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Piazza (!!)

• MAKE SURE YOU ARE SIGNED UP ON PIAZZA whether you 
officially register or not = all communication for the course (!!)

• Class: https://piazza.com/cornell/spring2023/btry4830btry6830

• If you are not be able to sign up PLEASE EMAIL ME ASAP at 
jgm45@cornell.edu and I will get you on

• Note: we may be getting some annoying advertisements starting in a 
week or so… (we’ll see how annoying these are and assess)

mailto:jgm45@cornell.edu


Class Resource: Website
• The website is now up (!!):  https://mezeylab.biohpc.cornell.edu

• This has the syllabus, calendar AND NYC room calendar (!!)

• This also has videos for this year so far (and last year) AND I try to 
post lecture decks before each lecture (!!)



Class Resource: CMS
• Assignments and computer labs (!!) will be posted on 

Cornell CMS (as BTRY 4830)

• Class CMS is up (!!): https://cmsx.cs.cornell.edu/web/guest/ 

• If you have a NetID you should be able to access and 
register for the class CMS site

• If you have a CWID (i.e., you are at Weill) we are adding 
you to CMS (stay tuned)

• We will be sending a Piazza message to ask you to login to 
CMS tomorrow (Weds., Feb 1) as a test

• We will be posting your homework #1 on CMS on Thurs 
(Feb 2)



Times and Locations I

• Lectures are every Tues. / Thurs. 8:05-9:20AM - see class schedule (to be 
posted)

• In-person lecture locations:

• Ithaca:  All in-person lectures in Weill Hall 226

• NYC:  Many different locations (!!) SEE POSTED SCHEDULE (on website)

• Zoom option:

• Anyone may join by zoom for any lecture (I still encourage you to come to 
class…)

• The zoom link has been shared with you by Piazza message

• PLEASE DO NOT SHARE BEYOND THE CURRENT CLASS (e.g., if we get 
zoom-bombed, we may need to remove the option…)



• FIRST COMPUTER LAB IS THIS WEEK (Thurs. Feb 2 / Fri. Feb 3) - more 
information to come this week!

• PLEASE NOTE THE LAB TIMES (!!)

• For those IN ITHACA (= Labs with Mitch!): 

• Lab 1: 5:30-6:30PM on Thurs. (Weill Hall 226)

• Lab 2: 8-9AM on Fri. (Weill Hall 226)

• Please go to the Lab you registered for (!!)

• For those IN NYC (= Labs taught by Sam!):

• Lab 1: 4-5PM on Thurs. (In WCMC1300 Classroom; G [B215], H [B217])

• Lab 2: 9-10AM on Fri.  (By zoom - Sam will distribute the invite)

• PLEASE NOTE: if you are in HOUSTON or you are VERY EXPERIENCED with R, please join 
Fri (!!) - otherwise, join on Thurs!

• You may skip the first 2 labs without penalty BUT

• If you are not VERY familiar with R programming you may want to go

• If you do not already use Latex you may want to go (e.g., homeworks!)

Times and Locations II



Summary of lecture 3: Introduction 
to conditional probability and 

random variables

• Last class, we introduced the foundations needed to define / the 
definition of a probability function (=model)!

• Today we will discuss TWO critical concepts: conditional 
probability AND random variables (!!)
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Review: a system

• System - a process, an object, etc. which we would like to 
know something about

• Example: Genetic contribution to height 

Genome Height

SNP {
A

T

Taller (on average)

Shorter (on average)
?



Review: Experiments and 
Outcomes

• Experiment - a manipulation or measurement of a system 
that produces an outcome we can observe

• Experiment Outcome - a possible result of the experiment

• Example (Experiment / Outcomes):

• Coin flip /  “Heads” or “Tails”

• Two coin flips / HH,  HT,  TH,  TT

• Measure heights in this class / 1.5m, 1.71m, 1.85m, …



Review: Set Definitions
• Set - any collection, group, or conglomerate

• Element - a member of a set

• A Special Set: 

• Set Operations:

• Important Definitions:

Union (⇧) � an operator on sets which produces a single set containing all elements
of the sets.

Intersection (⌃) � an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ‘or’ and ‘and’. A simple example of applying the union
operator is {5�, 5�3��} ⇧ {5�3��, 5�5���} = {5�, 5�3��, 5�5���} and a simple example of intersection
is {5�, 5�3��} ⌃ {5�3��, 5�5���} = {5�3��}. Note that we can write the following generalizations
of these operators:

⇥�

i=1

Ai = A1 ⇧A2 ⇧ ... (1)

⇥⇥

i=1

Ai = A1 ⌃A2 ⌃ ... (2)

where each Ai is a set. Before we leave sets and sample spaces, let’s provide a few other
important definitions:

Subset (⇥) � a set that is contained within another set, e.g. {H} ⇥ {H,T}

Complement (Ac) � the set containing all other elements of a set other than A, e.g.
{H}c = {T}.

Empty Set (⇤) � the set with no elements.

The empty set is unique and is sometimes represented as { }.

Disjoint Sets � sets with no elements in common.

Note that for disjoint sets Ai and Aj , the following holds: Ai ⌃Aj = ⇤.

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.
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Union ([) ⌘ an operator on sets which produces a single set containing all elements
of the sets.

Intersection (\) ⌘ an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ‘or’ and ‘and’. A simple example of applying the union
operator is {50, 50300} [ {50300, 505000} = {50, 50300, 505000} and a simple example of intersection
is {50, 50300} \ {50300, 505000} = {50300}. Note that we can write the following generalizations
of these operators:
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N = {1, 2, 3, ...} (3)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (4)

R = { 0!} (5)

�1 > x >1 (6)
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Review: Sample Spaces
• Sample Space (   ) - set comprising all possible outcomes associated 

with an experiment

• (Note: we have not defined a Sample - we will do this later!)

• Examples (Experiment / Sample Space):

• “Single coin flip” / {H, T}

• “Two coin flips” / {HH, HT, TH, TT}

• “Measure Heights” / any actual measurement OR we could use 

• Events - a subset of the sample space

• Examples (Sample Space / Examples of Events):

• “Single coin flip” /   , {H}, {H, T}

• “Two coin flips” / {TH}, {HH, TH}, {HT, TH, TT}

• “Measure Heights” / {1.7m}, {1.5m, ..., 2.2m} OR [1.7m], (1.5m,1.8m)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(S) : S ! R (10)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ S, Pr(A) > 0.

2. Pr(S) = 1.

3. For A1,A2, ... 2 S, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

2
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...
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...

...
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where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ✏ (195)
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• Probability Function - maps a Sigma Algebra of a sample to a subset of the 
reals:

• Not all such functions that map a Sigma Algebra to [0,1] are probability functions, 
only those that satisfy the following Axioms of Probability (where an axiom is a 
property assumed to be true):

• Note that since a probability function takes sets as an input and is restricted in 
structure, we often refer to a probability function as a probability measure

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(⌦) : F ! [0, 1] (11)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ ⌦, P r(A) > 0

2. Pr(⌦) = 1

3. For A1,A2, ... 2 ⌦, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A)
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Review: Probability functions I
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)

Pr(H1st) = Pr({HH} [ {HT}) (54)

Pr(T1st) = Pr({TH} [ {TT}) (55)

Pr(H2nd) = Pr({HH} [ {TH}) (56)

Pr(T2nd) = Pr({HT} [ {TT}) (57)

Pr({HH}) = 0.25, P r({HT}) = 0.25, P r({TH}) = 0.25, P r({TT}) = 0.25 (58)

Pr({HH,HT}) = 0.5, P r({HH,TH}) = 0.5, P r({HH,TT}) = 0.5, (59)

Pr({HT TH}) = 0.5, P r({HT, TT}) = 0.5, P r({TH, TT}) = 0.5, (60)

Pr({HH,HT, TH}) = 0.75, (61)

Pr({HH,HT, TH, TT}) = 1.0 (62)

Pr(;) = 0 (63)
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• The following is (one example) of a probability function (on the sigma 
algebra) for the two coin flip experiment:

• The following is an example of a function (on the sigma algebra) of 
the two coin flip experiment but is not a probability function:

Review: Probability functions II
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Essential concepts: conditional 
probability and independence

• As well as having an intuitive sense of what it means for something we 
observe to be random (within definable rules) we also have an intuitive 
sense about how the rules change once we observe specific outcomes 
or assume certain possibility applies

• This intuition is captured in conditional probability

• This is the essential concept in any area of probabilistic modeling, where 
the concept of independence directly follows

• In fact, almost anything we are doing in statistics, machine learning, etc. is 
really attempting to identify or leverage conditional probabilities 

• As an example, we could consider the conditional probability that 
someone will be taller or shorter if they have a “T” at a particular 
position in the genome



Conditional probability

• We have an intuitive concept of conditional probability: the 
probability of an event, given another event has taken place

• We will formalize this using the following definition (note that 
this is still a probability!!):

• While not obvious at first glance, this is actually an intuitive 
definition that matches our conception of conditional 
probability

of probability). This means that some of the architects of probability theory are still alive,
and one of them is here at Cornell: Eugene Dynkin (who is in his 90’s). Dynkin (among
other accomplishments) proved a number of theorems and developed a number of impor-
tant methods (e.g. ⇥-�-systems) which are used to prove a number of important results
in basic probability. He is a great teacher and if you ever get the chance to take a course
from him, it’s worth it (and you get a living connection to the beginning of probability as
we know it!).

S = (�⇥,⇥) (5)

7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we
can define the conditional probability as ‘the probability of an event, given that another
event has taken place’. That is, this concept makes formal the case where an event that
has taken place provides us information that changes the probability of a future or focal
event. The formal definition of the conditional probability of Ai given Aj is:

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
(6)

At first glance, this relationship does not seem very intuitive. Let’s consider a quick
example that will make it clear why we define conditional probability this way. Let’s use
our ‘paired coin flip’ where Pr{HH} = Pr{HT} = Pr{TH} = Pr{TT} = 0.25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st TH TT

where we have the following probabilities:

H2nd T2nd

H1st Pr(H1st ⇧H2nd) Pr(H1st ⇧ T2nd) Pr(H1st)
T1st Pr(T1st ⇧H2nd) Pr(T1st ⇧ T2nd) Pr(T1st)

Pr(H2nd) Pr(T2nd)

where each entry of the last column reflects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
Pr(H1st) = Pr(HH ⌅HT ), Pr(H2nd) = Pr(HH ⌅ TH), Pr(T1st) = Pr(TH ⌅ TT ), and
Pr(T2nd) = Pr(HT ⌅ TT ) (work this out for yourself!). Let’s now define the following
probability model:

9



An example of conditional prob.

• Consider the sample space of “two coin flips” and the following 
probability model:
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An example of conditional prob.

• Intuitively, if we condition on the first flip being “Heads”, we need 
to rescale the total to be one (to be a probability function):
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H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

Let’s consider the probability that our second flip is a ‘Heads’ given that we know our first
flip is a ‘Heads’. Note that ‘first flip is Heads’ is H1st = {HH ⇥HT} and the ‘second flip
heads’ is H2nd = {HH ⇥ TH}. This conditional probability is therefore:

Pr(H2nd|H1st) =
Pr(H2st

�
H1st)

Pr(H1st)
=

Pr(HH)

Pr(HH ⇥HT )
=

0.25

0.5
= 0.5 (7)

Here is an intuitive way to think about what is going on. If we know that the first flip
is a head, this limits the outcomes to {HH,HT} (the first row of the table). Note that
conditional probability conforms to the definition of a probability function, so if we think
conceptually of defining the first flip to be ‘Heads’ we now dealing with a ‘new’ sample space
that contains two elements: S|H1st

= {HH,HT}, i.e. our new sample space is the first row
of the table. To conform to the second axiom we need to make the total probability of this
‘new’ space be one (i.e. Pr(S|H1st

) = 1), which we can do by defining Pr(HH|H1st) = 0.5
and Pr(HT |H1st) = 0.5, i.e. after restricting ourselves to these two cases, we have to pick
one or the other and each is equally likely. Thus, the formula in (6) comes from making
sure the second axiom is satisfied for Pr(S|H1st

), where we need to divide by the total
probability of the first row in the original sample space Pr(HH ⇥ HT ) = 0.5 to rescale
the total probability of Pr(HH ⇥ HT |H1st) to ‘one’. This is what is happening in the
denominator. Thus, in our fair coin example, where the probability of ‘Heads’ or ‘Tails’ is
0.5 on each flip, the conditional probability of H2nd given H1st is 0.5.

8 Independence

The concept of independence also matches how we intuitively use probabilistic models.
Intuitively, if events are independent, then knowing that one of the events has happened
provides us no additional information for altering the probability that the second event will
happen, and vice versa. We can define this concept directly from the concept of conditional
probability. If Ai is independent of Aj , then we have:

Pr(Ai|Aj) = Pr(Ai) (8)

While this result is intuitive, it produces a relationship that is less intuitive, specifically:

Pr(Ai ⇤Aj) = Pr(Ai)Pr(Aj) (9)

However, this follows from the definition of conditional probability and independence (equa-
tions 5 and 7):

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
=

Pr(Ai)Pr(Aj)

Pr(Aj)
= Pr(Ai) (10)

10



An example of conditional prob.
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Pr(Aj)
(6)

At first glance, this relationship does not seem very intuitive. Let’s consider a quick
example that will make it clear why we define conditional probability this way. Let’s use
our ‘paired coin flip’ where Pr{HH} = Pr{HT} = Pr{TH} = Pr{TT} = 0.25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st TH TT

where we have the following probabilities:

H2nd T2nd

H1st Pr(H1st ⇧H2nd) Pr(H1st ⇧ T2nd) Pr(H1st)
T1st Pr(T1st ⇧H2nd) Pr(T1st ⇧ T2nd) Pr(T1st)

Pr(H2nd) Pr(T2nd)

where each entry of the last column reflects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
Pr(H1st) = Pr(HH ⌅HT ), Pr(H2nd) = Pr(HH ⌅ TH), Pr(T1st) = Pr(TH ⌅ TT ), and
Pr(T2nd) = Pr(HT ⌅ TT ) (work this out for yourself!). Let’s now define the following
probability model:

9

H2nd T2nd

H1st 0.25 0.25 0.5
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Let’s consider the probability that our second flip is a ‘Heads’ given that we know our first
flip is a ‘Heads’. Note that ‘first flip is Heads’ is H1st = {HH ⇥HT} and the ‘second flip
heads’ is H2nd = {HH ⇥ TH}. This conditional probability is therefore:

Pr(H2nd|H1st) =
Pr(H2st
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H1st)

Pr(H1st)
=

Pr(HH)

Pr(HH ⇥HT )
=

0.25

0.5
= 0.5 (7)

Here is an intuitive way to think about what is going on. If we know that the first flip
is a head, this limits the outcomes to {HH,HT} (the first row of the table). Note that
conditional probability conforms to the definition of a probability function, so if we think
conceptually of defining the first flip to be ‘Heads’ we now dealing with a ‘new’ sample space
that contains two elements: S|H1st

= {HH,HT}, i.e. our new sample space is the first row
of the table. To conform to the second axiom we need to make the total probability of this
‘new’ space be one (i.e. Pr(S|H1st

) = 1), which we can do by defining Pr(HH|H1st) = 0.5
and Pr(HT |H1st) = 0.5, i.e. after restricting ourselves to these two cases, we have to pick
one or the other and each is equally likely. Thus, the formula in (6) comes from making
sure the second axiom is satisfied for Pr(S|H1st

), where we need to divide by the total
probability of the first row in the original sample space Pr(HH ⇥ HT ) = 0.5 to rescale
the total probability of Pr(HH ⇥ HT |H1st) to ‘one’. This is what is happening in the
denominator. Thus, in our fair coin example, where the probability of ‘Heads’ or ‘Tails’ is
0.5 on each flip, the conditional probability of H2nd given H1st is 0.5.

8 Independence

The concept of independence also matches how we intuitively use probabilistic models.
Intuitively, if events are independent, then knowing that one of the events has happened
provides us no additional information for altering the probability that the second event will
happen, and vice versa. We can define this concept directly from the concept of conditional
probability. If Ai is independent of Aj , then we have:

Pr(Ai|Aj) = Pr(Ai) (8)

While this result is intuitive, it produces a relationship that is less intuitive, specifically:

Pr(Ai ⇤Aj) = Pr(Ai)Pr(Aj) (9)

However, this follows from the definition of conditional probability and independence (equa-
tions 5 and 7):
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=
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= Pr(Ai) (10)
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An example of conditional prob.

• Intuitively, if we condition on the first flip being “Heads”, we need 
to rescale the total to be one (to be a probability function):

of probability). This means that some of the architects of probability theory are still alive,
and one of them is here at Cornell: Eugene Dynkin (who is in his 90’s). Dynkin (among
other accomplishments) proved a number of theorems and developed a number of impor-
tant methods (e.g. ⇥-�-systems) which are used to prove a number of important results
in basic probability. He is a great teacher and if you ever get the chance to take a course
from him, it’s worth it (and you get a living connection to the beginning of probability as
we know it!).
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7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we
can define the conditional probability as ‘the probability of an event, given that another
event has taken place’. That is, this concept makes formal the case where an event that
has taken place provides us information that changes the probability of a future or focal
event. The formal definition of the conditional probability of Ai given Aj is:

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
(6)

At first glance, this relationship does not seem very intuitive. Let’s consider a quick
example that will make it clear why we define conditional probability this way. Let’s use
our ‘paired coin flip’ where Pr{HH} = Pr{HT} = Pr{TH} = Pr{TT} = 0.25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st TH TT

where we have the following probabilities:

H2nd T2nd

H1st Pr(H1st ⇧H2nd) Pr(H1st ⇧ T2nd) Pr(H1st)
T1st Pr(T1st ⇧H2nd) Pr(T1st ⇧ T2nd) Pr(T1st)

Pr(H2nd) Pr(T2nd)

where each entry of the last column reflects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
Pr(H1st) = Pr(HH ⌅HT ), Pr(H2nd) = Pr(HH ⌅ TH), Pr(T1st) = Pr(TH ⌅ TT ), and
Pr(T2nd) = Pr(HT ⌅ TT ) (work this out for yourself!). Let’s now define the following
probability model:

9

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

Let’s consider the probability that our second flip is a ‘Heads’ given that we know our first
flip is a ‘Heads’. Note that ‘first flip is Heads’ is H1st = {HH ⇥HT} and the ‘second flip
heads’ is H2nd = {HH ⇥ TH}. This conditional probability is therefore:

Pr(H2nd|H1st) =
Pr(H2st

�
H1st)

Pr(H1st)
=

Pr(HH)

Pr(HH ⇥HT )
=

0.25

0.5
= 0.5 (7)

Here is an intuitive way to think about what is going on. If we know that the first flip
is a head, this limits the outcomes to {HH,HT} (the first row of the table). Note that
conditional probability conforms to the definition of a probability function, so if we think
conceptually of defining the first flip to be ‘Heads’ we now dealing with a ‘new’ sample space
that contains two elements: S|H1st

= {HH,HT}, i.e. our new sample space is the first row
of the table. To conform to the second axiom we need to make the total probability of this
‘new’ space be one (i.e. Pr(S|H1st

) = 1), which we can do by defining Pr(HH|H1st) = 0.5
and Pr(HT |H1st) = 0.5, i.e. after restricting ourselves to these two cases, we have to pick
one or the other and each is equally likely. Thus, the formula in (6) comes from making
sure the second axiom is satisfied for Pr(S|H1st

), where we need to divide by the total
probability of the first row in the original sample space Pr(HH ⇥ HT ) = 0.5 to rescale
the total probability of Pr(HH ⇥ HT |H1st) to ‘one’. This is what is happening in the
denominator. Thus, in our fair coin example, where the probability of ‘Heads’ or ‘Tails’ is
0.5 on each flip, the conditional probability of H2nd given H1st is 0.5.

8 Independence

The concept of independence also matches how we intuitively use probabilistic models.
Intuitively, if events are independent, then knowing that one of the events has happened
provides us no additional information for altering the probability that the second event will
happen, and vice versa. We can define this concept directly from the concept of conditional
probability. If Ai is independent of Aj , then we have:

Pr(Ai|Aj) = Pr(Ai) (8)

While this result is intuitive, it produces a relationship that is less intuitive, specifically:

Pr(Ai ⇤Aj) = Pr(Ai)Pr(Aj) (9)

However, this follows from the definition of conditional probability and independence (equa-
tions 5 and 7):

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
=

Pr(Ai)Pr(Aj)

Pr(Aj)
= Pr(Ai) (10)

10

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

Let’s consider the probability that our second flip is a ‘Heads’ given that we know our first
flip is a ‘Heads’. Note that ‘first flip is Heads’ is H1st = {HH ⇥HT} and the ‘second flip
heads’ is H2nd = {HH ⇥ TH}. This conditional probability is therefore:

Pr(H2nd|H1st) =
Pr(H2st

�
H1st)

Pr(H1st)
=

Pr(HH)

Pr(HH ⇥HT )
=

0.25

0.5
= 0.5 (7)

Here is an intuitive way to think about what is going on. If we know that the first flip
is a head, this limits the outcomes to {HH,HT} (the first row of the table). Note that
conditional probability conforms to the definition of a probability function, so if we think
conceptually of defining the first flip to be ‘Heads’ we now dealing with a ‘new’ sample space
that contains two elements: S|H1st

= {HH,HT}, i.e. our new sample space is the first row
of the table. To conform to the second axiom we need to make the total probability of this
‘new’ space be one (i.e. Pr(S|H1st

) = 1), which we can do by defining Pr(HH|H1st) = 0.5
and Pr(HT |H1st) = 0.5, i.e. after restricting ourselves to these two cases, we have to pick
one or the other and each is equally likely. Thus, the formula in (6) comes from making
sure the second axiom is satisfied for Pr(S|H1st

), where we need to divide by the total
probability of the first row in the original sample space Pr(HH ⇥ HT ) = 0.5 to rescale
the total probability of Pr(HH ⇥ HT |H1st) to ‘one’. This is what is happening in the
denominator. Thus, in our fair coin example, where the probability of ‘Heads’ or ‘Tails’ is
0.5 on each flip, the conditional probability of H2nd given H1st is 0.5.

8 Independence

The concept of independence also matches how we intuitively use probabilistic models.
Intuitively, if events are independent, then knowing that one of the events has happened
provides us no additional information for altering the probability that the second event will
happen, and vice versa. We can define this concept directly from the concept of conditional
probability. If Ai is independent of Aj , then we have:

Pr(Ai|Aj) = Pr(Ai) (8)

While this result is intuitive, it produces a relationship that is less intuitive, specifically:

Pr(Ai ⇤Aj) = Pr(Ai)Pr(Aj) (9)

However, this follows from the definition of conditional probability and independence (equa-
tions 5 and 7):

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
=

Pr(Ai)Pr(Aj)

Pr(Aj)
= Pr(Ai) (10)

10

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)
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Independence

• The definition of independence is another concept that is not 
particularly intuitive at first glance, but it turns out it directly 
follows our intuition of what “independence” should mean and 
from the definition of conditional probability

• Specifically, we intuitively think of two events as “independent” if 
knowing that one event has happened does not change the 
probability of a second event happening

• i.e., the first event provides provides us no insight into what will 
happen second



Independence

• This requires that we define independence as follows:

• This implies the following from the definition of conditional prob.:

• This in turn produces the following relation for independent 
events:
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Example of independence

• Consider the sample space of “two coin flips” and the following 
probability model:

of probability). This means that some of the architects of probability theory are still alive,
and one of them is here at Cornell: Eugene Dynkin (who is in his 90’s). Dynkin (among
other accomplishments) proved a number of theorems and developed a number of impor-
tant methods (e.g. ⇥-�-systems) which are used to prove a number of important results
in basic probability. He is a great teacher and if you ever get the chance to take a course
from him, it’s worth it (and you get a living connection to the beginning of probability as
we know it!).

S = (�⇥,⇥) (5)

7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we
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At first glance, this relationship does not seem very intuitive. Let’s consider a quick
example that will make it clear why we define conditional probability this way. Let’s use
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and neither are the other possibilities considered. Intuitively, getting a ‘Head’ on the first
flip increases the probability of getting a ‘Head’ on the second (and similarly for ‘Tails’).
In this case, knowledge concerning one of the possibilities alters the probability of the next,
so it makes sense that they are not independent.

One final thought before we leave the concept of independence. It is important to note that
disjoint events cannot be independent. This follows from the third axiom of probability
and the definition of independence. This actually also makes intuitive sense but perhaps
not at first glance (see problem 1 on your first homework, which will be handed out next
week).
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Next Essential Concept: 
Random Variables

Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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• A probability function / measure takes the Sigma Algebra to the reals and provides a model of the 
uncertainty in our system / experiment:

• When we define a probability function, this is an assumption (!!), i.e. what we believe is an 
appropriate probabilistic description of our system / experimen

• We would like to have a concept that connects the actual outcomes of our experiment to this 
probability mode

• What’s more, we are often in situations where we are interested in using numbers to represent 
the outcomes, e.g., , “Heads” and “Tails” accurately represent the outcomes of a coin flip example 
but they are not numbers (e.g., we may be interested in “number of heads”)

• In addition, many of the mathematical tools we use in probability and statistics require the 
outcomes being represented within the reals

• We therefore are often interested in a function of the original sample space that maps this space 
to the reals

• We will define a random variable for this purpose

• In general, the concept of a random variable is a “bridging” concept between the actual 
experiment and the probability model, this provides a numeric description of sample outcomes 
that can be defined many ways (i.e. provides great versatility)

Random variables I

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (11)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ ⌦, P r(A) > 0

2. Pr(⌦) = 1

3. For A1,A2, ... 2 ⌦, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A)

7



• Random variable - a real valued function on the sample space:

• Intuitively:

• Note that these functions are not constrained by the axioms of 
probability, e.g. not constrained to be between zero or one (although they 
must be measurable functions and admit a probability distribution on the 
random variable!!)

• We generally define them in a manner that captures information that is of 
interest

• As an example, let’s define a random variable for the sample space of the 
“two coin flip” experiment that maps each sample outcome to the 
“number of Tails” of the outcome:

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =

�
⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,
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1 Introduction

Last lecture, we introduced critical concepts for probabilistic modeling: sample spaces
and probability functions. Today, we will introduce additional critical concepts: random
variables and their associated probability distribution functions. We will do this for random
variables that are discrete or continuous. We will then generalize the concept of a random
variable to a random vector.

2 Random variables

As we discussed last lecture, a probability function or measure is a function that takes a
sample space to the reals:

Pr(S) : S ! R (1)

and that abides by certain rules (the axioms of probability). For example, we can define a
probability function on the sample space for ‘a pair of coin flips’ as S = {HH,HT, TH, TT}
using Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25, i.e. a fair coin example. As we
make use of sample spaces and the probability functions that we define, we are often in a
position where we want to quantify specific types of outcomes, e.g. the number of ‘Tails’
in our two flips. To do this, we define a random variable, which is a real valued function
on the sample space f(S), where we generally substitute X for f :

X(S) : S ! R (2)

A random variable di↵ers from a probability function in that it is not constrained to follow
the axioms of probability (although it must adhere to rules such that it is still considered a
mathematical function!). For example, it is not constrained to be greater than zero, if need
not take the entire probability space to 1, and it need enforce additivity on disjoint sets (the
third axiom of probability). While these functions are unconstrained, we in general define
them in such a way such that they capture useful information about sample outcomes.
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X = x , Pr(X)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

7

X(⌦) : X(H) = 0, X(T ) = 1

X : ⌦ ! R
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That’s it for today

• Next lecture, we will continue our random variables and introduce 
expectations, variances, and related!


