Quantitative Genomics and

Genetics
BTRY 4830/6830: PBSB.5201.03

Lecture 25: Introduction to
Bayesian statistics (MCMC)

Jason Mezey
April 2,2023 (T) 8:05-9:20



Announcements

PLEASE NOTE (!):
® Thurs, May 4, will be by zoom (!!) = no Ithaca or NYC classroom!

® Tues, May 9 (last lecture) | will lecture from Ithaca (regular classroom) with
no classroom in NYC (please join by zoom)!

We only have | computer labs left (!!)

® Thurs / Fri (May 4 /5) MCMC algorithm for Bayesian inference

e NO COMPUTER LAB last week of class Thurs / Fri (May |1/ 12)
Reminder:all lectures and computer labs from now on are OPTIONAL (!!)

Last office hours (1) Fri, (May 5) 12:30-2:30 - DIFFERENT ZOOM LINK = see
Piazza message!



Summary of lecture 25: Introduction
to Bayesian Statistics (MCMC)

® Today, we will complete our discuss of Bayesian Statistics (and
MCMQ)!



Introduction to Bayesian analysis |

® Up to this point, we have considered statistical analysis (and
inference) using a Frequentist formalism

® There is an alternative formalism called Bayesian that we will now
introduce in a very brief manner

® Note that there is an important conceptual split between
statisticians who consider themselves Frequentist of Bayesian but
for GWAS analysis (and for most applications where we are
concerned with analyzing data) we do not have a preference, i.e. we
only care about getting the “right” biological answer so any (or
both) frameworks that get us to this goal are useful

® |In GWAS (and mapping) analysis, you will see both frequentist (i.e.
the framework we have built up to this point!) and Bayesian
approaches applied



Review: Intro to Bayesian analysis |

® Remember that in a Bayesian (not frequentist!) framework, our parameter(s)
have a probability distribution associated with them that reflects our belief in
the values that might be the true value of the parameter

® Since we are treating the parameter as a random variable, we can consider the
joint distribution of the parameter AND a sample Y produced under a
probability model:

Pr(6NY)

® Fo inference, we are interested in the probability the parameter takes a
certain value given a sample:

Pr(f]y)

® Using Bayes theorem, we can write:
Pr(y|0)Pr(0)

Pr(y)

® Also note that since the sample is fixed (i.e. we are considering a single
sample) Pr(y) = c. we can rewrite this as follows:

Pr(0|y) o< Pr(yl|0)Pr(0)

Pr(fly) =




Review: Intro to Bayesian analysis |l

® |et’s consider the structure of our main equation in Bayesian statistics:
Pr(0ly) o< Pr(yl|0)Pr(0)
® Note that the left hand side is called the posterior probability:
Pr(f]y)

® The first term of the right hand side is something we have seen before, i.e. the
likelihood (!!):

Pr(y|0) = L(0]y)
® The second term of the right hand side is new and is called the prior:
Pr(0)

® Note that the prior is how we incorporate our assumptions concerning the
values the true parameter value may take

® In a Bayesian framework, we are making two assumptions (unlike a frequentist
where we make one assumption): |. the probability distribution that generated
the sample, 2. the probability distribution of the parameter



Review: Priors in Bayesian analysis

® Up to this point, we have discussed priors in an abstract manner

® To start making this concept more clear, let’s consider one of our original examples
where we are interested in the knowing the mean human height in the US (what are
the components of the statistical framework for this example!? Note the basic
components are the same in Frequentist / Bayesian!)

® If we assume a normal probability model of human height (what parameter are we
interested in inferring in this case and why?) in a Bayesian framework, we will at least

need to define a prior:
Pr(p)

® One possible approach is to make the probability of each possible value of the
parameter the same (what distribution are we assuming and what is a problem with
this approach), which defines an improper prior:

Pr(p) =c

® Another possible approach is to incorporate our previous observations that heights
are seldom infinite, etc. where one choice for incorporating this observations is my
defining a prior that has the same distribution as our probability model, which defines
a conjugate prior (which is also a proper prior):

Pr(p) ~ N(k,¢°)



Review: constructing posteriors

® |et’s put this all together for our “heights in the US” example

® First recall that our assumption is the probability model is normal (so what is the
form of the likelihood?):

Y ~ N(u,0%)
® Second, assume a normal prior for the parameter we are interested in:

Pr(u) ~ N(x,¢%)

® From the Bayesian equation, we can now put this together as follows:

Pr(0|y) o< Pr(y|0)Pr(0)

mn 2 2
1 —( ~imp)” ) 1 —(u—rK)%
Prply) o< [ ]] =2 e 20
Pl 27T(7 \/ 27T p?

® Note that with a little rearrangement, this can be written in the following form:

(H+Z) 1 n
EEEy A )

Pr(ply) ~ N<



Bayesian inference: estimation |

® Inference in a Bayesian framework differs from a frequentist
framework in both estimation and hypothesis testing

® For example, for estimation in a Bayesian framework, we always
construct estimators using the posterior probability distribution,
for example:

0 = mean(0|y) = /9P7‘(9|y)d9 or é — median(‘QW)

® Estimates in a Bayesian framework can be different than in a
likelihood (Frequentist) framework since estimator construction
is fundamentally different (!!)



Bayesian inference: estimation ||

® For example, for estimation in a Bayesian framework, we always
construct estimators using the posterior probability distribution, for
example:

0 = mean(f)y) = /«9Pr(«9\y)d9 or 0= median(0|y)
® For example, in our “heights in the US” example our estimator is:
-+ 2D

(32 + 22

o= median(p|ly) = mean(uly) =

® Notice that the impact of the prior disappears as the sample size goes
to infinite (=same as MLE under this condition):




Bayesian inference: hypothesis testing

® For hypothesis testing in a Bayesian analysis, we use the same null and alternative
hypothesis framework:
Hy:0 €0

Hjp:0 €0y

® However, the approach to hypothesis testing is completely different than in a
frequentist framework, where we use a Bayes factor to indicate the relative
support for one hypothesis versus the other:

fee@o Pr(yl|0)Pr(6)do
fee@A Pr(yl|0)Pr(0)do

® Note that a downside to using a Bayes factor to assess hypotheses is that it can be
difficult to assign priors for hypotheses that have completely different ranges of
support (e.g. the null is a point and alternative is a range of values)

Bayes =

® As a consequence, people often use an alternative “psuedo-Bayesian” approach to
hypothesis testing that makes use of credible intervals (which is what we will use in
this course)



Bayesian credible intervals (versus
frequentist confidence intervals)

® Recall that in a Frequentist framework that we can estimate a confidence interval
at some level (say 0.95), which is an interval that will include the value of the
parameter 0.95 of the times we performed the experiment an infinite number of
times, calculating the confidence interval each time (note: a strange definition...)

® |n a Bayesian interval, the parallel concept is a credible interval that has a
completely different interpretation: this interval has a given probability of including the
parameter value (!!)

® The definition of a credible interval is as follows:
Ca
c.i.(0) = / Pr(0ly)dd =1— «
—Ce

® Note that we can assess a null hypothesis using a credible interval by determining
if this interval includes the value of the parameter under the null hypothesis (!!)



Bayesian inference: genetic model |

® We are now ready to tackle Bayesian inference for our genetic model
(note that we will focus on the linear regression model but we can
perform Bayesian inference for any GLM!):

Y =8, + XoBq + Xafa + ¢
e ~ N(0,02)
® Recall for a sample generated under this model, we can write:
y=x0+e¢
e ~ multiN(0,I0?)
® |n this case, we are interested in the following hypotheses:

Hy: 3, =0NB3=0 Hyp: Ba #0U By # 0

® VWe are therefore interested in the marginal posterior probability of these
two parameters



Bayesian inference: genetic model

® TJo calculate these probabilities, we need to assign a joint probability
distribution for the prior

PT(BM, Baa Bda O-?)

® One possible choice is as follows (are these proper or improper!?):

Pr(ﬁuaﬁaaﬁdag?) — PT(BM)PT(Ba)PT(ﬁd)PT(U?)

Pr(Bu) = Pr(fa) = Pr(fa) =c
Pr(c?) =c

® Under this prior the complete posterior distribution is multivariate
normal (!!):

Pr(ﬁuaﬁaaﬁda 0-62|Y) X PT(Y‘BM?BCMﬁd?O?)

n (y—XB)TQ(y—xm

Pr(0y) (02)_56 20¢

€




Bayesian inference: genetic model Il

® For the linear model with sample:
y =X0+¢€
e ~ multiN(0,10?)
® The complete posterior probability for the genetic model is:

Pr(ﬁuvﬁaaﬁdagg‘Y) X Pr(yyﬁ,uaﬁaaﬁd)OE)PT(ﬁuaﬁaaﬁdaag)

® With a uniform prior is:

Pr(ﬁuvﬁaaﬁdaagbf) X PT(Y|5M75a7ﬁd7O‘€2)

® The marginal posterior probability of the parameters we are
interested in is:

Pr(Ba. Buly) — /O /_ Pr(By, Bas Bas 02|y ) dBydo?



Bayesian inference: genetic model IV

® Assuming uniform (improper!) priors, the marginal distribution is:

Pr(Bq, Baly) = / / Pr(Bu, Ba, Ba, 02y)dBudo? ~ multi-t-distribution
—oo J0

® With the following parameter values:

AT XiX, XiX
_ T a “*a a “>d
mean(Pr(ﬁa’ Bd|Y>) — |:/8a, /Bd_ — C 1 [Xaa Xd] Yy C = [XEXG X}‘Xd]

(y — [Xa, Xq] [Ba,ﬁd}T)T(y — [Xq, X4] {@,@}T)

C—l
n—=>6

COU —

df (multi—t) =n — 4

® With these estimates (equations) we can now construct a credible
interval for our genetic null hypothesis and test a marker for a

phenotype association and we can perform a GWAS by doing this for
each marker (!!)



Bayesian inference: genetic model V

PT(BCL?ﬁC”Y)

credible interval
p—

Cannot reject
HO!

0
Ba
P”I“(ﬂa, 5d‘Y)

0.95

credible interval

p—

Reject HO!



(X4

Bayesian inference for more
complex” posterior distributions

For a linear regression, with a simple (uniform) prior, we have a
simple closed form of the overall posterior

This is not always (=often not the case), since we may often choose
to put together more complex priors with our likelihood or
consider a more complicated likelihood equation (e.g. for a logistic
regression!)

To perform hypothesis testing with these more complex cases, we
still need to determine the credible interval from the posterior (or
marginal) probability distribution so we need to determine the form
of this distribution

To do this we will need an algorithm and we will introduce the
Markov chain Monte Carlo (MCMC) algorithm for this purpose



Stochastic processes

To introduce the MCMC algorithm for our purpose, we need
to consider models from another branch of probability
(remember, probability is a field much larger than the
components that we use for statistics / inference!): Stochastic
processes

Stochastic process (intuitive def) - a collection of random
vectors (variables) with defined conditional relationships, often
indexed by an ordered set t

We will be interested in one particular class of models within
this probability sub-field: Markov processes (or more specifically
Markov chains)

Our MCMC will be a Markov chain (probability model)



Markov processes

A Markov chain can be thought of as a random vector (or more
accurately, a set of random vectors), which we will index with t:

Xty X1y X2y eeees Xptk
Xt7 Xt—la Xt—27 seeey Xt—k

Markov chain - a stochastic process that satisfies the Markov
property:

PT(Xt, |Xt—17 Xt—27 RERE Xt—k) — PT(Xt, ‘Xt—l)

While we often assume each of the random variables in a Markov
chain are in the same class of random variables (e.g. Bernoulli,
normal, etc.) we allow the parameters of these random variables
to be different, e.g. at time t and t+1

How does this differ from a random vector of an iid sample!?



Example of a Markov chain

® As an example, let’s consider a Markov chain where each random
variable in the chain has a Bernoulli distribution:

X1, X2..., X1001, X1002
X1 ~ Bern(0.2), Xo ~ Bern(0.21), ..., X1001 ~ Bern(0.4), X19p2 ~ Bern(0.4)

® Note that we could draw observations from this Markov chain
(since it is just a random vector with a probability distribution!):

1,0,...,1,1 0,0.,...,0,0
ol,..1,I1 o,l,...,0,0
® How does this differ from an iid random vector!?

® Note that for t late in this process, the parameters of the Bernoulli
distributions are the same (=they do not change over time)

® |n our case, we will be interested in Markov chains that “evolve” to
such stationary distributions



Stationary distributions and MCMC

e |f a Markov chain has certain properties (irreducible and ergodic), we can
prove that the chain will evolve (more accurately converge!) to a unique
(!!) stationary distribution and will not leave this stationary distribution
(where is it often possible to determine the parameters for the stationary
distribution!)

® For such Markov chains, if we consider enough iterations t+k (where k
may be very large, e.g. infinite), we will reach a point where each following
random variable is in the unique stationary distribution:

PT(Xt+k) — PT(Xt+]<;+1) — ...

® For the purposes of Bayesian inference, we are going to set up a Markov
chain that evolves to a unique stationary distribution that is exactly the
posterior probability distribution that we are interested in (!!!)

® To use this chain, we will run the Markov chain for enough iterations to
reach this stationary distribution and then we will take a sample from this
chain to determine (or more accurately approximate) our posterior

® This is Bayesian Markov chain Monte Carlo (MCMC)!



An example of Bayesian MCMC

0.2 0.3

Pr(uly)

0.1

<

MCMC = X g, Xerkr1, Xetkt2s o5 Xedktm
Sample = 0.1, —0.08, —1.4, ....,0.5

—— [
’ 2 ' '

0 = median(Pr(0)y) ~ median(9=! ..., gltartk])



Constructing an MCMC

® |[nstructions for constructing an MCMC using Metropolis-Hastings approach:

1.

2.

. Calculate r =

Choose 019, where Pr(6l%y) > 0.

Sample a proposal parameter value 8* from a jumping distribution .J (9*\9[t]), where
t = 0 or any subsequent iteration.

Pr(0*|y)J(0M"](6%)
Pr(0t]y).J(0<[61]) "

Set AT = 0% with Pr(0+Y = 0*) = min(r,1) and 0T = gl with Pr(l+l =
ol = 1 — min(r, 1).

® Running the MCMC algorithm:

1.

2.

3.

Set up the Metropolis-Hastings algorithm.
Initialize the values for 1%,

Iterate the algorithm for ¢ >> 0, such that we are past t,;, which is the iteration after
the ‘burn-in’ phase, where the realizations of 8! start to behave as though they are
sampled from the stationary distribution of the Metropolis-Hastings Markov chain
(we will discuss how many iterations are necessary for a burn-in below).

Sample the chain for a set of iterations after the burn-in and use these to approximate
the posterior distribution and perform Bayesian inference.



Constructing an MCMC for genetic
analysis

® For a given marker part of our GWAS, we define our glm (which gives us our
likelihood) and our prior (which we provide!), and our goal is then to construct an
MCMC with a stationary distribution (which we will sample to get the posterior

“histogram”: B, [t] 8, [t4+1]
glt _ Ba gli+1] _ | Ba
Ba| ? Ba|
| o? ¢ |

® One approach is setting up a Metropolis-Hastings algorithm by defining a jumping
distribution

® Another approach is to use a special case of the Metropolis-Hastings algorithm called
the Gibbs sampler (requires no rejections!), which samples each parameter from the
conditional posterior distributions (which requires you derive these relationships =

not always possible!) Pr(ﬁ ‘5 g v
wiPas Pds O ea

)
( ﬁ,uaﬁda an)
Pr(ﬁd 5#75&7 an)
PT(O- 6,&76&766% )




Importance for MCMC

Constructing MCMC for Bayesian inference is extremely
practical

The constraint is they are computationally intensive

This is one reason for the surge in the practical use of
Bayesian data analysis is when computers increased in speed

This is definitely the case where the number of Bayesian
MCMC approaches in genetic analysis has steadily increased
over the last decade or so

One issue is that, even with a fast computer, MCMC
algorithms can be inefficient (they take a long time to
converge, they do not sample modes of a complex posterior
efficiently, etc.)

There are therefore other algorithm approaches to Bayesian
genetic inference, e.g. variational Bayes



That’s it for today

® Next lecture: Basics of Pedigree and Inbred line analysis!



