likelihood function for the mixed model, which

has the following general form:
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Note that the structure of this likelihood is something we haven’t seen before, i.e. it

includes an integral. Intuitively what is going on here is that we have not observed the

random e↵ects a so we are going to integrate over all possible values that these can take

based on the matrix A and the parameter �2
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L(�,�2
a,�

2
✏ |y) = |I�2

✏ |�
1
2 e

� 1
2�2

✏
[y�X��Za]T[y�X��Za]|A�2

a|�
1
2 e

� 1
2�2

a
aTA�1a

(17)

3

where the |M| is the determinant of the matrix M (do not worry about the definition of

a determinant, intuitively, consider it as a function that takes in a matrix and outputs a

single number). The log-likelihood for the mixed model is:
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2
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2
ln�2
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2�2
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(18)

Now, it turns out that finding the MLE of parameters in the mixed model is a bit tricky.

To give an intuitive sense of the problem, let’s define V = �2
aA + �2

✏ I. Note that V is

a function of parameters �2
a and �2

✏ so if we were to estimate these parameters, we could

produce a MLE(V̂). As with our fixed e↵ect model, what we are actually interested in

are the � parameters, which we can estimate as follows:

MLE(�̂) = (XV̂
�1

XT
)
�1XTV̂

�1
Y (19)

which has the same form as for a fixed e↵ect model but with the addition of the MLE(V̂)

terms. Clearly to determine MLE(�̂) we therefore need:

MLE(V̂) = f(X, V̂,Y,A) (20)

where f is a function of the terms listed. Now however, we have run into a problem. Note

that equation (6) includes MLE(V̂) in the ‘input’ and ‘output’ so we cannot simply solve

for this estimate. It turns out we will need an algorithm to accomplish this estimation

problem and next lecture, we will discuss an Expectation-Maximization (EM) algorithm

that can be used for this purpose.

3 The Mixed Model EM Algorithm

There are a number of algorithms that we could apply to find the MLE for the mixed model.

However, we are going to use this opportunity to introduce an expectation-maximization

(EM) algorithm. EM algorithms define there own class of algorithms (although they have

strong connections to other classes) and are widely used for many problems in statistics

and computer science. They are ‘hill climbing’ algorithms, in the sense that they are guar-

anteed to find a local maximum given a starting point (for most well-behaved applications)

and provide a good balance between e�ciency and robustness. We will not have time to

go into detail concerning the foundation and properties of these algorithms but we will

provide a brief, intuitive discussion of how they work below. For the moment however,

let’s describe the algorithm for the mixed model.

In general, an EM algorithm has an ‘expectation’ step, where the expected values of miss-

ing data are calculated given the current values of parameters, and a ‘maximization’ step,
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• We therefore need an algorithm to find the MLE for the 
mixed model

• We will discuss the use of an EM (Expectation-
Maximization) algorithm for this purpose, which is an 
algorithm with good theoretical and practical 
properties, e.g. hill-climbing algorithm, guaranteed to 
converge to a (local) maximum, it is a stable algorithm, 
etc.

• We do not have time to introduce these properties in 
detail so we will just show the steps / equations you 
need to implement this algorithm (such that you can 
implement it yourself = see computer lab this week!)

Mixed models: inference II



Algorithm Basics
• algorithm - a sequence of instructions for taking an input and 

producing an output

• We often use algorithms in estimation of parameters where the 
structure of the estimation equation (e.g., the log-likelihood) is so 
complicated that we cannot

• Derive a simple (closed) form equation for the estimator

• Cannot easily determine the value the estimator should take by 
other means (e.g., by graphical visualization)

• We will use algorithms to “search” for the parameter values that 
correspond to the estimator of interest

• In general: algorithms are not guaranteed to produce the correct value 
of the estimator (!!), because the algorithm may “converge” (=return) 
the wrong answer (e.g., converges to a “local” maximum or does not 
converge!) and because the compute time to converge to exactly the 
same answer is impractical for applications   



where the values of parameters are maximized. In the mixed model framework, the ‘miss-

ing’ data is the vector a and the parameters are �,�2
a, and �2

✏ . With these defined, we can

write out the steps of the EM algorithm as follows:

1. At step [t] for t = 0, assign values to the parameters: �[0]
=

h
�[0]
µ ,�[0]

a ,�[0]
d

i
, �2,[0]

a ,�2,[0]
✏ .

These need to be selected such that they are possible values of the parameters (e.g.

no negative values for the variance parameters).

2. Calculate the expectation step for [t]:

a[t] =

✓
ZTZ+A�1�

2,[t�1]
✏

�2,[t�1]
a

◆�1

ZT
(y� x�[t�1]

) (21)

V [t]
a =

✓
ZTZ+A�1�

2,[t�1]
✏

�2,[t�1]
a

◆�1

�2,[t�1]
✏ (22)

3. Calculate the maximization step for [t]:

�[t]
= (xTx)�1xT

(y� Za[t]) (23)

�2,[t]
a =

1

n

h
a[t]A�1a[t] + tr(A�1V [t]

a )

i
(24)

�2,[t]
✏ = � 1

n

h
y� x�[t] � Za[t]

iT h
y� x�[t] � Za[t]

i
+ tr(ZTZV [t]

a ) (25)

where tr is a trace function, which is equal to the sum of the diagonal elements of a

matrix.

4. Iterate steps 2, 3 until (�[t],�2,[t]
a ,�2,[t]

✏ ) ⇡ (�[t+1],�2,[t+1]
a ,�2,[t+1]

✏ ) (or alternatively

lnL[t] ⇡ lnL[t+1]
).

With this algorithm in hand, how do we go about identifying the MLE(�̂, �̂2
a, �̂

2
✏ )? For

the general problem of finding the MLE for complex models with an EM algorithm, we

assume that there are multiple maxima of the likelihood function. The MLE corresponds

to the parameter values that produce the global maximum. Since the EM algorithm is

a hill climbing algorithm, the algorithm will find local maximum if it is started ‘near’ a

local maximum and we therefore need to run the algorithm multiple times with di↵erent

starting values to find the global maximum (although note we will never know in practice

for complex problem whether we have found the true global maximum!). Happily for the

mixed model case that we will be considering in this class, the likelihood function is convex

(i.e. a single maximum) which we are guaranteed to find.

The theory of how EM algorithms are derived and why they work is beyond the scope

5
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Mixed Model hypothesis testing I

• Recall that our null and alternative hypotheses are:

• We will use the LRT for the null (0) and alternative (1):

• To do this, run the EM algorithm twice, once for the null 
hypothesis (again what is this?) and once for the alternative 
(i.e. all parameters unrestricted) and then substitute the 
parameter values into the log-likelihood equations and 
calculate the LRT

•

Now consider the first and second derivatives

@`

@�
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X

i

[yixi �
e
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1 + exi�
xi] (46)

=
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i
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(xi�)[1� �

�1
(xi�)] (49)

= �xTWx where Wii =
�
�
�1

(xi�)[1� �
�1

(xi�)]
�

(50)

Now plug the first and second derivatives into the Newton-Raphson update equation and

do some algebra:

�
(t+1)

= �
(t) �

⇣
@
2
`

@�@�T

⌘�1 @`

@�
(51)

= �
(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)] (52)

= (xTWx)�1
(xTWx)(�(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)]) (53)

= (xTWx)�1
(xTWx�(t)

+ xT
[y� �

�1
(x�(t)

)]) (54)

= (xTWx)�1xTW(x�(t)
+W�1

[y� �
�1

(x�(t)
)]) (55)

= (xTWx)�1xTWz where z = x�(t)
+W�1

[y� �
�1

(x�(t)
)] (56)

Using the standard Newton-Raphson update equation we now have an iterative system to

update our estimates of �:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (57)

where z = x�[t]
+W�1

(y� �
�1

(x�)) and is called the vector of ’working responses’.

Thinking back to regression with continuous phenotyopes, you will remember that �̂ =⇥
xTx

⇤�1
xTy. This closed form solution for the regression coe�cients for a linear model

looks a lot like the iteritive system for estimation in a logistic model. In fact, they are the

same if W = I and z = y.

6 Hypothesis testing for logistic regression

Recall that when we perform a GWAS using a linear regression model, we assess the

following hypotheses for each genetic marker:

H0 : �a = 0 \ �d = 0 (58)

10

HA : �a 6= 0 [ �d 6= 0 (59)

The way we do this is by calculating a LRT (in this case, an F-test), which is a function

that takes the sample as input and provides a number as output. Since we know the

distribution of the F-statistic assuming H0 is true, we can determine the p-value for our

statistic and if this is less than a specified Type I error ↵, we reject the null hypothesis

(which indicates the marker is in linkage disequilibrium with a causal polymorphism).

When we use a logistic regression for a GWAS analysis, we will take the same approach.

The only di↵erence is that the LRT for a logistic model does not have an exactly charac-

terized form for an arbitrary sample size n, i.e. it is not an F-statistic. However, we can

calculate a LRT for the logistic case and it turns out that in the case where H0 is true,

this statistic does have an exact distribution as the sample size approaches infinite. Specif-

ically, as n ! 1 then LRT ! �
2
df , i.e. the LRT approaches a chi-square distribution with

degrees of freedom (df) that depend on the model and null hypothesis (see below). Now,

we are never in a situation where our sample size is infinite. However, if our sample size

is reasonably large, our hope is that our LRT will be approximately chi-square distributed

(when H0 is true). It turns out that this is often the case in practice, so we can use a

chi-square distribution to calculate the p-value when we obtain a value for the LRT for a

sample.

So, to perform a hypothesis test for a logistic regression model for our null hypothesis,

we need to consider the formula for the LRT, which is the following:

LRT = �2ln⇤ = �2ln
L(✓̂0|y)
L(✓̂1|y)

(60)

where L(✓|y) is the likelihood function, ✓̂0 = argmax✓2⇥0L(✓|y) is the parameter value

that maximizes the likelihood of the sample restricted to set of parameter values described

by the null hypothesis ⇥0, and ✓̂1 = argmax✓2⇥1L(✓|y) is similarly defined,where ⇥1 is

the entire range of values under the null and alternative hypotheses ⇥1 = ⇥A [⇥0. Note

that we can write this equation as:

LRT = �2ln⇤ = 2ln(L(✓̂1|y))� 2ln(L(✓̂0|y)) (61)

So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (62)
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• To calculate our p-value, we need to know the 
distribution of our LRT statistic under the null hypothesis

• There is no simple form for this distribution for any given 
n (contrast with F-statistics!!) but we know that as n goes 
to infinite, we know the distribution is i.e. (               ):
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So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (63)
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HA : �a 6= 0 [ �d 6= 0 (59)
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Mixed Model p-value



• In general, a mixed model is an advanced methodology for 
GWAS analysis but is proving to be an extremely useful 
technique for covariate modeling

• There is software for performing a mixed model analysis (e.g. 
R-package: lrgpr, EMMAX, FAST-LMM, TASSEL, etc.)

• Mastering mixed models will take more time than we have to 
devote to the subject in this class, but what we have covered 
provides a foundation for understanding the topic

Mixed models: inference V



• The matrix A is an nxn covariance matrix (what is the form of 
a covariance matrix?)

• Where does A come from?  This depends on the modeling 
application...

• In GWAS, the random effect is usually used to account for 
population structure OR relatedness among individuals

• For relatedness, we use estimates of identity by descent, 
which can be estimated from a pedigree or genotype data

• For population structure, a matrix is constructed from the 
covariance (or similarity) among individuals based on their 
genotypes

Construction of A matrix I



• Calculate the nxn (n=sample size) covariance matrix for the 
individuals in your sample across all genotypes - this is a 
reasonable A matrix!

• There is software for calculating A and for performing a 
mixed model analysis (e.g. EMMAX, FAST-LMM, etc.)

• Mastering mixed models will take more time than we have to 
devote to the subject in this class, but what we have covered 
provides a foundation for understanding the topic

Construction of A matrix II

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:
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Introduction to Bayesian analysis 1

• Up to this point, we have considered statistical analysis (and 
inference) using a Frequentist formalism

• There is an alternative formalism called Bayesian that we will now 
introduce in a very brief manner

• Note that there is an important conceptual split between 
statisticians who consider themselves Frequentist of Bayesian but 
for GWAS analysis (and for most applications where we are 
concerned with analyzing data) we do not have a preference, i.e. we 
only care about getting the “right” biological answer so any (or 
both) frameworks that get us to this goal are useful

• In GWAS (and mapping) analysis, you will see both frequentist (i.e. 
the framework we have built up to this point!) and Bayesian 
approaches applied



Introduction to Bayesian analysis II
• In both frequentist and Bayesian analyses, we have the same probabilistic 

framework (sample spaces, random variables, probability models, etc.) and 
when assuming our probability model falls in a family of parameterized 
distributions, we assume that a single fixed parameter value(s) describes the 
true model that produced our sample

• However, in a Bayesian framework, we now allow the parameter to have it’s 
own probability distribution (we DO NOT do this in a frequentist analysis), 
such that we treat it as a random variable

• This may seem strange - how can we consider a parameter to have a 
probability distribution if it is fixed?

• However, we can if we have some prior assumptions about what values the 
parameter value will take for our system compared to others and we can 
make this prior assumption rigorous by assuming there is a probability 
distribution associated with the parameter

• It turns out, this assumption produces major differences between the two 
analysis procedures (in how they consider probability, how they perform 
inference, etc.



Introduction to Bayesian analysis III
• To introduce Bayesian statistics, we need to begin by introducing 

Bayes theorem

• Consider a set of events (remember events!?)                        of a 
sample space     (where k may be infinite), which form a partition of 
the sample space, i.e.

• For another event              (which may be     itself) define the Law 
of total probability:

• Now we can state Bayes theorem:

3 Frequentist versus Bayesian philosophy

In the statistical framework we have consider so far, which is often called a Frequentist
framework, we treat the parameter (with some ‘true’ value) as a fixed entity in our inference
approach, which does not have a connection to probability and sampling except through
the assumed probability model. In a Bayesian framework, we still consider the true param-
eter value to be fixed, but during our approach to inference, we now allow the parameter
to be associated with its own probability distribution, i.e. during inference, we treat the
parameter as a random variable. This seems strange at first glance - if the parameter is
fixed in what sense can it have a probability model associated with it? It can however, if
we have some prior assumptions about what values the true value of the parameter is likely
to take over others, which we can make rigorous by assuming a probability distribution
over the parameter.

It turns out that this slight di↵erence in how we think about parameters in a Bayesian
framework produces dramatic di↵erences in how we think about probability and how we
approach inference, specifically estimation and hypothesis testing, e.g. while we will use
the same glm models, we will not be making use of a likelihood ratio test or p-values.
This in turn produces a dramatic split among ‘pure’ statisticians, who generally are in the
Frequentist or the Bayesian camp, a split that has gone on for over half a century and
continues to this day. Interestingly, many scientific fields (quantitative genomics included)
use both approaches and derive practical advantages from both. This is in part because
in scientific fields we are often interested in a ‘right answer’ about our system, which is
something defined physically, so we don’t care about how we get to that right answer when
making probabilistic and statistical extrapolations. While most approaches to quantita-
tive genomics are still frequentist, I would estimate about 10% of papers (and growing) use
Bayesian approaches or borrow from a Bayesian framework.

4 Bayes theorem and Bayesian statistics

To introduce the Bayesian framework, let’s begin with Bayes theorem, which is not itself a
Bayesian result (it is a result that holds for probability) but it is where the name Bayesian
comes from. To introduce Bayes theorem, let’s consider a set of events A = A1...Ak of a
sample space S (where k may be infinite), which form a partition of the sample space, such
that [k

iAi = S and Ai \Aj = ; for all i 6= j. For another event B ⇢ S (which may be S

itself), let’s define the Law of total probability :

Pr(B) =
kX

i=1

Pr(B \Ai) =
kX

i=1

Pr(B|Ai)Pr(Ai) (6)
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where the latter equivalence follows from the definition of conditional probability: Pr(B|Ai) =
Pr(B \Ai)/Pr(Ai)). Now we are ready to state Bayes theorem:

Pr(Ai|B) =
Pr(Ai \ B)

Pr(B) =
Pr(B|Ai)Pr(Ai)

Pr(B) =
Pr(B|Ai)Pr(A)

Pk
i=1 Pr(B|Ai)Pr(Ai)

(7)

where the last two equivalences follow from the definition of conditional probability and
the law of total probability.

We are now ready to introduce the Bayesian framework. Remember that in a Bayesian
framework, we have now made the conceptual switch to considering a probability distri-
bution associated with our parameter(s) ✓, which corresponds to incorporating our beliefs
about what the true parameter values are likely to be based on our previous experience.
In such a case, we are treating the parameter as a random variable, so we can consider a
joint probability of our sample and our parameter:

Pr(✓ \Y) (8)

Now, for the purposes of inference, when considering a given single sample y, we are
actually interested in the probability that the parameter takes on a particular value given
the sample we have observed:

Pr(✓|y) (9)

and using Bayes theorem we have:

Pr(✓|y) = Pr(y|✓)Pr(✓)

Pr(y)
(10)

Now, note that the sample is fixed, so Pr(y) = c, which means we can write equation (11)
as:

Pr(✓|y) / Pr(y|✓)Pr(✓) (11)

where recall the proportionality equivalence means that the left side of the equation equals
the right side of the equation multiplied by a constant. Equation (11) is the primary equa-
tion that is the foundation of Bayesian statistics and, given the use of Bayes theorem, the
origin of the name is clear.

Let’s now consider the di↵erent components of equation (11). The component Pr(✓|y)
is called the posterior probability distribution and this is what we want to know, i.e. the
probability that the true ✓ takes a particular value given the sample we have observed. We
are therefore going to use the posterior distribution for all inferences that we make in a
Bayesian framework. The component Pr(y|✓) is the probability of observing the specific
instance of the data y given values of the parameter ✓ and this is simply the likelihood,
which we have seen before (and we will define as before). The last component Pr(✓) is
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Introduction to Bayesian analysis IV
• Remember that in a Bayesian (not frequentist!) framework, our parameter(s) 

have a probability distribution associated with them that reflects our belief in 
the values that might be the true value of the parameter

• Since we are treating the parameter as a random variable, we can consider the 
joint distribution of the parameter AND a sample Y produced under a 
probability model:

• Fo inference, we are interested in the probability the parameter takes a 
certain value given a sample:

• Using Bayes theorem, we can write:

• Also note that since the sample is fixed (i.e. we are considering a single 
sample)                  we can rewrite this as follows:

where the latter equivalence follows from the definition of conditional probability: Pr(B|Ai) =
Pr(B \Ai)/Pr(Ai)). Now we are ready to state Bayes theorem:

Pr(Ai|B) =
Pr(Ai \ B)

Pr(B) =
Pr(B|Ai)Pr(Ai)

Pr(B) =
Pr(B|Ai)Pr(A)

Pk
i=1 Pr(B|Ai)Pr(Ai)

(7)

where the last two equivalences follow from the definition of conditional probability and
the law of total probability.

We are now ready to introduce the Bayesian framework. Remember that in a Bayesian
framework, we have now made the conceptual switch to considering a probability distri-
bution associated with our parameter(s) ✓, which corresponds to incorporating our beliefs
about what the true parameter values are likely to be based on our previous experience.
In such a case, we are treating the parameter as a random variable, so we can consider a
joint probability of our sample and our parameter:

Pr(✓ \Y) (8)

Now, for the purposes of inference, when considering a given single sample y, we are
actually interested in the probability that the parameter takes on a particular value given
the sample we have observed:

Pr(✓|y) (9)

and using Bayes theorem we have:

Pr(✓|y) = Pr(y|✓)Pr(✓)

Pr(y)
(10)

Now, note that the sample is fixed, so Pr(y) = c, which means we can write equation (11)
as:

Pr(✓|y) / Pr(y|✓)Pr(✓) (11)

where recall the proportionality equivalence means that the left side of the equation equals
the right side of the equation multiplied by a constant. Equation (11) is the primary equa-
tion that is the foundation of Bayesian statistics and, given the use of Bayes theorem, the
origin of the name is clear.

Let’s now consider the di↵erent components of equation (11). The component Pr(✓|y)
is called the posterior probability distribution and this is what we want to know, i.e. the
probability that the true ✓ takes a particular value given the sample we have observed. We
are therefore going to use the posterior distribution for all inferences that we make in a
Bayesian framework. The component Pr(y|✓) is the probability of observing the specific
instance of the data y given values of the parameter ✓ and this is simply the likelihood,
which we have seen before (and we will define as before). The last component Pr(✓) is

4
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Introduction to Bayesian analysis V
• Let’s consider the structure of our main equation in Bayesian statistics:

• Note that the left hand side is called the posterior probability:

• The first term of the right hand side is something we have seen before, i.e. the 
likelihood (!!):

• The second term of the right hand side is new and is called the prior:

• Note that the prior is how we incorporate our assumptions concerning the 
values the true parameter value may take

• In a Bayesian framework, we are making two assumptions (unlike a frequentist 
where we make one assumption): 1. the probability distribution that generated 
the sample, 2. the probability distribution of the parameter
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Probability in a Bayesian framework
• By allowing for the parameter to have an prior probability distribution, we 

produce a change in how we consider probability in a Bayesian versus 
Frequentist perspective

• For example, consider a coin flip, with Bern(p)

• In a Frequentist framework, we consider a conception of probability that 
we use for inference to reflect the outcomes as if we flipped the coin an 
infinite number of times, i.e. if we flipped the coin 100 times and it was 
“heads” each time, we do not use this information to change how we 
consider a new experiment with this same coin if we flipped it again

• In a Bayesian framework, we consider a conception of probability can 
incorporate previous observations, i.e. if we flipped a coin 100 times and it 
was “heads” each time, we might want to incorporate this information in 
to our inferences from a new experiment with this same coin if we flipped 
it again

• Note that this philosophic distinction is very deep (=we have only scratched 
the surface with this one example)



Debating the Frequentist versus 
Bayesian frameworks

• Frequentists often argue that because they “do not” take previous experience into 
account when performing their inference concerning the value of a parameter, 
such that they do not introduce biases into their inference framework

• In response, Bayesians often argue:

• Previous experience is used to specify the probability model in the first place

• By not incorporating previous experience in the inference procedure, prior 
assumptions are still being used (which can introduce logical inconsistencies!)

• The idea of considering an infinite number of observations is not particular 
realistic (and can be a non-sensical abstraction for the real world)

• The impact of prior assumptions in Bayesian inference disappear as the sample 
size goes to infinite

• Again, note that we have only scratched the surface of this debate!



Types of priors in Bayesian analysis
• Up to this point, we have discussed priors in an abstract manner

• To start making this concept more clear, let’s consider one of our original examples 
where we are interested in the knowing the mean human height in the US (what are 
the components of the statistical framework for this example!? Note the basic 
components are the same in Frequentist / Bayesian!)

• If we assume a normal probability model of human height (what parameter are we 
interested in inferring in this case and why?) in a Bayesian framework, we will at least 
need to define a prior:

• One possible approach is to make the probability of each possible value of the 
parameter the same (what distribution are we assuming and what is a problem with 
this approach), which defines an improper prior:

• Another possible approach is to incorporate our previous observations that heights 
are seldom infinite, etc. where one choice for incorporating this observations is my 
defining a prior that has the same distribution as our probability model, which defines 
a conjugate prior (which is also a proper prior):

to assume that our prior Pr(µ) is normally distributed, and more specifically, we could
assume that it is normally distributed with its own mean and variance parameter that we
have estimated from a previous sample of people, i.e. we can use the likelihood with the
MLE for the mean and variance parameters estimated from the previous experiment. This
prior in turn incorporates the intuition that while the parameter µ could in one sense take
any value, it is much more probable that is would take a value around values that we have
seen before (and less likely to have values near negative or positive infinite).

This example we just discussed is one strategy for building priors: using the likelihood
derived from a previous sample. Let’s now define two categorizations of priors which will
provide examples of other strategies:

1. A proper versus a improper prior. A proper prior is a pdf, an improper prior is not
a pdf, e.g. it does not integrate to one. We often can make use of improper priors
where the resulting posterior is proper.

2. A conjugate versus a non-conjugate prior. A conjugate prior is a prior that is in
the same family of pdf’s as the posterior distribution, e.g. they are both in the
exponential family. A non-conjugate prior is in a di↵erent family of distributiions.

The most common example of an improper prior is a case where our parameter ✓ can take
a value within a set that stretches to infinite, e.g. (�1,1) or [0,1), where we assign
Pr(✓) = c. This is an improper prior in the sense that it is not a pdf, i.e. if we assign
the same non-zero value to every interval in a set which stretches to infinite, this cannot
integrate to one. However, it is a reasonable prior in the sense that it incorporates our
intuition that we do not have a strong opinion (based on previous experience) that the pa-
rameter ✓ will take any particular value. What’s more, the posterior will still be a proper
distribution, since it is simply the likelihood in this case (although note that we do not
perform inference by considering the MLE as we would in a likelihood framework, as we
will discuss below).

Conjugate priors are often assigned because of they produce convenient mathematical prop-
erties for our posterior distributions. There are in fact often ‘natural’ priors for certain
distributions which are conjugate and are reasonable ways of modeling the probability of
parameter values. Particularly when dealing with complex statistical models in a Bayesian
framework, which require algorithms to estimate, we often use conjugate priors because of
their convenient mathematical properties.

Let’s consider a concrete, although somewhat contrived, example to show how we might
go about assigning a prior and the e↵ect that this has on our posterior distribution. For
our example, let’s again consider human heights, which we will represent with the ran-
dom variable Y , which we plan on modeling with a normal distribution with parameters
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let’s incorporate our prior beliefs that there is a higher probability of the true value of µ
being near a constant value , which we set based on our prior experience, and use a math-
ematically convenient normal prior that makes use of this parameter Pr(µ) ⇠ N(,�2),
where we can set �2 based on our confidence in our prior belief in , e.g. a low value of �2

means high confidence, a high value means low confidence.

With this probability model (likelihood) and prior we have the following equation for
the posterior distribution:
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for a sample y = [y1, ..., yn] of size n. Given the proportionality and since the terms
involving ⇡ are constants, this can be reduced to:
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It turns out that we can do a further simplification of this equation with a change of
variables (see Chapter 2 in Lee: Bayesian Statistics: An Introduction, Oxford University
Press) and demonstrate that the posterior actually has a normal distribution with the
following parameters:
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where ȳ = 1
n

Pn
i yi. The posterior and prior therefore both have a normal distribution so

this is an example of a conjugate prior. We could now perform inference concerning the
parameter µ and we will provide an example in the next section.

6 Bayesian inference

We are now ready to discuss how to perform inference in a Bayesian framework. Let’s begin
with estimation. Remember that our goal with estimation is to come up with a value ✓̂

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value
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Constructing the posterior probability
• Let’s put this all together for our “heights in the US” example 

• First recall that our assumption is the probability model is normal (so what is the 
form of the likelihood?):

• Second, assume a normal prior for the parameter we are interested in:

• From the Bayesian equation, we can now put this together as follows:

• Note that with a little rearrangement, this can be written in the following form:
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n

Pn
i yi. The posterior and prior therefore both have a normal distribution so

this is an example of a conjugate prior. We could now perform inference concerning the
parameter µ and we will provide an example in the next section.

6 Bayesian inference

We are now ready to discuss how to perform inference in a Bayesian framework. Let’s begin
with estimation. Remember that our goal with estimation is to come up with a value ✓̂

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value

8

go about assigning a prior and the e↵ect that this has on our posterior distribution. For
our example, let’s again consider human heights, which we will represent with the ran-
dom variable Y , which we plan on modeling with a normal distribution with parameters
Y ⇠ N(µ,�2). In this case the likelihood is normal. Let’s assume that we know the value of
�
2, such that we can treat this as a known constant, i.e. it is no longer a parameter. Next,

let’s incorporate our prior beliefs that there is a higher probability of the true value of µ
being near a constant value , which we set based on our prior experience, and use a math-
ematically convenient normal prior that makes use of this parameter Pr(µ) ⇠ N(,�2),
where we can set �2 based on our confidence in our prior belief in , e.g. a low value of �2

means high confidence, a high value means low confidence.

With this probability model (likelihood) and prior we have the following equation for
the posterior distribution:

Pr(µ|y) /
 

nY

i=1

1p
2⇡�2

e

�(yi�µ)2

2�2

!
1p
2⇡�2

e

�(µ�)2

2�2 (14)

for a sample y = [y1, ..., yn] of size n. Given the proportionality and since the terms
involving ⇡ are constants, this can be reduced to:

Pr(µ|y) /
 

nY

i=1

e

�(yi�µ)2

2�2

!
e

�(µ�)2

2�2 (15)

It turns out that we can do a further simplification of this equation with a change of
variables (see Chapter 2 in Lee: Bayesian Statistics: An Introduction, Oxford University
Press) and demonstrate that the posterior actually has a normal distribution with the
following parameters:

Pr(µ|y) ⇠ N

 
( 
�2 + nȳ
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Y ⇠ N(µ,�2). In this case the likelihood is normal. Let’s assume that we know the value of
�
2, such that we can treat this as a known constant, i.e. it is no longer a parameter. Next,

let’s incorporate our prior beliefs that there is a higher probability of the true value of µ
being near a constant value , which we set based on our prior experience, and use a math-
ematically convenient normal prior that makes use of this parameter Pr(µ) ⇠ N(,�2),
where we can set �2 based on our confidence in our prior belief in , e.g. a low value of �2
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Bayesian inference: estimation I

• Inference in a Bayesian framework differs from a frequentist 
framework in both estimation and hypothesis testing

• For example, for estimation in a Bayesian framework, we always 
construct estimators using the posterior probability distribution, 
for example:

• Estimates in a Bayesian framework can be different than in a 
likelihood (Frequentist) framework since estimator construction 
is fundamentally different (!!)

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value
of ✓ that maximizes the likelihood function, i.e. the MLE(✓̂). In a Bayesian framework, we
take a slightly di↵erent approach. Since the posterior distribution of ✓|y ⇠ Pr(✓|y)reflects
the probability that ✓ will take a particular value, we can simply take the mean with respect
to this distribution, such that:

✓̂ = mean(✓|y) =
Z

✓Pr(✓|y)d✓ (18)

or we can take the median of the posterior:

✓̂ = median(✓|y) (19)

where the latter we sometimes employ in cases where the posterior is highly skewed (these
approaches produce an identical result if the posterior is symmetric). As an example, for
our case of heights discussed above where we assumed a normal prior, we can estimate the
mean of a population µ using the posterior of µ|y by taking:

µ̂ = median(µ|y) = mean(µ|y) =
( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
(20)

where this holds because the posterior distribution in this cases is normal (symmetric)
described by the parameters in equation (14).

Now, there are a few important points to note here. First, when performing inference
in a Frequentist framework using a MLE, we are taking the value of ✓ that has the highest
overall likelihood. This makes sense since the likelihood is not the probability of di↵erent
parameter values so taking the value of ✓ that ‘maximizes’ the likelihood is a reasonable
estimate. This means that for a likelihood function with a thin ‘spike’ at a value that
produces a maximum, we take the value of ✓ at this spike as our estimate, even if there are
‘fatter’ regions surrounding values of ✓ with lower likelihood. In contrast, in a Bayesian
framework, the posterior distribution reflects the probability that ✓ takes a particular value,
so a spike of probability will place probability of ✓ being a particular value but we will
also take into account values of ✓ corresponding to lower probability but fatter regions of
probability, which we take into account by considering the mean as the estimate (see class
notes for a diagram).

Second, notice that in our example in equation (18), that as the sample size approaches
infinite, we have:

( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
⇡

(nȳ�2 )

( n
�2 )

⇡ ȳ (21)
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Bayesian inference: estimation II

• For example, for estimation in a Bayesian framework, we always 
construct estimators using the posterior probability distribution, for 
example:

• For example, in our “heights in the US” example our estimator is:

• Notice that the impact of the prior disappears as the sample size goes 
to infinite (=same as MLE under this condition):
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�2 )

( 1
�2 + n

�2 )
⇡
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Bayesian inference: hypothesis testing
• For hypothesis testing in a Bayesian analysis, we use the same null and alternative 

hypothesis framework:

• However, the approach to hypothesis testing is completely different than in a 
frequentist framework, where we use a Bayes factor to indicate the relative 
support for one hypothesis versus the other:

• Note that a downside to using a Bayes factor to assess hypotheses is that it can be 
difficult to assign priors for hypotheses that have completely different ranges of 
support (e.g. the null is a point and alternative is a range of values)

• As a consequence, people often use an alternative “psuedo-Bayesian” approach to 
hypothesis testing that makes use of credible intervals (which is what we will use in 
this course)

i.e. there is no e↵ect of the prior. This is note (3) above and makes the point that our
prior assumptions have little e↵ect (in most reasonable constructions) when sample sizes
are very large. We do however have to be careful of the influence of priors when our sample
sizes are (relatively) small.

How about hypothesis testing in a Bayesian framework? As in a Frequentist framework,
we can consider a null and alternative hypothesis:

H0 : ✓ 2 ⇥0 (22)

HA : ✓ 2 ⇥A (23)

where ⇥0 and ⇥A are the values the parameter can take for the null and alternative
hypothesis, e.g. ⇥0 is a single value in a simple hypothesis test. In a Bayesian framework,
since the posterior distribution reflects the probability that a parameter will take on a
particular value, we can simply compare the ratio of the posterior distribution of the null
and alternative when integrating over the possible values that the parameter can take under
these two hypotheses. This is called Bayes factor and has the following form:

Bayes =

R
✓2⇥0

Pr(y|✓)Pr(✓)d✓
R
✓2⇥A

Pr(y|✓)Pr(✓)d✓
(24)

Once we have calculated Bayes factor, if the value is greater than one, we consider this
evidence for the null hypothesis and when less than one, we consider this evidence for the
alternative.

Now, two important points to note about Bayes factor. First, because we are consid-
ering posterior probabilities, which reflect the probability that the parameter will be a
particular value, we do not need the strange construction of a Frequentist framework,
where we cannot say anything about the true parameter value if we ‘cannot reject the
null’. In a Bayesian framework, if Bayes factor is greater than one, we can in fact say there
is evidence that the parameter value actually is the parameter value(s) we assigned to the
null. Second, we similarly do not have the strange construction of a p-value that tells us
the probability of obtaining the value of a statistic under a null or more extreme given the
sample, where we cannot interpret a more extreme p-value as stronger evidence that the
null is false, i.e. in a strict Frequentist frameworks. In a Bayesian framework, the size of
Bayes factor can be interpreted as strength of evidence for one hypothesis or the other, e.g.
values much greater than one indicate greater evidence that the null is correct than values
slightly greater than one.

These properties of Bayes factor should sound very appealing. However, there is a practical
issue that Bayes factor can be very sensitive to how priors are assigned for both the null
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null is false, i.e. in a strict Frequentist frameworks. In a Bayesian framework, the size of
Bayes factor can be interpreted as strength of evidence for one hypothesis or the other, e.g.
values much greater than one indicate greater evidence that the null is correct than values
slightly greater than one.

These properties of Bayes factor should sound very appealing. However, there is a practical
issue that Bayes factor can be very sensitive to how priors are assigned for both the null
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Bayesian credible intervals (versus 
frequentist confidence intervals)

• Recall that in a Frequentist framework that we can estimate a confidence interval 
at some level (say 0.95), which is an interval that will include the value of the 
parameter 0.95 of the times we performed the experiment an infinite number of 
times, calculating the confidence interval each time (note: a strange definition...)

• In a Bayesian interval, the parallel concept is a credible interval that has a 
completely different interpretation: this interval has a given probability of including the 
parameter value (!!)

• The definition of a credible interval is as follows:

• Note that we can assess a null hypothesis using a credible interval by determining 
if this interval includes the value of the parameter under the null hypothesis (!!)

and alternative hypothesis sets and it is not always obvious how to construct these in a
way that does not produce artificially strong evidence towards one hypothesis or the other.
Another strategy that avoids this problem is to construct a hypothesis test using a credible
interval (where a true Bayesian may frown a bit when using the latter approach but we
will make use of it).

A credible interval is the Bayesian analogue to a confidence interval. However, the interpre-
tation of a credible interval is di↵erent (and more intuitive!). Recall that in a Frequentist
framework, a confidence interval reflects an interval constructed around an estimate of a
parameter that would contain the true parameter value for a certain frequency of exper-
iments. This concept was a bit odd however, since it does not reflect a probability of
0.95 that the interval contains the parameter value, e.g. what it does reflect is if we did
the experiment 100 times and calculated the confidence interval each time, 0.95 of these
confidence intervals would contain the true parameter value, but for any one experiment,
we do not know if this will be the case.

In a Bayesian framework, a credible interval is an interval surrounding the parameter
estimate that contains 0.95 of the posterior probability. However, since the posterior is the
probability that the parameter takes on a particular value, this interval does actually reflect
a 0.95 probability of actually containing the true parameter value. This is provides a much
easier interpretation and provides a framework for hypothesis testing. If we construct a
0.95 credible interval around our estimate of the parameter value:

c.i.(✓) =

Z c↵

�c↵

Pr(✓|y)d✓ = 1� ↵ (25)

where c↵ is the critical value (threshold) of the statistic) for a two-tailed test (symmetric
posterior), where we have:

✓̂ =

Z
✓Pr(✓|y)d✓ (26)

and where ↵ = 0.05 for a 0.95 credible interval (and we can similarly construct a credible
interval for a two-tailed test). If this credible interval does not overlap the value of our
parameter under our null hypothesis, there is a 0.95 probability that the null hypothesis is
incorrect and we can reject with this amount of confidence. Conversely, if we the credible
interval does contain the null hypothesis parameter value, we cannot reject the null at this
level of confidence.

While we do occasionaly see Bayes factor applied in quantitative genomic mapping prob-
lems, we often make use of the credible interval approach when considering Bayesian in-
ference approaches to mapping. This is particularly true when considering more complex
Bayesian models for this purpose. In this class we will make use of the credible interval
approach to hypothesis testing.
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That’s it for today

• Next OPTIONAL lectures: Inference in Bayesian Statistics 
(MCMC)!


