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• PLEASE NOTE (!!):  Tues, May 9 (last lecture) I will lecture from Ithaca (regular 
classroom) with no classroom in NYC (please join by zoom)!

• Additional (optional!) lecture decks and videos are available at the end of the class 
site: (#1: haplotypes and haplotype testing; #2 epistasis and eQTL; #3 alternative 
tests in GWAS - including permutation!)

• We only have 1 computer labs left (!!)

• Thurs / Fri (May 4 / 5) MCMC algorithm for Bayesian inference

• NO COMPUTER LAB next week of class Thurs / Fri (May 11 / 12)

• Last office hours tomorrow (!!) Fri,  (May 5) 12:30-2:30 - DIFFERENT ZOOM LINK 
= see Piazza message!

• Final Exam

• Available Fri., May 12 and due 11:59pm Sat., May 20

• Content: you will need to perform a GWAS using a linear regression with and 
without covariates AND a logistic regression with and without covariates (and 
we will give you the covariates already coded)!

Announcements



Final - instructions
Quantitative Genomics and Genetics - Spring 2023

BTRY 4830/6830; PBSB 5201.01

Final exam available: Fri., May 12

Final exam due: 11:59PM, Tues., May 20

PLEASE NOTE THE FOLLOWING INSTRUCTIONS:

1. You are to complete this exam alone. The exam is open book, so you are allowed to use any
books or information available online, your own notes and your previously constructed code,
etc. HOWEVER YOU ARE NOT ALLOWED TO COMMUNICATE OR IN ANY
WAY ASK ANYONE FOR ASSISTANCE WITH THIS EXAM IN ANY FORM
e.g., DO NOT POST PUBLIC MESSAGES ON PIAZZA! (the only exceptions are
Mitch, Sam, and Dr. Mezey, e.g., you MAY send us a private message on PIAZZA). As a
non-exhaustive list this includes asking classmates or ANYONE else for advice or where to
look for answers concerning problems, you are not allowed to ask anyone for access to their
notes or to even look at their code whether constructed before the exam or not, etc. You are
therefore only allowed to look at your own materials and materials you can access on your
own. In short, work on your own! Please note that you will be violating Cornell’s honor code
if you act otherwise.

2. Please pay attention to instructions and complete ALL requirements for ALL questions, e.g.
some questions ask for R code, plots, AND written answers. We will give partial credit so it
is to your advantage to attempt every part of every question.

3. A complete answer to this exam will include R code answers in Rmarkdown, where you will
submit your .Rmd script and associated .pdf file. Note there will be penalties for scripts that
fail to compile (!!). Also, as always, you do not need to repeat code for each part (i.e., if you
write a single block of code that generates the answers for some or all of the parts, that is
fine, but do please label your output that answers each question!!). You should include all of
your plots and written answers in this same .Rmd script with your R code.

4. The exam must be uploaded on CMS before 11:59PM (ET) Sat., May 20. It is your respon-
sibility to make sure that it is in uploaded by then and no excuses will be accepted (power
outages, computer problems, Cornell’s internet slowed to a crawl, etc.). Remember: you are
welcome to upload early! We will deduct points for being late for exams received after this
deadline (even if it is by minutes!!).
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Final - genotype data!



Summary of lecture 26: Introduction 
to pedigree and inbred line analysis

• Today, we will complete our discuss of MCMC for Bayesian 
statistics

• We will also (briefly) discuss pedigree analysis and inbred line 
analysis (!!)



• Let’s consider the structure of our main equation in Bayesian statistics:

• Note that the left hand side is called the posterior probability:

• The first term of the right hand side is something we have seen before, i.e. the 
likelihood (!!):

• The second term of the right hand side is new and is called the prior:

• Note that the prior is how we incorporate our assumptions concerning the 
values the true parameter value may take

• In a Bayesian framework, we are making two assumptions (unlike a frequentist 
where we make one assumption): 1. the probability distribution that generated 
the sample, 2. the probability distribution of the parameter

where the latter equivalence follows from the definition of conditional probability: Pr(B|Ai) =
Pr(B \Ai)/Pr(Ai)). Now we are ready to state Bayes theorem:

Pr(Ai|B) =
Pr(Ai \ B)

Pr(B) =
Pr(B|Ai)Pr(Ai)

Pr(B) =
Pr(B|Ai)Pr(A)

Pk
i=1 Pr(B|Ai)Pr(Ai)

(7)

where the last two equivalences follow from the definition of conditional probability and
the law of total probability.

We are now ready to introduce the Bayesian framework. Remember that in a Bayesian
framework, we have now made the conceptual switch to considering a probability distri-
bution associated with our parameter(s) ✓, which corresponds to incorporating our beliefs
about what the true parameter values are likely to be based on our previous experience.
In such a case, we are treating the parameter as a random variable, so we can consider a
joint probability of our sample and our parameter:

Pr(✓ \Y) (8)

Now, for the purposes of inference, when considering a given single sample y, we are
actually interested in the probability that the parameter takes on a particular value given
the sample we have observed:

Pr(✓|y) (9)

and using Bayes theorem we have:

Pr(✓|y) = Pr(y|✓)Pr(✓)

Pr(y)
(10)

Now, note that the sample is fixed, so Pr(y) = c, which means we can write equation (11)
as:

Pr(✓|y) / Pr(y|✓)Pr(✓) (11)

where recall the proportionality equivalence means that the left side of the equation equals
the right side of the equation multiplied by a constant. Equation (11) is the primary equa-
tion that is the foundation of Bayesian statistics and, given the use of Bayes theorem, the
origin of the name is clear.

Let’s now consider the di↵erent components of equation (11). The component Pr(✓|y)
is called the posterior probability distribution and this is what we want to know, i.e. the
probability that the true ✓ takes a particular value given the sample we have observed. We
are therefore going to use the posterior distribution for all inferences that we make in a
Bayesian framework. The component Pr(y|✓) is the probability of observing the specific
instance of the data y given values of the parameter ✓ and this is simply the likelihood,
which we have seen before (and we will define as before). The last component Pr(✓) is
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Review: Bayesian inference: 
estimation I

• Inference in a Bayesian framework differs from a frequentist 
framework in both estimation and hypothesis testing

• For example, for estimation in a Bayesian framework, we always 
construct estimators using the posterior probability distribution, 
for example:

• Estimates in a Bayesian framework can be different than in a 
likelihood (Frequentist) framework since estimator construction 
is fundamentally different (!!)

that is a reasonable ‘estimate’ or ‘guess’ of the true value of ✓ given a sample. Now, in a
Frequentist framework, we discussed that an estimate strategy of choice is taking the value
of ✓ that maximizes the likelihood function, i.e. the MLE(✓̂). In a Bayesian framework, we
take a slightly di↵erent approach. Since the posterior distribution of ✓|y ⇠ Pr(✓|y)reflects
the probability that ✓ will take a particular value, we can simply take the mean with respect
to this distribution, such that:

✓̂ = mean(✓|y) =
Z

✓Pr(✓|y)d✓ (18)

or we can take the median of the posterior:

✓̂ = median(✓|y) (19)

where the latter we sometimes employ in cases where the posterior is highly skewed (these
approaches produce an identical result if the posterior is symmetric). As an example, for
our case of heights discussed above where we assumed a normal prior, we can estimate the
mean of a population µ using the posterior of µ|y by taking:

µ̂ = median(µ|y) = mean(µ|y) =
( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
(20)

where this holds because the posterior distribution in this cases is normal (symmetric)
described by the parameters in equation (14).

Now, there are a few important points to note here. First, when performing inference
in a Frequentist framework using a MLE, we are taking the value of ✓ that has the highest
overall likelihood. This makes sense since the likelihood is not the probability of di↵erent
parameter values so taking the value of ✓ that ‘maximizes’ the likelihood is a reasonable
estimate. This means that for a likelihood function with a thin ‘spike’ at a value that
produces a maximum, we take the value of ✓ at this spike as our estimate, even if there are
‘fatter’ regions surrounding values of ✓ with lower likelihood. In contrast, in a Bayesian
framework, the posterior distribution reflects the probability that ✓ takes a particular value,
so a spike of probability will place probability of ✓ being a particular value but we will
also take into account values of ✓ corresponding to lower probability but fatter regions of
probability, which we take into account by considering the mean as the estimate (see class
notes for a diagram).

Second, notice that in our example in equation (18), that as the sample size approaches
infinite, we have:

( 
�2 + nȳ

�2 )

( 1
�2 + n

�2 )
⇡

(nȳ�2 )

( n
�2 )

⇡ ȳ (21)
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Review: Bayesian credible intervals

• Recall that in a Frequentist framework that we can estimate a confidence interval 
at some level (say 0.95), which is an interval that will include the value of the 
parameter 0.95 of the times we performed the experiment an infinite number of 
times, calculating the confidence interval each time (note: a strange definition...)

• In a Bayesian interval, the parallel concept is a credible interval that has a 
completely different interpretation: this interval has a given probability of including the 
parameter value (!!)

• The definition of a credible interval is as follows:

• Note that we can assess a null hypothesis using a credible interval by determining 
if this interval includes the value of the parameter under the null hypothesis (!!)

and alternative hypothesis sets and it is not always obvious how to construct these in a
way that does not produce artificially strong evidence towards one hypothesis or the other.
Another strategy that avoids this problem is to construct a hypothesis test using a credible
interval (where a true Bayesian may frown a bit when using the latter approach but we
will make use of it).

A credible interval is the Bayesian analogue to a confidence interval. However, the interpre-
tation of a credible interval is di↵erent (and more intuitive!). Recall that in a Frequentist
framework, a confidence interval reflects an interval constructed around an estimate of a
parameter that would contain the true parameter value for a certain frequency of exper-
iments. This concept was a bit odd however, since it does not reflect a probability of
0.95 that the interval contains the parameter value, e.g. what it does reflect is if we did
the experiment 100 times and calculated the confidence interval each time, 0.95 of these
confidence intervals would contain the true parameter value, but for any one experiment,
we do not know if this will be the case.

In a Bayesian framework, a credible interval is an interval surrounding the parameter
estimate that contains 0.95 of the posterior probability. However, since the posterior is the
probability that the parameter takes on a particular value, this interval does actually reflect
a 0.95 probability of actually containing the true parameter value. This is provides a much
easier interpretation and provides a framework for hypothesis testing. If we construct a
0.95 credible interval around our estimate of the parameter value:

c.i.(✓) =

Z c↵

�c↵

Pr(✓|y)d✓ = 1� ↵ (25)

where c↵ is the critical value (threshold) of the statistic) for a two-tailed test (symmetric
posterior), where we have:

✓̂ =

Z
✓Pr(✓|y)d✓ (26)

and where ↵ = 0.05 for a 0.95 credible interval (and we can similarly construct a credible
interval for a two-tailed test). If this credible interval does not overlap the value of our
parameter under our null hypothesis, there is a 0.95 probability that the null hypothesis is
incorrect and we can reject with this amount of confidence. Conversely, if we the credible
interval does contain the null hypothesis parameter value, we cannot reject the null at this
level of confidence.

While we do occasionaly see Bayes factor applied in quantitative genomic mapping prob-
lems, we often make use of the credible interval approach when considering Bayesian in-
ference approaches to mapping. This is particularly true when considering more complex
Bayesian models for this purpose. In this class we will make use of the credible interval
approach to hypothesis testing.
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Review: Bayesian inference: genetic 
model 1

• We are now ready to tackle Bayesian inference for our genetic model 
(note that we will focus on the linear regression model but we can 
perform Bayesian inference for any GLM!):

• Recall for a sample generated under this model, we can write:

• In this case, we are interested in the following hypotheses:

• We are therefore interested in the marginal posterior probability of these 
two parameters

or the mean of the posterior:
✓̂ = mean(Pr(✓|y)) (4)

where these are identical if the posterior is symmetric, and a hypothesis test can be con-
ducted using Bayes factor or by determining whether the credible interval surrounding our
parameter estimate includes the parameter value of the null hypothesis (where again, a
true Bayesian may frown about the latter approach).

3 Bayesian inference for linear regression

Let’s now apply a Bayesian inference approach to our linear regression approach to mapping
the genomic location of causal polymorphisms (loci). Recall that with a linear regression
model we are concerned with the Pr(Y |X) described by the model:

Y = �µ +Xa�a +Xd�d + ✏ (5)

✏ ⇠ N(0,�2
✏ ) (6)

where for a sample, we can write:
y = x� + ✏ (7)

✏ ⇠ multiN(0, I�2
✏ ) (8)

where y is a vector of phenotype observations, x is our design matrix for our observed
genotypes, � = [�µ,�a,�d]

T, and where I is the identity matrix. For this model, we have
four parameters �µ,�a,�d,�2

✏ , so we are interested in the following posterior distribution:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ )Pr(�µ,�a,�d,�
2
✏ ) (9)

However, for the purposes of mapping, we are only concerned with a null hypothesis for (at
most) two parameters H0 : �a = 0\�d = 0 (with alternative hypothesis HA : �a 6= 0[�d 6=
0). So how can we deal solely with these two parameters? We can do this by integrating
(or ‘summing over’) all the possible values of the parameters �µ and �

2
✏ to produce the

marginal posterior probability distribution for the parameters �a and �d:

Pr(�a,�d|y) =
Z 1

�1

Z 1

0
Pr(�µ,�a,�d,�

2
✏ |y)d�µd�2

✏ (10)

and we then use this marginal posterior to conduct our inference (note that we could sim-
ilarly integrate out �d if we were interested in only �a).

Let’s consider a specific example of how to perform inference using equation (10). To
get to this point, we need to start by considering equation (9) and assign the prior

2
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parameter estimate includes the parameter value of the null hypothesis (where again, a
true Bayesian may frown about the latter approach).

3 Bayesian inference for linear regression

Let’s now apply a Bayesian inference approach to our linear regression approach to mapping
the genomic location of causal polymorphisms (loci). Recall that with a linear regression
model we are concerned with the Pr(Y |X) described by the model:

Y = �µ +Xa�a +Xd�d + ✏ (5)

✏ ⇠ N(0,�2
✏ ) (6)

where for a sample, we can write:
y = x� + ✏ (7)

✏ ⇠ multiN(0, I�2
✏ ) (8)

where y is a vector of phenotype observations, x is our design matrix for our observed
genotypes, � = [�µ,�a,�d]

T, and where I is the identity matrix. For this model, we have
four parameters �µ,�a,�d,�2

✏ , so we are interested in the following posterior distribution:

Pr(�µ,�a,�d,�
2
✏ |y) / Pr(y|�µ,�a,�d,�2

✏ )Pr(�µ,�a,�d,�
2
✏ ) (9)

However, for the purposes of mapping, we are only concerned with a null hypothesis for
(at most) two parameters H0 : �a = 0 \ �d = 0 (with alternative hypothesis

HA : �a 6= 0 [ �d 6= 0

So how can we deal solely with these two parameters? We can do this by integrating
(or ‘summing over’) all the possible values of the parameters �µ and �

2
✏ to produce the

marginal posterior probability distribution for the parameters �a and �d:

Pr(�a,�d|y) =
Z 1

�1

Z 1

0
Pr(�µ,�a,�d,�

2
✏ |y)d�µd�2

✏ (10)

and we then use this marginal posterior to conduct our inference (note that we could sim-
ilarly integrate out �d if we were interested in only �a).
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• Assuming uniform (improper!) priors, the marginal distribution is:

• With the following parameter values:

• With these estimates (equations) we can now construct a credible 
interval for our genetic null hypothesis and test a marker for a 
phenotype association and we can perform a GWAS by doing this for 
each marker (!!)

a little more ‘pinched’ towards the mean (see class notes for diagram), depending on the
degrees of freedom. In this case, our posterior has a multi-t-type distribution:

Pr(�a,�d|y) =
Z 1

�1

Z 1

0
Pr(�µ,�a,�d,�

2
✏ |y)d�µd�2

✏ ⇠ multi-t-distribution (16)

which has the following mean:

mean =
h
�̂a, �̂d

iT
= C�1 [Xa,Xd]y (17)

where we have:

C =


XT

aXa XT
aXa

XT
dXa XT

dXd

��1

i.e. the mean is the least-squares estimates of the �’s. The covariance in this case is:

cov =
(y� [Xa,Xd]

h
�̂a, �̂d

iT
)T(y� [Xa,Xd]

h
�̂a, �̂d

iT
)

n� 6
C�1 (18)

which is the variance of a bi-variate t-type distribution with n-6 degrees of freedom. Now
that we have the form of our marginal posterior with respect to �a and �d, we can estimate
the values of these by taking the mean of the marginal posterior (equation (16)), which is
simply equation (17) (again, least squares...) such that:

mean(Pr(�a,�d|y)) =
h
�̂a, �̂d

iT
= C�1 [Xa,Xd]

T y (19)

For the purposes of inference with our genetic model, we are primarily interested in testing
the null hypothesis that �a and �d are zero. We can now so this by constructing a 95%
(bi-variate)credible interval around the estimates of these parameters in equation (19) us-
ing the formula for a t-type distribution with covariance parameters described by equation
(18), which we can do by writing an appropriate function in R (see class notes for a dia-
gram).

If this credible interval does not include values of zero for these two parameters, we can
reject the null hypothesis, which is evidence that a causal mutation is in linkage disequilib-
rium with our marker. Note that we can just as easily construct a test of just �a following
the same procedure, where C is the upper left of element and we have a univariate t-
distribution for our marginal posterior with n-5 degrees of freedom, i.e. all the equations
have the same form.
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Review: Bayesian inference for more 
“complex” posterior distributions
• For a linear regression, with a simple (uniform) prior, we have a 

simple closed form of the overall posterior

• This is not always (=often not the case), since we may often choose 
to put together more complex priors with our likelihood or 
consider a more complicated likelihood equation (e.g. for a logistic 
regression!)

• To perform hypothesis testing with these more complex cases, we 
still need to determine the credible interval from the posterior (or 
marginal) probability distribution so we need to determine the form 
of this distribution

• To do this we will need an algorithm and we will introduce the 
Markov chain Monte Carlo (MCMC) algorithm for this purpose



Review: Stochastic processes

• To introduce the MCMC algorithm for our purpose, we need 
to consider models from another branch of probability 
(remember, probability is a field much larger than the 
components that we use for statistics / inference!): Stochastic 
processes

• Stochastic process (intuitive def) - a collection of random 
vectors (variables) with defined conditional relationships, often 
indexed by an ordered set t

• We will be interested in one particular class of models within 
this probability sub-field: Markov processes (or more specifically 
Markov chains)

• Our MCMC will be a Markov chain (probability model)



• A Markov chain can be thought of as a random vector (or more 
accurately, a set of random vectors), which we will index with t:

• Markov chain - a stochastic process that satisfies the Markov 
property:

• While we often assume each of the random variables in a Markov 
chain are in the same class of random variables (e.g. Bernoulli, 
normal, etc.) we allow the parameters of these random variables 
to be different, e.g. at time t and t+1

• How does this differ from a random vector of an iid sample!?

Review: Markov processes
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• As an example, let’s consider a Markov chain where each random 
variable in the chain has a Bernoulli distribution:

• Note that we could draw observations from this Markov chain 
(since it is just a random vector with a probability distribution!): 

• How does this differ from an iid random vector?

• Note that for t late in this process, the parameters of the Bernoulli 
distributions are the same (=they do not change over time)

• In our case, we will be interested in Markov chains that “evolve” to 
such stationary distributions

Review: Example of a Markov chain

1,0,...,1,1

0,1,...,1,1

0,0,...,0,0

0,1,...,0,0

X1, X2..., X1001, X1002

X1 ⇠ Bern(0.2), X2 ⇠ Bern(0.45), ..., X1001 ⇠ Bern(0.4), X1002 ⇠ Bern(0.4)

✓̂ or H0 : ✓ = c

Pr(T (X) , Pr(T (X|✓) , Pr(T (X|H0 : ✓ = c)

L(✓|x) =
 

1p
2⇡

!
n

e

P
n

i=1
�(xi�µ)2

2 (4)

⌦ = { Possible Individuals }
⌦ = {⌦g \ ⌦P } (5)

⌦g = {A1A1, A1A2, A2A2} (6)

�µ = 0.3,�a = �0.2,�d = 1.1,�2
✏ = 1.1 (7)

�µ,�a,�d,�
2
✏ (8)

� (9)

✏ (10)

Pr(Y |X) ⇠ N(�µ +Xa�a +Xd�d,�
2
✏ ) (11)

2.1 = 0.3 + (0)(�0.2), (1)1.1 + 0.7 (12)

Xa(A1A2) = 0, Xd(A1A2) = 1 (13)

✏i = 0.7 (14)

⌦g (15)

⌦P (16)

F{g,P} (17)

Pr(F{g,P}) (18)

Pr{g, P} (19)

Pr(Y \X) = Pr(Y,X) 6= Pr(Y )Pr(X) (20)

H0 : Pr(Y,X) = Pr(Y )Pr(X) (21)

Y : (⇤,⌦P ) ! R (22)

X : (⌦g, ⇤) ! R (23)

7

X1, X2..., X1001, X1002

X1 ⇠ Bern(0.2), X2 ⇠ Bern(0.45), ..., X1001 ⇠ Bern(0.4), X1002 ⇠ Bern(0.4)

✓̂ or H0 : ✓ = c

Pr(T (X) , Pr(T (X|✓) , Pr(T (X|H0 : ✓ = c)

L(✓|x) =
 

1p
2⇡

!
n

e

P
n

i=1
�(xi�µ)2

2 (4)

⌦ = { Possible Individuals }
⌦ = {⌦g \ ⌦P } (5)

⌦g = {A1A1, A1A2, A2A2} (6)

�µ = 0.3,�a = �0.2,�d = 1.1,�2
✏ = 1.1 (7)

�µ,�a,�d,�
2
✏ (8)

� (9)

✏ (10)

Pr(Y |X) ⇠ N(�µ +Xa�a +Xd�d,�
2
✏ ) (11)

2.1 = 0.3 + (0)(�0.2), (1)1.1 + 0.7 (12)

Xa(A1A2) = 0, Xd(A1A2) = 1 (13)

✏i = 0.7 (14)

⌦g (15)

⌦P (16)

F{g,P} (17)

Pr(F{g,P}) (18)

Pr{g, P} (19)

Pr(Y \X) = Pr(Y,X) 6= Pr(Y )Pr(X) (20)

H0 : Pr(Y,X) = Pr(Y )Pr(X) (21)

Y : (⇤,⌦P ) ! R (22)

X : (⌦g, ⇤) ! R (23)

7

0.21



• If a Markov chain has certain properties (irreducible and ergodic), we can 
prove that the chain will evolve (more accurately converge!) to a unique 
(!!) stationary distribution and will not leave this stationary distribution 
(where is it often possible to determine the parameters for the stationary 
distribution!)

• For such Markov chains, if we consider enough iterations t+k (where k 
may be very large, e.g. infinite), we will reach a point where each following 
random variable is in the unique stationary distribution:

• For the purposes of Bayesian inference, we are going to set up a Markov 
chain that evolves to a unique stationary distribution that is exactly the 
posterior probability distribution that we are interested in (!!!)

• To use this chain, we will run the Markov chain for enough iterations to 
reach this stationary distribution and then we will take a sample from this 
chain to determine (or more accurately approximate) our posterior

• This is Bayesian Markov chain Monte Carlo (MCMC)!

Stationary distributions and MCMC
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An example of Bayesian MCMC
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So, how do we set up a Markov chain with this property, i.e. the unique stationary distribu-
tion is the true posterior? We can do this with (various) forms of the Metropolis-Hastings
algorithm, which has the following basic structure:

Metropolis-Hastings Algorithm:

1. Choose ✓[0], where Pr(✓[0]|y) > 0.

2. Sample a proposal parameter value ✓⇤ from a jumping distribution J(✓⇤|✓[t]), where
t = 0 or any subsequent iteration.

3. Calculate r = Pr(✓⇤|y)J(✓[t]|(✓⇤)
Pr(✓[t]|y)J(✓⇤|✓[t])

.

4. Set ✓[t+1] = ✓⇤ with Pr(✓[t+1] = ✓⇤) = min(r, 1) and ✓[t+1] = ✓[t] with Pr(✓[t+1] =
✓[t]) = 1�min(r, 1).

The jumping distribution in this case can actually be (almost) any distribution, although
choosing a good jumping distribution is critical to the e�ciency of the chain. Once we
have defined the jumping distribution, you now can operate this algorithm, i.e. you al-
ready know the equation of the posterior distribution, based on your model and prior, even
if it is not clear what the ‘shape’ of the distribution is or whether it can be integrated
easily (to calculate a mean).

We will use the Metropolis-Hastings algorithm for Bayesian inference using the following
steps:

1. Set up the Metropolis-Hastings algorithm.

2. Initialize the values for ✓[0].

3. Iterate the algorithm for t >> 0, such that we are past tab, which is the iteration after
the ‘burn-in’ phase, where the realizations of ✓[t] start to behave as though they are
sampled from the stationary distribution of the Metropolis-Hastings Markov chain
(we will discuss how many iterations are necessary for a burn-in below).

4. Sample the chain for a set of iterations after the burn-in and use these to approximate
the posterior distribution and perform Bayesian inference.

As an example of the last step, say we have run the algorithm for enough iterations to
reach tab and we would like to estimate the values of the parameters as the median of the
posterior. We can do this using the following approach:

✓̂ = median(Pr(✓|y) ' median(✓[tab], ..., ✓[tab+k]) (6)
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• Instructions for constructing an MCMC using Metropolis-Hastings approach:

• Running the MCMC algorithm:

Constructing an MCMC
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• For a given marker part of our GWAS, we define our glm (which gives us our 
likelihood) and our prior (which we provide!), and our goal is then to construct an 
MCMC with a stationary distribution (which we will sample to get the posterior 
“histogram”:

• One approach is setting up a Metropolis-Hastings algorithm by defining a jumping 
distribution

• Another approach is to use a special case of the Metropolis-Hastings algorithm called 
the Gibbs sampler (requires no rejections!), which samples each parameter from the 
conditional posterior distributions (which requires you derive these relationships = 
not always possible!)

Constructing an MCMC for genetic 
analysis

Note that if we substitute these into the r of step 3 of the Metropolis-Hastings algorithm,
the result is r = 1. This means that we update the parameters at every iteration of the
chain! This is one reason that people like Gibbs samplers, i.e. there are no‘wasted’ none-
update steps.

As an example, for our linear regression model, we can set up a Gibbs sampler if we
can derive the following:

Pr(�µ|�a, �d, �
2
✏ ,y) (14)

Pr(�a|�µ, �d, �
2
✏ ,y) (15)

Pr(�d|�µ, �a, �
2
✏ ,y) (16)

Pr(�2
✏ |�µ, �a, �d,y) (17)

Also note that we need not do this individually for each parameter, but can rather sample
vectors (or blocks) of parameters from multivariate conditional posterior distributions (as
long as our algorithm consists of at least two conditional distributions).

4 E�ciency Issues

Our introduction to MCMC based Bayesian inference just scratches the surface of a area
that is a current area of research. A major issue that we have to deal with when performing
this type of algorithmic inference is e�ciency issues concerning our Markov chains. This
includes making decisions concerning: how many iterations are necessary for a burn-in?
How often do we sample the chain? How many iterations do we need to sample? In
particular, we need to deal with the issue of: how do we set up an e�cient chain that does
not require too many iterations to get past the burn-in and also e�ciently samples the
entire posterior? We don’t have time to discuss these issues in this class (but I encourage
you to take a computational Bayesian course if you are interested in learning more). I
will just quickly make the points that producing an e�cient chain for complex problems is
di�cult and even when we have an e�cient chain, we do not know for certain whether we
have passed the burn-in and are e�ciently sampling the posterior. The simplest approach
for assessing the latter is by running multiple chains with di↵erent starting values and
comparing the distributions implied, when sampling these chains, after a large number of
iterations (usually with a statistic) which indicates whether the chains are sampling the
same distribution, which they will do when they are sampling the posterior distribution.
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such a Markov chain, we can set the parameters to any (reasonable) values at t = 0 and
then run the chain for a number of iterations (ideally t =1) until this reaches a station-
ary distribution, at which point we will have our true posterior distribution, i.e. not an
estimate or approximation. If you set up an appropriate Markov chain, you can therefore
perform exact Bayesian inference. For example, for our linear regression model, we will
set up a Markov chain, where ✓[t] is a random vector that takes values for the following
parameters:

✓[t] =

2

664

�µ

�a

�d

�2
✏

3

775

[t]

✓[t+1] =

2

664

�µ

�a

�d

�2
✏

3

775

[t+1]

and continuing for t + 2, etc. such that at a large value of t, we have:

⇡(✓[t]) = Pr(�µ, �a, �d, �
2
✏ |y) (5)

where this result is exact and guaranteed at t =1 but we hope this occurs at much earlier
iterations.

In practice, we will not consider the exact distribution ⇡ but we will set up the Markov
chain and examine one (or multiple) realizations of the chain (e.g. a series of one and zeros
or values of our linear regression parameters) and take samples of the parameter values
after enough iterations such that the realizations start to behave as though they are being
sampled from the Markov chain, after it has reached a stationary distribution. Using this
approach is an example of Markov chain Monte Carlo (MCMC), which is a complex name
for a relatively simple concept, i.e. ‘Monte Carlo’ simply refers to having a stochastic com-
ponent to the algorithm (unlike say an IRLS algorithm) and where ‘Markov chain’ comes
from is now clear.

On a side note, it should blow your mind that we can set up such an algorithm (its all the
more impressive when you see how easy it is to set up such a Markov chain below). This
result is that it is possible to do ‘exact’ Bayesian inference with an appropriate MCMC
approach. This is one of the reasons that Bayesian inference has become so important
in quantitative genomics (and many other fields). The increasing importance can also be
traced to faster computers, which can run these Markov chain algorithms for enough iter-
ations until they operate like samples from the appropriate stationary distribution.
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Importance for MCMC
• Constructing MCMC for Bayesian inference is extremely 

practical

• The constraint is they are computationally intensive

• This is one reason for the surge in the practical use of 
Bayesian data analysis is when computers increased in speed

• This is definitely the case where the number of Bayesian 
MCMC approaches in genetic analysis has steadily increased 
over the last decade or so

• One issue is that, even with a fast computer, MCMC 
algorithms can be inefficient (they take a long time to 
converge, they do not sample modes of a complex posterior 
efficiently, etc.)

• There are therefore other algorithm approaches to Bayesian 
genetic inference, e.g. variational Bayes
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GWAS definitions I
• Association analysis - any analysis involving a statistical assessment of 

a relation between genotype and phenotype, e.g. a hypothesis test involving 
a multiple regression model

• Mapping analysis - an association analysis

• Linkage disequilibrium (LD) mapping - an association analysis 

• Segregating - any locus where there is more than one allele in the 
population

• Genetic marker - any segregating polymorphism we have measured in 
a GWAS, i.e. SNPs genotyped in a GWAS

• Tag SNP - a SNP correlated with a causal polymorphism

• Locus or Genetic Locus - a position in the genome (which may refer 
to a single polymorphism or an entire genomic segment, e.g. that contains 
the coding region of a gene



GWAS definitions II

• Mendelian trait - any phenotype largely affected by one 
or at most two loci where environment does not have a 
large effect on the phenotype

• Complex trait - any phenotype affected by more than 
one or two loci and/or where environmental effects account 
for most of the variation we observe in a population

• Quantitative trait - a complex trait 



That’s it for today

• Next week (last lecture!): introduction to pedigree, inbred 
line and evolutionary quantitative genomics - and continuing 
thoughts!


