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• PLEASE NOTE (!!): 

• Thurs, May 4, will be by zoom (!!) = no Ithaca or NYC classroom!

• Tues, May 9 (last lecture) I will lecture from Ithaca (regular classroom) with 
no classroom in NYC (please join by zoom)!

• We only have 1 computer labs left (!!)

• Thurs / Fri (May 4 / 5) MCMC algorithm for Bayesian inference

• NO COMPUTER LAB last week of class Thurs / Fri (May 11 / 12)

• Reminder:all lectures and computer labs from now on are OPTIONAL (!!)

• Last office hours (!!) Fri,  (May 5) 12:30-2:30 - DIFFERENT ZOOM LINK = see 
Piazza message!

Announcements



Summary of lecture 25: Introduction 
to Bayesian Statistics (MCMC)

• Today, we will complete our discuss of Bayesian Statistics (and 
MCMC)!



Introduction to Bayesian analysis 1

• Up to this point, we have considered statistical analysis (and 
inference) using a Frequentist formalism

• There is an alternative formalism called Bayesian that we will now 
introduce in a very brief manner

• Note that there is an important conceptual split between 
statisticians who consider themselves Frequentist of Bayesian but 
for GWAS analysis (and for most applications where we are 
concerned with analyzing data) we do not have a preference, i.e. we 
only care about getting the “right” biological answer so any (or 
both) frameworks that get us to this goal are useful

• In GWAS (and mapping) analysis, you will see both frequentist (i.e. 
the framework we have built up to this point!) and Bayesian 
approaches applied



Review: Intro to Bayesian analysis I
• Remember that in a Bayesian (not frequentist!) framework, our parameter(s) 

have a probability distribution associated with them that reflects our belief in 
the values that might be the true value of the parameter

• Since we are treating the parameter as a random variable, we can consider the 
joint distribution of the parameter AND a sample Y produced under a 
probability model:

• Fo inference, we are interested in the probability the parameter takes a 
certain value given a sample:

• Using Bayes theorem, we can write:

• Also note that since the sample is fixed (i.e. we are considering a single 
sample)                  we can rewrite this as follows:

where the latter equivalence follows from the definition of conditional probability: Pr(B|Ai) =
Pr(B \Ai)/Pr(Ai)). Now we are ready to state Bayes theorem:

Pr(Ai|B) =
Pr(Ai \ B)

Pr(B) =
Pr(B|Ai)Pr(Ai)

Pr(B) =
Pr(B|Ai)Pr(A)

Pk
i=1 Pr(B|Ai)Pr(Ai)

(7)

where the last two equivalences follow from the definition of conditional probability and
the law of total probability.

We are now ready to introduce the Bayesian framework. Remember that in a Bayesian
framework, we have now made the conceptual switch to considering a probability distri-
bution associated with our parameter(s) ✓, which corresponds to incorporating our beliefs
about what the true parameter values are likely to be based on our previous experience.
In such a case, we are treating the parameter as a random variable, so we can consider a
joint probability of our sample and our parameter:

Pr(✓ \Y) (8)

Now, for the purposes of inference, when considering a given single sample y, we are
actually interested in the probability that the parameter takes on a particular value given
the sample we have observed:

Pr(✓|y) (9)

and using Bayes theorem we have:

Pr(✓|y) = Pr(y|✓)Pr(✓)

Pr(y)
(10)

Now, note that the sample is fixed, so Pr(y) = c, which means we can write equation (11)
as:

Pr(✓|y) / Pr(y|✓)Pr(✓) (11)

where recall the proportionality equivalence means that the left side of the equation equals
the right side of the equation multiplied by a constant. Equation (11) is the primary equa-
tion that is the foundation of Bayesian statistics and, given the use of Bayes theorem, the
origin of the name is clear.

Let’s now consider the di↵erent components of equation (11). The component Pr(✓|y)
is called the posterior probability distribution and this is what we want to know, i.e. the
probability that the true ✓ takes a particular value given the sample we have observed. We
are therefore going to use the posterior distribution for all inferences that we make in a
Bayesian framework. The component Pr(y|✓) is the probability of observing the specific
instance of the data y given values of the parameter ✓ and this is simply the likelihood,
which we have seen before (and we will define as before). The last component Pr(✓) is
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• Let’s consider the structure of our main equation in Bayesian statistics:

• Note that the left hand side is called the posterior probability:

• The first term of the right hand side is something we have seen before, i.e. the 
likelihood (!!):

• The second term of the right hand side is new and is called the prior:

• Note that the prior is how we incorporate our assumptions concerning the 
values the true parameter value may take

• In a Bayesian framework, we are making two assumptions (unlike a frequentist 
where we make one assumption): 1. the probability distribution that generated 
the sample, 2. the probability distribution of the parameter
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Review: Intro to Bayesian analysis II



Review: Priors in Bayesian analysis
• Up to this point, we have discussed priors in an abstract manner

• To start making this concept more clear, let’s consider one of our original examples 
where we are interested in the knowing the mean human height in the US (what are 
the components of the statistical framework for this example!? Note the basic 
components are the same in Frequentist / Bayesian!)

• If we assume a normal probability model of human height (what parameter are we 
interested in inferring in this case and why?) in a Bayesian framework, we will at least 
need to define a prior:

• One possible approach is to make the probability of each possible value of the 
parameter the same (what distribution are we assuming and what is a problem with 
this approach), which defines an improper prior:

• Another possible approach is to incorporate our previous observations that heights 
are seldom infinite, etc. where one choice for incorporating this observations is my 
defining a prior that has the same distribution as our probability model, which defines 
a conjugate prior (which is also a proper prior):

to assume that our prior Pr(µ) is normally distributed, and more specifically, we could
assume that it is normally distributed with its own mean and variance parameter that we
have estimated from a previous sample of people, i.e. we can use the likelihood with the
MLE for the mean and variance parameters estimated from the previous experiment. This
prior in turn incorporates the intuition that while the parameter µ could in one sense take
any value, it is much more probable that is would take a value around values that we have
seen before (and less likely to have values near negative or positive infinite).

This example we just discussed is one strategy for building priors: using the likelihood
derived from a previous sample. Let’s now define two categorizations of priors which will
provide examples of other strategies:

1. A proper versus a improper prior. A proper prior is a pdf, an improper prior is not
a pdf, e.g. it does not integrate to one. We often can make use of improper priors
where the resulting posterior is proper.

2. A conjugate versus a non-conjugate prior. A conjugate prior is a prior that is in
the same family of pdf’s as the posterior distribution, e.g. they are both in the
exponential family. A non-conjugate prior is in a di↵erent family of distributiions.

The most common example of an improper prior is a case where our parameter ✓ can take
a value within a set that stretches to infinite, e.g. (�1,1) or [0,1), where we assign
Pr(✓) = c. This is an improper prior in the sense that it is not a pdf, i.e. if we assign
the same non-zero value to every interval in a set which stretches to infinite, this cannot
integrate to one. However, it is a reasonable prior in the sense that it incorporates our
intuition that we do not have a strong opinion (based on previous experience) that the pa-
rameter ✓ will take any particular value. What’s more, the posterior will still be a proper
distribution, since it is simply the likelihood in this case (although note that we do not
perform inference by considering the MLE as we would in a likelihood framework, as we
will discuss below).

Conjugate priors are often assigned because of they produce convenient mathematical prop-
erties for our posterior distributions. There are in fact often ‘natural’ priors for certain
distributions which are conjugate and are reasonable ways of modeling the probability of
parameter values. Particularly when dealing with complex statistical models in a Bayesian
framework, which require algorithms to estimate, we often use conjugate priors because of
their convenient mathematical properties.

Let’s consider a concrete, although somewhat contrived, example to show how we might
go about assigning a prior and the e↵ect that this has on our posterior distribution. For
our example, let’s again consider human heights, which we will represent with the ran-
dom variable Y , which we plan on modeling with a normal distribution with parameters

7

go about assigning a prior and the e↵ect that this has on our posterior distribution. For
our example, let’s again consider human heights, which we will represent with the ran-
dom variable Y , which we plan on modeling with a normal distribution with parameters
Y ⇠ N(µ,�2). In this case the likelihood is normal. Let’s assume that we know the value of
�
2, such that we can treat this as a known constant, i.e. it is no longer a parameter. Next,

let’s incorporate our prior beliefs that there is a higher probability of the true value of µ
being near a constant value , which we set based on our prior experience, and use a math-
ematically convenient normal prior that makes use of this parameter Pr(µ) ⇠ N(,�2),
where we can set �2 based on our confidence in our prior belief in , e.g. a low value of �2

means high confidence, a high value means low confidence.

With this probability model (likelihood) and prior we have the following equation for
the posterior distribution:

Pr(µ|y) /
 

nY

i=1

1p
2⇡�2

e

�(yi�µ)2

2�2

!
1p
2⇡�2

e

�(µ�)2

2�2 (14)

for a sample y = [y1, ..., yn] of size n. Given the proportionality and since the terms
involving ⇡ are constants, this can be reduced to:

Pr(µ|y) /
 

nY

i=1

e

�(yi�µ)2

2�2

!
e

�(µ�)2

2�2 (15)

It turns out that we can do a further simplification of this equation with a change of
variables (see Chapter 2 in Lee: Bayesian Statistics: An Introduction, Oxford University
Press) and demonstrate that the posterior actually has a normal distribution with the
following parameters:

Pr(µ|y) ⇠ N

 
( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
, (

1

�2
+

n

�2
)�1

!
(16)

where ȳ = 1
n

Pn
i yi. The posterior and prior therefore both have a normal distribution so

this is an example of a conjugate prior. We could now perform inference concerning the
parameter µ and we will provide an example in the next section.

6 Bayesian inference

We are now ready to discuss how to perform inference in a Bayesian framework. Let’s begin
with estimation. Remember that our goal with estimation is to come up with a value ✓̂

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value
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to assume that our prior Pr(µ) is normally distributed, and more specifically, we could
assume that it is normally distributed with its own mean and variance parameter that we
have estimated from a previous sample of people, i.e. we can use the likelihood with the
MLE for the mean and variance parameters estimated from the previous experiment. This
prior in turn incorporates the intuition that while the parameter µ could in one sense take
any value, it is much more probable that is would take a value around values that we have
seen before (and less likely to have values near negative or positive infinite).

This example we just discussed is one strategy for building priors: using the likelihood
derived from a previous sample. Let’s now define two categorizations of priors which will
provide examples of other strategies:

1. A proper versus a improper prior. A proper prior is a pdf, an improper prior is not
a pdf, e.g. it does not integrate to one. We often can make use of improper priors
where the resulting posterior is proper.

2. A conjugate versus a non-conjugate prior. A conjugate prior is a prior that is in
the same family of pdf’s as the posterior distribution, e.g. they are both in the
exponential family. A non-conjugate prior is in a di↵erent family of distributiions.

The most common example of an improper prior is a case where our parameter ✓ can take
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Pr(µ) = c

This is an improper prior in the sense that it is not a pdf, i.e. if we assign the same
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one. However, it is a reasonable prior in the sense that it incorporates our intuition that we
do not have a strong opinion (based on previous experience) that the parameter ✓ will take
any particular value. What’s more, the posterior will still be a proper distribution, since
it is simply the likelihood in this case (although note that we do not perform inference by
considering the MLE as we would in a likelihood framework, as we will discuss below).

Conjugate priors are often assigned because of they produce convenient mathematical prop-
erties for our posterior distributions. There are in fact often ‘natural’ priors for certain
distributions which are conjugate and are reasonable ways of modeling the probability of
parameter values. Particularly when dealing with complex statistical models in a Bayesian
framework, which require algorithms to estimate, we often use conjugate priors because of
their convenient mathematical properties.

Let’s consider a concrete, although somewhat contrived, example to show how we might
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Review: constructing posteriors
• Let’s put this all together for our “heights in the US” example 

• First recall that our assumption is the probability model is normal (so what is the 
form of the likelihood?):

• Second, assume a normal prior for the parameter we are interested in:

• From the Bayesian equation, we can now put this together as follows:

• Note that with a little rearrangement, this can be written in the following form:

go about assigning a prior and the e↵ect that this has on our posterior distribution. For
our example, let’s again consider human heights, which we will represent with the ran-
dom variable Y , which we plan on modeling with a normal distribution with parameters
Y ⇠ N(µ,�2). In this case the likelihood is normal. Let’s assume that we know the value of
�
2, such that we can treat this as a known constant, i.e. it is no longer a parameter. Next,

let’s incorporate our prior beliefs that there is a higher probability of the true value of µ
being near a constant value , which we set based on our prior experience, and use a math-
ematically convenient normal prior that makes use of this parameter Pr(µ) ⇠ N(,�2),
where we can set �2 based on our confidence in our prior belief in , e.g. a low value of �2

means high confidence, a high value means low confidence.
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for a sample y = [y1, ..., yn] of size n. Given the proportionality and since the terms
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It turns out that we can do a further simplification of this equation with a change of
variables (see Chapter 2 in Lee: Bayesian Statistics: An Introduction, Oxford University
Press) and demonstrate that the posterior actually has a normal distribution with the
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where the latter equivalence follows from the definition of conditional probability: Pr(B|Ai) =
Pr(B \Ai)/Pr(Ai)). Now we are ready to state Bayes theorem:

Pr(Ai|B) =
Pr(Ai \ B)

Pr(B) =
Pr(B|Ai)Pr(Ai)

Pr(B) =
Pr(B|Ai)Pr(A)

Pk
i=1 Pr(B|Ai)Pr(Ai)

(7)

where the last two equivalences follow from the definition of conditional probability and
the law of total probability.

We are now ready to introduce the Bayesian framework. Remember that in a Bayesian
framework, we have now made the conceptual switch to considering a probability distri-
bution associated with our parameter(s) ✓, which corresponds to incorporating our beliefs
about what the true parameter values are likely to be based on our previous experience.
In such a case, we are treating the parameter as a random variable, so we can consider a
joint probability of our sample and our parameter:

Pr(✓ \Y) (8)

Now, for the purposes of inference, when considering a given single sample y, we are
actually interested in the probability that the parameter takes on a particular value given
the sample we have observed:

Pr(✓|y) (9)

and using Bayes theorem we have:

Pr(✓|y) = Pr(y|✓)Pr(✓)

Pr(y)
(10)

Now, note that the sample is fixed, so Pr(y) = c, which means we can write equation (11)
as:

Pr(✓|y) / Pr(y|✓)Pr(✓) (11)

Pr(y|✓) = L(✓|y) (12)

where recall the proportionality equivalence means that the left side of the equation equals
the right side of the equation multiplied by a constant. Equation (11) is the primary equa-
tion that is the foundation of Bayesian statistics and, given the use of Bayes theorem, the
origin of the name is clear.

Let’s now consider the di↵erent components of equation (11). The component Pr(✓|y)
is called the posterior probability distribution and this is what we want to know, i.e. the
probability that the true ✓ takes a particular value given the sample we have observed. We
are therefore going to use the posterior distribution for all inferences that we make in a
Bayesian framework. The component Pr(y|✓) is the probability of observing the specific
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parameter µ and we will provide an example in the next section.
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Y ⇠ N(µ,�2). In this case the likelihood is normal. Let’s assume that we know the value of
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where we can set �2 based on our confidence in our prior belief in , e.g. a low value of �2

means high confidence, a high value means low confidence.

With this probability model (likelihood) and prior we have the following equation for
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i yi. The posterior and prior therefore both have a normal distribution so

this is an example of a conjugate prior. We could now perform inference concerning the
parameter µ and we will provide an example in the next section.
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We are now ready to discuss how to perform inference in a Bayesian framework. Let’s begin
with estimation. Remember that our goal with estimation is to come up with a value ✓̂
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Bayesian inference: estimation I

• Inference in a Bayesian framework differs from a frequentist 
framework in both estimation and hypothesis testing

• For example, for estimation in a Bayesian framework, we always 
construct estimators using the posterior probability distribution, 
for example:

• Estimates in a Bayesian framework can be different than in a 
likelihood (Frequentist) framework since estimator construction 
is fundamentally different (!!)

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value
of ✓ that maximizes the likelihood function, i.e. the MLE(✓̂). In a Bayesian framework, we
take a slightly di↵erent approach. Since the posterior distribution of ✓|y ⇠ Pr(✓|y)reflects
the probability that ✓ will take a particular value, we can simply take the mean with respect
to this distribution, such that:

✓̂ = mean(✓|y) =
Z

✓Pr(✓|y)d✓ (18)

or we can take the median of the posterior:

✓̂ = median(✓|y) (19)

where the latter we sometimes employ in cases where the posterior is highly skewed (these
approaches produce an identical result if the posterior is symmetric). As an example, for
our case of heights discussed above where we assumed a normal prior, we can estimate the
mean of a population µ using the posterior of µ|y by taking:

µ̂ = median(µ|y) = mean(µ|y) =
( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
(20)

where this holds because the posterior distribution in this cases is normal (symmetric)
described by the parameters in equation (14).

Now, there are a few important points to note here. First, when performing inference
in a Frequentist framework using a MLE, we are taking the value of ✓ that has the highest
overall likelihood. This makes sense since the likelihood is not the probability of di↵erent
parameter values so taking the value of ✓ that ‘maximizes’ the likelihood is a reasonable
estimate. This means that for a likelihood function with a thin ‘spike’ at a value that
produces a maximum, we take the value of ✓ at this spike as our estimate, even if there are
‘fatter’ regions surrounding values of ✓ with lower likelihood. In contrast, in a Bayesian
framework, the posterior distribution reflects the probability that ✓ takes a particular value,
so a spike of probability will place probability of ✓ being a particular value but we will
also take into account values of ✓ corresponding to lower probability but fatter regions of
probability, which we take into account by considering the mean as the estimate (see class
notes for a diagram).

Second, notice that in our example in equation (18), that as the sample size approaches
infinite, we have:

( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
⇡

(nȳ�2 )

( n
�2 )

⇡ ȳ (21)
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the probability that ✓ will take a particular value, we can simply take the mean with respect
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Z
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or we can take the median of the posterior:
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where this holds because the posterior distribution in this cases is normal (symmetric)
described by the parameters in equation (14).

Now, there are a few important points to note here. First, when performing inference
in a Frequentist framework using a MLE, we are taking the value of ✓ that has the highest
overall likelihood. This makes sense since the likelihood is not the probability of di↵erent
parameter values so taking the value of ✓ that ‘maximizes’ the likelihood is a reasonable
estimate. This means that for a likelihood function with a thin ‘spike’ at a value that
produces a maximum, we take the value of ✓ at this spike as our estimate, even if there are
‘fatter’ regions surrounding values of ✓ with lower likelihood. In contrast, in a Bayesian
framework, the posterior distribution reflects the probability that ✓ takes a particular value,
so a spike of probability will place probability of ✓ being a particular value but we will
also take into account values of ✓ corresponding to lower probability but fatter regions of
probability, which we take into account by considering the mean as the estimate (see class
notes for a diagram).
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Bayesian inference: estimation II

• For example, for estimation in a Bayesian framework, we always 
construct estimators using the posterior probability distribution, for 
example:

• For example, in our “heights in the US” example our estimator is:

• Notice that the impact of the prior disappears as the sample size goes 
to infinite (=same as MLE under this condition):

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value
of ✓ that maximizes the likelihood function, i.e. the MLE(✓̂). In a Bayesian framework, we
take a slightly di↵erent approach. Since the posterior distribution of ✓|y ⇠ Pr(✓|y)reflects
the probability that ✓ will take a particular value, we can simply take the mean with respect
to this distribution, such that:

✓̂ = mean(✓|y) =
Z

✓Pr(✓|y)d✓ (18)

or we can take the median of the posterior:

✓̂ = median(✓|y) (19)
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so a spike of probability will place probability of ✓ being a particular value but we will
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�2 )

( 1
�2 + n

�2 )
⇡
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the probability that ✓ will take a particular value, we can simply take the mean with respect
to this distribution, such that:

✓̂ = mean(✓|y) =
Z

✓Pr(✓|y)d✓ (18)

or we can take the median of the posterior:

✓̂ = median(✓|y) (19)

where the latter we sometimes employ in cases where the posterior is highly skewed (these
approaches produce an identical result if the posterior is symmetric). As an example, for
our case of heights discussed above where we assumed a normal prior, we can estimate the
mean of a population µ using the posterior of µ|y by taking:

µ̂ = median(µ|y) = mean(µ|y) =
( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
(20)

where this holds because the posterior distribution in this cases is normal (symmetric)
described by the parameters in equation (14).

Now, there are a few important points to note here. First, when performing inference
in a Frequentist framework using a MLE, we are taking the value of ✓ that has the highest
overall likelihood. This makes sense since the likelihood is not the probability of di↵erent
parameter values so taking the value of ✓ that ‘maximizes’ the likelihood is a reasonable
estimate. This means that for a likelihood function with a thin ‘spike’ at a value that
produces a maximum, we take the value of ✓ at this spike as our estimate, even if there are
‘fatter’ regions surrounding values of ✓ with lower likelihood. In contrast, in a Bayesian
framework, the posterior distribution reflects the probability that ✓ takes a particular value,
so a spike of probability will place probability of ✓ being a particular value but we will
also take into account values of ✓ corresponding to lower probability but fatter regions of
probability, which we take into account by considering the mean as the estimate (see class
notes for a diagram).

Second, notice that in our example in equation (18), that as the sample size approaches
infinite, we have:

( 
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�2 )

( 1
�2 + n

�2 )
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( n
�2 )
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Bayesian inference: hypothesis testing
• For hypothesis testing in a Bayesian analysis, we use the same null and alternative 

hypothesis framework:

• However, the approach to hypothesis testing is completely different than in a 
frequentist framework, where we use a Bayes factor to indicate the relative 
support for one hypothesis versus the other:

• Note that a downside to using a Bayes factor to assess hypotheses is that it can be 
difficult to assign priors for hypotheses that have completely different ranges of 
support (e.g. the null is a point and alternative is a range of values)

• As a consequence, people often use an alternative “psuedo-Bayesian” approach to 
hypothesis testing that makes use of credible intervals (which is what we will use in 
this course)

i.e. there is no e↵ect of the prior. This is note (3) above and makes the point that our
prior assumptions have little e↵ect (in most reasonable constructions) when sample sizes
are very large. We do however have to be careful of the influence of priors when our sample
sizes are (relatively) small.

How about hypothesis testing in a Bayesian framework? As in a Frequentist framework,
we can consider a null and alternative hypothesis:

H0 : ✓ 2 ⇥0 (22)

HA : ✓ 2 ⇥A (23)

where ⇥0 and ⇥A are the values the parameter can take for the null and alternative
hypothesis, e.g. ⇥0 is a single value in a simple hypothesis test. In a Bayesian framework,
since the posterior distribution reflects the probability that a parameter will take on a
particular value, we can simply compare the ratio of the posterior distribution of the null
and alternative when integrating over the possible values that the parameter can take under
these two hypotheses. This is called Bayes factor and has the following form:

Bayes =

R
✓2⇥0

Pr(y|✓)Pr(✓)d✓
R
✓2⇥A

Pr(y|✓)Pr(✓)d✓
(24)

Once we have calculated Bayes factor, if the value is greater than one, we consider this
evidence for the null hypothesis and when less than one, we consider this evidence for the
alternative.

Now, two important points to note about Bayes factor. First, because we are consid-
ering posterior probabilities, which reflect the probability that the parameter will be a
particular value, we do not need the strange construction of a Frequentist framework,
where we cannot say anything about the true parameter value if we ‘cannot reject the
null’. In a Bayesian framework, if Bayes factor is greater than one, we can in fact say there
is evidence that the parameter value actually is the parameter value(s) we assigned to the
null. Second, we similarly do not have the strange construction of a p-value that tells us
the probability of obtaining the value of a statistic under a null or more extreme given the
sample, where we cannot interpret a more extreme p-value as stronger evidence that the
null is false, i.e. in a strict Frequentist frameworks. In a Bayesian framework, the size of
Bayes factor can be interpreted as strength of evidence for one hypothesis or the other, e.g.
values much greater than one indicate greater evidence that the null is correct than values
slightly greater than one.

These properties of Bayes factor should sound very appealing. However, there is a practical
issue that Bayes factor can be very sensitive to how priors are assigned for both the null
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Bayesian credible intervals (versus 
frequentist confidence intervals)

• Recall that in a Frequentist framework that we can estimate a confidence interval 
at some level (say 0.95), which is an interval that will include the value of the 
parameter 0.95 of the times we performed the experiment an infinite number of 
times, calculating the confidence interval each time (note: a strange definition...)

• In a Bayesian interval, the parallel concept is a credible interval that has a 
completely different interpretation: this interval has a given probability of including the 
parameter value (!!)

• The definition of a credible interval is as follows:

• Note that we can assess a null hypothesis using a credible interval by determining 
if this interval includes the value of the parameter under the null hypothesis (!!)

and alternative hypothesis sets and it is not always obvious how to construct these in a
way that does not produce artificially strong evidence towards one hypothesis or the other.
Another strategy that avoids this problem is to construct a hypothesis test using a credible
interval (where a true Bayesian may frown a bit when using the latter approach but we
will make use of it).

A credible interval is the Bayesian analogue to a confidence interval. However, the interpre-
tation of a credible interval is di↵erent (and more intuitive!). Recall that in a Frequentist
framework, a confidence interval reflects an interval constructed around an estimate of a
parameter that would contain the true parameter value for a certain frequency of exper-
iments. This concept was a bit odd however, since it does not reflect a probability of
0.95 that the interval contains the parameter value, e.g. what it does reflect is if we did
the experiment 100 times and calculated the confidence interval each time, 0.95 of these
confidence intervals would contain the true parameter value, but for any one experiment,
we do not know if this will be the case.

In a Bayesian framework, a credible interval is an interval surrounding the parameter
estimate that contains 0.95 of the posterior probability. However, since the posterior is the
probability that the parameter takes on a particular value, this interval does actually reflect
a 0.95 probability of actually containing the true parameter value. This is provides a much
easier interpretation and provides a framework for hypothesis testing. If we construct a
0.95 credible interval around our estimate of the parameter value:

c.i.(✓) =

Z c↵

�c↵

Pr(✓|y)d✓ = 1� ↵ (25)

where c↵ is the critical value (threshold) of the statistic) for a two-tailed test (symmetric
posterior), where we have:

✓̂ =

Z
✓Pr(✓|y)d✓ (26)

and where ↵ = 0.05 for a 0.95 credible interval (and we can similarly construct a credible
interval for a two-tailed test). If this credible interval does not overlap the value of our
parameter under our null hypothesis, there is a 0.95 probability that the null hypothesis is
incorrect and we can reject with this amount of confidence. Conversely, if we the credible
interval does contain the null hypothesis parameter value, we cannot reject the null at this
level of confidence.

While we do occasionaly see Bayes factor applied in quantitative genomic mapping prob-
lems, we often make use of the credible interval approach when considering Bayesian in-
ference approaches to mapping. This is particularly true when considering more complex
Bayesian models for this purpose. In this class we will make use of the credible interval
approach to hypothesis testing.
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Bayesian inference: genetic model 1
• We are now ready to tackle Bayesian inference for our genetic model 

(note that we will focus on the linear regression model but we can 
perform Bayesian inference for any GLM!):

• Recall for a sample generated under this model, we can write:

• In this case, we are interested in the following hypotheses:

• We are therefore interested in the marginal posterior probability of these 
two parameters

or the mean of the posterior:
✓̂ = mean(Pr(✓|y)) (4)

where these are identical if the posterior is symmetric, and a hypothesis test can be con-
ducted using Bayes factor or by determining whether the credible interval surrounding our
parameter estimate includes the parameter value of the null hypothesis (where again, a
true Bayesian may frown about the latter approach).

3 Bayesian inference for linear regression

Let’s now apply a Bayesian inference approach to our linear regression approach to mapping
the genomic location of causal polymorphisms (loci). Recall that with a linear regression
model we are concerned with the Pr(Y |X) described by the model:

Y = �µ +Xa�a +Xd�d + ✏ (5)

✏ ⇠ N(0,�2
✏ ) (6)

where for a sample, we can write:
y = x� + ✏ (7)

✏ ⇠ multiN(0, I�2
✏ ) (8)

where y is a vector of phenotype observations, x is our design matrix for our observed
genotypes, � = [�µ,�a,�d]

T, and where I is the identity matrix. For this model, we have
four parameters �µ,�a,�d,�2

✏ , so we are interested in the following posterior distribution:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ )Pr(�µ,�a,�d,�
2
✏ ) (9)

However, for the purposes of mapping, we are only concerned with a null hypothesis for (at
most) two parameters H0 : �a = 0\�d = 0 (with alternative hypothesis HA : �a 6= 0[�d 6=
0). So how can we deal solely with these two parameters? We can do this by integrating
(or ‘summing over’) all the possible values of the parameters �µ and �

2
✏ to produce the

marginal posterior probability distribution for the parameters �a and �d:

Pr(�a,�d|y) =
Z 1

�1

Z 1

0
Pr(�µ,�a,�d,�

2
✏ |y)d�µd�2

✏ (10)

and we then use this marginal posterior to conduct our inference (note that we could sim-
ilarly integrate out �d if we were interested in only �a).

Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior
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Bayesian inference: genetic model II

• To calculate these probabilities, we need to assign a joint probability 
distribution for the prior

• One possible choice is as follows (are these proper or improper!?):

• Under this prior the complete posterior distribution is multivariate 
normal (!!):

Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior
Pr(�µ,�a,�d,�2

✏ ). Note that this is a multivariate probability distribution over four pa-
rameters. Let’s start by making the assumption that:

Pr(�µ,�a,�d,�
2
✏ ) = Pr(�µ)Pr(�a)Pr(�d)Pr(�2

✏ ) (11)

i.e. each of these parameters are independent (such that we can assign a separate proba-
bility distribution to each). Let’s consider an improper prior for each of these:

Pr(�µ) = Pr(�a) = Pr(�d) = c (12)

Pr(�2
✏ ) = c (13)

where c is a constant, and where the support (i.e. where set over which the parameter is
defined) is from (�1,1) for equation (12) and from [0,1) for equation (13). Recall that
these priors are improper since they do not integrate to one (i.e. if we add up an infinite
number of non-zero values, the result will be greater than one) but this is a reasonable
prior in the sense of not making assuming any particular value of these parameters is more
probable than any others and it is also mathematically convenient, since we now have:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ ) (14)

i.e. the form of the posterior is now the likelihood. Note however that we are not going
to use this likelihood in the same way as we would in a frequentist framework (i.e. finding
the MLE) but we are rather going to consider the entire distribution described by the
likelihood function for our inference.

With this prior, the posterior distribution (the likelihood function) has the form of a mul-
tivariate normal distribution with mean x� and covariance I�2

✏ , so there is no covariance
i.e. multiN(x�, I�2

✏ ). Note that inference using the posterior distribution does not change
when multiplied by a constant (i.e. this is why we consider a proportional relationship),
we can ignore the constant terms of the multivariate normal pdf, specifically

p
2⇡, such

that the following holds:

Pr(✓|y) / (�2
✏ )

�n
2 e

(y�x�)T(y�x�)

2�2
✏ (15)

where n is the sample size and all other terms have been defined previously. Note that we
have not seen this particular formulation of the pdf of a multivariate normal before.

For our mapping inference, we are actually interested in the marginal posterior described
in equation (10). It turns out that after we integrate out the parameters �µ and �

2
✏ the

result is a multi-t-type distribution. You may remember from your introductory statistics
class (e.g. when consider a t-test) that a t-type distribution looks like a normal but is

3

Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior
Pr(�µ,�a,�d,�2

✏ ). Note that this is a multivariate probability distribution over four pa-
rameters. Let’s start by making the assumption that:

Pr(�µ,�a,�d,�
2
✏ ) = Pr(�µ)Pr(�a)Pr(�d)Pr(�2

✏ ) (11)

i.e. each of these parameters are independent (such that we can assign a separate proba-
bility distribution to each). Let’s consider an improper prior for each of these:

Pr(�µ) = Pr(�a) = Pr(�d) = c (12)

Pr(�2
✏ ) = c (13)

where c is a constant, and where the support (i.e. where set over which the parameter is
defined) is from (�1,1) for equation (12) and from [0,1) for equation (13). Recall that
these priors are improper since they do not integrate to one (i.e. if we add up an infinite
number of non-zero values, the result will be greater than one) but this is a reasonable
prior in the sense of not making assuming any particular value of these parameters is more
probable than any others and it is also mathematically convenient, since we now have:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ ) (14)

i.e. the form of the posterior is now the likelihood. Note however that we are not going
to use this likelihood in the same way as we would in a frequentist framework (i.e. finding
the MLE) but we are rather going to consider the entire distribution described by the
likelihood function for our inference.

With this prior, the posterior distribution (the likelihood function) has the form of a mul-
tivariate normal distribution with mean x� and covariance I�2

✏ , so there is no covariance
i.e. multiN(x�, I�2

✏ ). Note that inference using the posterior distribution does not change
when multiplied by a constant (i.e. this is why we consider a proportional relationship),
we can ignore the constant terms of the multivariate normal pdf, specifically

p
2⇡, such

that the following holds:

Pr(✓|y) / (�2
✏ )

�n
2 e

(y�x�)T(y�x�)

2�2
✏ (15)

where n is the sample size and all other terms have been defined previously. Note that we
have not seen this particular formulation of the pdf of a multivariate normal before.

For our mapping inference, we are actually interested in the marginal posterior described
in equation (10). It turns out that after we integrate out the parameters �µ and �

2
✏ the

result is a multi-t-type distribution. You may remember from your introductory statistics
class (e.g. when consider a t-test) that a t-type distribution looks like a normal but is

3

Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior
Pr(�µ,�a,�d,�2

✏ ). Note that this is a multivariate probability distribution over four pa-
rameters. Let’s start by making the assumption that:

Pr(�µ,�a,�d,�
2
✏ ) = Pr(�µ)Pr(�a)Pr(�d)Pr(�2

✏ ) (11)

i.e. each of these parameters are independent (such that we can assign a separate proba-
bility distribution to each). Let’s consider an improper prior for each of these:

Pr(�µ) = Pr(�a) = Pr(�d) = c (12)

Pr(�2
✏ ) = c (13)

where c is a constant, and where the support (i.e. where set over which the parameter is
defined) is from (�1,1) for equation (12) and from [0,1) for equation (13). Recall that
these priors are improper since they do not integrate to one (i.e. if we add up an infinite
number of non-zero values, the result will be greater than one) but this is a reasonable
prior in the sense of not making assuming any particular value of these parameters is more
probable than any others and it is also mathematically convenient, since we now have:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ ) (14)

i.e. the form of the posterior is now the likelihood. Note however that we are not going
to use this likelihood in the same way as we would in a frequentist framework (i.e. finding
the MLE) but we are rather going to consider the entire distribution described by the
likelihood function for our inference.

With this prior, the posterior distribution (the likelihood function) has the form of a mul-
tivariate normal distribution with mean x� and covariance I�2

✏ , so there is no covariance
i.e. multiN(x�, I�2

✏ ). Note that inference using the posterior distribution does not change
when multiplied by a constant (i.e. this is why we consider a proportional relationship),
we can ignore the constant terms of the multivariate normal pdf, specifically

p
2⇡, such

that the following holds:

Pr(✓|y) / (�2
✏ )

�n
2 e

(y�x�)T(y�x�)

2�2
✏ (15)

where n is the sample size and all other terms have been defined previously. Note that we
have not seen this particular formulation of the pdf of a multivariate normal before.

For our mapping inference, we are actually interested in the marginal posterior described
in equation (10). It turns out that after we integrate out the parameters �µ and �

2
✏ the

result is a multi-t-type distribution. You may remember from your introductory statistics
class (e.g. when consider a t-test) that a t-type distribution looks like a normal but is
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Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior
Pr(�µ,�a,�d,�2

✏ ). Note that this is a multivariate probability distribution over four pa-
rameters. Let’s start by making the assumption that:
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i.e. each of these parameters are independent (such that we can assign a separate proba-
bility distribution to each). Let’s consider an improper prior for each of these:

Pr(�µ) = Pr(�a) = Pr(�d) = c (12)

Pr(�2
✏ ) = c (13)

where c is a constant, and where the support (i.e. where set over which the parameter is
defined) is from (�1,1) for equation (12) and from [0,1) for equation (13). Recall that
these priors are improper since they do not integrate to one (i.e. if we add up an infinite
number of non-zero values, the result will be greater than one) but this is a reasonable
prior in the sense of not making assuming any particular value of these parameters is more
probable than any others and it is also mathematically convenient, since we now have:
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i.e. the form of the posterior is now the likelihood. Note however that we are not going
to use this likelihood in the same way as we would in a frequentist framework (i.e. finding
the MLE) but we are rather going to consider the entire distribution described by the
likelihood function for our inference.

With this prior, the posterior distribution (the likelihood function) has the form of a mul-
tivariate normal distribution with mean x� and covariance I�2

✏ , so there is no covariance
i.e. multiN(x�, I�2

✏ ). Note that inference using the posterior distribution does not change
when multiplied by a constant (i.e. this is why we consider a proportional relationship),
we can ignore the constant terms of the multivariate normal pdf, specifically
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Bayesian inference: genetic model III

• For the linear model with sample:

• The complete posterior probability for the genetic model is: 

• With a uniform prior is:

• The marginal posterior probability of the parameters we are 
interested in is:

or the mean of the posterior:
✓̂ = mean(Pr(✓|y)) (4)

where these are identical if the posterior is symmetric, and a hypothesis test can be con-
ducted using Bayes factor or by determining whether the credible interval surrounding our
parameter estimate includes the parameter value of the null hypothesis (where again, a
true Bayesian may frown about the latter approach).

3 Bayesian inference for linear regression

Let’s now apply a Bayesian inference approach to our linear regression approach to mapping
the genomic location of causal polymorphisms (loci). Recall that with a linear regression
model we are concerned with the Pr(Y |X) described by the model:

Y = �µ +Xa�a +Xd�d + ✏ (5)

✏ ⇠ N(0,�2
✏ ) (6)

where for a sample, we can write:
y = x� + ✏ (7)

✏ ⇠ multiN(0, I�2
✏ ) (8)

where y is a vector of phenotype observations, x is our design matrix for our observed
genotypes, � = [�µ,�a,�d]

T, and where I is the identity matrix. For this model, we have
four parameters �µ,�a,�d,�2

✏ , so we are interested in the following posterior distribution:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ )Pr(�µ,�a,�d,�
2
✏ ) (9)

However, for the purposes of mapping, we are only concerned with a null hypothesis for (at
most) two parameters H0 : �a = 0\�d = 0 (with alternative hypothesis HA : �a 6= 0[�d 6=
0). So how can we deal solely with these two parameters? We can do this by integrating
(or ‘summing over’) all the possible values of the parameters �µ and �

2
✏ to produce the

marginal posterior probability distribution for the parameters �a and �d:

Pr(�a,�d|y) =
Z 1
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0
Pr(�µ,�a,�d,�

2
✏ |y)d�µd�2

✏ (10)

and we then use this marginal posterior to conduct our inference (note that we could sim-
ilarly integrate out �d if we were interested in only �a).

Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior
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• Assuming uniform (improper!) priors, the marginal distribution is:

• With the following parameter values:

• With these estimates (equations) we can now construct a credible 
interval for our genetic null hypothesis and test a marker for a 
phenotype association and we can perform a GWAS by doing this for 
each marker (!!)

a little more ‘pinched’ towards the mean (see class notes for diagram), depending on the
degrees of freedom. In this case, our posterior has a multi-t-type distribution:

Pr(�a,�d|y) =
Z 1
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0
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2
✏ |y)d�µd�2

✏ ⇠ multi-t-distribution (16)

which has the following mean:

mean =
h
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iT
= C�1 [Xa,Xd]y (17)

where we have:
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aXa XT
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XT
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dXd

��1

i.e. the mean is the least-squares estimates of the �’s. The covariance in this case is:

cov =
(y� [Xa,Xd]

h
�̂a, �̂d

iT
)T(y� [Xa,Xd]

h
�̂a, �̂d

iT
)

n� 6
C�1 (18)

which is the variance of a bi-variate t-type distribution with n-6 degrees of freedom. Now
that we have the form of our marginal posterior with respect to �a and �d, we can estimate
the values of these by taking the mean of the marginal posterior (equation (16)), which is
simply equation (17) (again, least squares...) such that:

mean(Pr(�a,�d|y)) =
h
�̂a, �̂d

iT
= C�1 [Xa,Xd]

T y (19)

For the purposes of inference with our genetic model, we are primarily interested in testing
the null hypothesis that �a and �d are zero. We can now so this by constructing a 95%
(bi-variate)credible interval around the estimates of these parameters in equation (19) us-
ing the formula for a t-type distribution with covariance parameters described by equation
(18), which we can do by writing an appropriate function in R (see class notes for a dia-
gram).

If this credible interval does not include values of zero for these two parameters, we can
reject the null hypothesis, which is evidence that a causal mutation is in linkage disequilib-
rium with our marker. Note that we can just as easily construct a test of just �a following
the same procedure, where C is the upper left of element and we have a univariate t-
distribution for our marginal posterior with n-5 degrees of freedom, i.e. all the equations
have the same form.
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df(mult� t) = n� 4 (20)

For the purposes of inference with our genetic model, we are primarily interested in testing
the null hypothesis that �a and �d are zero. We can now so this by constructing a 95%
(bi-variate)credible interval around the estimates of these parameters in equation (19) us-
ing the formula for a t-type distribution with covariance parameters described by equation
(18), which we can do by writing an appropriate function in R (see class notes for a dia-
gram).

If this credible interval does not include values of zero for these two parameters, we can
reject the null hypothesis, which is evidence that a causal mutation is in linkage disequilib-
rium with our marker. Note that we can just as easily construct a test of just �a following
the same procedure, where C is the upper left of element and we have a univariate t-
distribution for our marginal posterior with n-5 degrees of freedom, i.e. all the equations
have the same form.
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Bayesian inference for more 
“complex” posterior distributions
• For a linear regression, with a simple (uniform) prior, we have a 

simple closed form of the overall posterior

• This is not always (=often not the case), since we may often choose 
to put together more complex priors with our likelihood or 
consider a more complicated likelihood equation (e.g. for a logistic 
regression!)

• To perform hypothesis testing with these more complex cases, we 
still need to determine the credible interval from the posterior (or 
marginal) probability distribution so we need to determine the form 
of this distribution

• To do this we will need an algorithm and we will introduce the 
Markov chain Monte Carlo (MCMC) algorithm for this purpose



Stochastic processes

• To introduce the MCMC algorithm for our purpose, we need 
to consider models from another branch of probability 
(remember, probability is a field much larger than the 
components that we use for statistics / inference!): Stochastic 
processes

• Stochastic process (intuitive def) - a collection of random 
vectors (variables) with defined conditional relationships, often 
indexed by an ordered set t

• We will be interested in one particular class of models within 
this probability sub-field: Markov processes (or more specifically 
Markov chains)

• Our MCMC will be a Markov chain (probability model)



• A Markov chain can be thought of as a random vector (or more 
accurately, a set of random vectors), which we will index with t:

• Markov chain - a stochastic process that satisfies the Markov 
property:

• While we often assume each of the random variables in a Markov 
chain are in the same class of random variables (e.g. Bernoulli, 
normal, etc.) we allow the parameters of these random variables 
to be different, e.g. at time t and t+1

• How does this differ from a random vector of an iid sample!?

Markov processes
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• As an example, let’s consider a Markov chain where each random 
variable in the chain has a Bernoulli distribution:

• Note that we could draw observations from this Markov chain 
(since it is just a random vector with a probability distribution!): 

• How does this differ from an iid random vector?

• Note that for t late in this process, the parameters of the Bernoulli 
distributions are the same (=they do not change over time)

• In our case, we will be interested in Markov chains that “evolve” to 
such stationary distributions

Example of a Markov chain

1,0,...,1,1

0,1,...,1,1

0,0,...,0,0

0,1,...,0,0

X1, X2..., X1001, X1002

X1 ⇠ Bern(0.2), X2 ⇠ Bern(0.45), ..., X1001 ⇠ Bern(0.4), X1002 ⇠ Bern(0.4)

✓̂ or H0 : ✓ = c

Pr(T (X) , Pr(T (X|✓) , Pr(T (X|H0 : ✓ = c)

L(✓|x) =
 

1p
2⇡

!
n

e

P
n

i=1
�(xi�µ)2

2 (4)

⌦ = { Possible Individuals }
⌦ = {⌦g \ ⌦P } (5)

⌦g = {A1A1, A1A2, A2A2} (6)

�µ = 0.3,�a = �0.2,�d = 1.1,�2
✏ = 1.1 (7)

�µ,�a,�d,�
2
✏ (8)

� (9)

✏ (10)

Pr(Y |X) ⇠ N(�µ +Xa�a +Xd�d,�
2
✏ ) (11)

2.1 = 0.3 + (0)(�0.2), (1)1.1 + 0.7 (12)

Xa(A1A2) = 0, Xd(A1A2) = 1 (13)

✏i = 0.7 (14)

⌦g (15)

⌦P (16)

F{g,P} (17)

Pr(F{g,P}) (18)

Pr{g, P} (19)

Pr(Y \X) = Pr(Y,X) 6= Pr(Y )Pr(X) (20)
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• If a Markov chain has certain properties (irreducible and ergodic), we can 
prove that the chain will evolve (more accurately converge!) to a unique 
(!!) stationary distribution and will not leave this stationary distribution 
(where is it often possible to determine the parameters for the stationary 
distribution!)

• For such Markov chains, if we consider enough iterations t+k (where k 
may be very large, e.g. infinite), we will reach a point where each following 
random variable is in the unique stationary distribution:

• For the purposes of Bayesian inference, we are going to set up a Markov 
chain that evolves to a unique stationary distribution that is exactly the 
posterior probability distribution that we are interested in (!!!)

• To use this chain, we will run the Markov chain for enough iterations to 
reach this stationary distribution and then we will take a sample from this 
chain to determine (or more accurately approximate) our posterior

• This is Bayesian Markov chain Monte Carlo (MCMC)!
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An example of Bayesian MCMC
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So, how do we set up a Markov chain with this property, i.e. the unique stationary distribu-
tion is the true posterior? We can do this with (various) forms of the Metropolis-Hastings
algorithm, which has the following basic structure:

Metropolis-Hastings Algorithm:

1. Choose ✓[0], where Pr(✓[0]|y) > 0.

2. Sample a proposal parameter value ✓⇤ from a jumping distribution J(✓⇤|✓[t]), where
t = 0 or any subsequent iteration.

3. Calculate r = Pr(✓⇤|y)J(✓[t]|(✓⇤)
Pr(✓[t]|y)J(✓⇤|✓[t])

.

4. Set ✓[t+1] = ✓⇤ with Pr(✓[t+1] = ✓⇤) = min(r, 1) and ✓[t+1] = ✓[t] with Pr(✓[t+1] =
✓[t]) = 1�min(r, 1).

The jumping distribution in this case can actually be (almost) any distribution, although
choosing a good jumping distribution is critical to the e�ciency of the chain. Once we
have defined the jumping distribution, you now can operate this algorithm, i.e. you al-
ready know the equation of the posterior distribution, based on your model and prior, even
if it is not clear what the ‘shape’ of the distribution is or whether it can be integrated
easily (to calculate a mean).

We will use the Metropolis-Hastings algorithm for Bayesian inference using the following
steps:

1. Set up the Metropolis-Hastings algorithm.

2. Initialize the values for ✓[0].

3. Iterate the algorithm for t >> 0, such that we are past tab, which is the iteration after
the ‘burn-in’ phase, where the realizations of ✓[t] start to behave as though they are
sampled from the stationary distribution of the Metropolis-Hastings Markov chain
(we will discuss how many iterations are necessary for a burn-in below).

4. Sample the chain for a set of iterations after the burn-in and use these to approximate
the posterior distribution and perform Bayesian inference.

As an example of the last step, say we have run the algorithm for enough iterations to
reach tab and we would like to estimate the values of the parameters as the median of the
posterior. We can do this using the following approach:

✓̂ = median(Pr(✓|y) ' median(✓[tab], ..., ✓[tab+k]) (6)
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• Instructions for constructing an MCMC using Metropolis-Hastings approach:

• Running the MCMC algorithm:
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• For a given marker part of our GWAS, we define our glm (which gives us our 
likelihood) and our prior (which we provide!), and our goal is then to construct an 
MCMC with a stationary distribution (which we will sample to get the posterior 
“histogram”:

• One approach is setting up a Metropolis-Hastings algorithm by defining a jumping 
distribution

• Another approach is to use a special case of the Metropolis-Hastings algorithm called 
the Gibbs sampler (requires no rejections!), which samples each parameter from the 
conditional posterior distributions (which requires you derive these relationships = 
not always possible!)

Constructing an MCMC for genetic 
analysis

Note that if we substitute these into the r of step 3 of the Metropolis-Hastings algorithm,
the result is r = 1. This means that we update the parameters at every iteration of the
chain! This is one reason that people like Gibbs samplers, i.e. there are no‘wasted’ none-
update steps.

As an example, for our linear regression model, we can set up a Gibbs sampler if we
can derive the following:

Pr(�µ|�a, �d, �
2
✏ ,y) (14)

Pr(�a|�µ, �d, �
2
✏ ,y) (15)

Pr(�d|�µ, �a, �
2
✏ ,y) (16)

Pr(�2
✏ |�µ, �a, �d,y) (17)

Also note that we need not do this individually for each parameter, but can rather sample
vectors (or blocks) of parameters from multivariate conditional posterior distributions (as
long as our algorithm consists of at least two conditional distributions).

4 E�ciency Issues

Our introduction to MCMC based Bayesian inference just scratches the surface of a area
that is a current area of research. A major issue that we have to deal with when performing
this type of algorithmic inference is e�ciency issues concerning our Markov chains. This
includes making decisions concerning: how many iterations are necessary for a burn-in?
How often do we sample the chain? How many iterations do we need to sample? In
particular, we need to deal with the issue of: how do we set up an e�cient chain that does
not require too many iterations to get past the burn-in and also e�ciently samples the
entire posterior? We don’t have time to discuss these issues in this class (but I encourage
you to take a computational Bayesian course if you are interested in learning more). I
will just quickly make the points that producing an e�cient chain for complex problems is
di�cult and even when we have an e�cient chain, we do not know for certain whether we
have passed the burn-in and are e�ciently sampling the posterior. The simplest approach
for assessing the latter is by running multiple chains with di↵erent starting values and
comparing the distributions implied, when sampling these chains, after a large number of
iterations (usually with a statistic) which indicates whether the chains are sampling the
same distribution, which they will do when they are sampling the posterior distribution.
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such a Markov chain, we can set the parameters to any (reasonable) values at t = 0 and
then run the chain for a number of iterations (ideally t =1) until this reaches a station-
ary distribution, at which point we will have our true posterior distribution, i.e. not an
estimate or approximation. If you set up an appropriate Markov chain, you can therefore
perform exact Bayesian inference. For example, for our linear regression model, we will
set up a Markov chain, where ✓[t] is a random vector that takes values for the following
parameters:

✓[t] =

2

664

�µ

�a

�d

�2
✏

3

775

[t]

✓[t+1] =

2

664

�µ

�a

�d

�2
✏

3

775

[t+1]

and continuing for t + 2, etc. such that at a large value of t, we have:

⇡(✓[t]) = Pr(�µ, �a, �d, �
2
✏ |y) (5)

where this result is exact and guaranteed at t =1 but we hope this occurs at much earlier
iterations.

In practice, we will not consider the exact distribution ⇡ but we will set up the Markov
chain and examine one (or multiple) realizations of the chain (e.g. a series of one and zeros
or values of our linear regression parameters) and take samples of the parameter values
after enough iterations such that the realizations start to behave as though they are being
sampled from the Markov chain, after it has reached a stationary distribution. Using this
approach is an example of Markov chain Monte Carlo (MCMC), which is a complex name
for a relatively simple concept, i.e. ‘Monte Carlo’ simply refers to having a stochastic com-
ponent to the algorithm (unlike say an IRLS algorithm) and where ‘Markov chain’ comes
from is now clear.

On a side note, it should blow your mind that we can set up such an algorithm (its all the
more impressive when you see how easy it is to set up such a Markov chain below). This
result is that it is possible to do ‘exact’ Bayesian inference with an appropriate MCMC
approach. This is one of the reasons that Bayesian inference has become so important
in quantitative genomics (and many other fields). The increasing importance can also be
traced to faster computers, which can run these Markov chain algorithms for enough iter-
ations until they operate like samples from the appropriate stationary distribution.
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Importance for MCMC
• Constructing MCMC for Bayesian inference is extremely 

practical

• The constraint is they are computationally intensive

• This is one reason for the surge in the practical use of 
Bayesian data analysis is when computers increased in speed

• This is definitely the case where the number of Bayesian 
MCMC approaches in genetic analysis has steadily increased 
over the last decade or so

• One issue is that, even with a fast computer, MCMC 
algorithms can be inefficient (they take a long time to 
converge, they do not sample modes of a complex posterior 
efficiently, etc.)

• There are therefore other algorithm approaches to Bayesian 
genetic inference, e.g. variational Bayes



That’s it for today

• Next lecture: Basics of Pedigree and Inbred line analysis!


