Quantitative Genomics and

Genetics
BTRY 4830/6830: PBSB.5201.03

Lecture 4: Random Variables and
Random Vectors

Jason Mezey
Feb 2,2023 (Th) 8:05-9:20



Announcements |

® FIRST COMPUTER LAB IS TOMORROW / FRI (Thurs. Feb 2 / Fri. Feb 3) -
more information to come this week!

e PLEASE NOTETHE LABTIMES (!)
® For those IN ITHACA (= Labs with Mitch!):
® Lab 1:5:30-6:30PM on Thurs. (Weill Hall 226)
e lab 2:8-9AM on Fri. (Weill Hall 226)
® Please go to the Lab you registered for (!!)
® For those IN NYC (= Labs taught by Sam!):
® Lab |:4-5PM on Thurs. (InWCMCI1300 Classroom; G [B215],H [B217])
® lab 2:9-10AM on Fri. (By zoom - Sam will distribute the invite)

e PLEASE NOTE: if you are in HOUSTON or you are VERY EXPERIENCED with R, please join
Fri (!!) - otherwise, join on Thurs!

® You may skip the first 2 labs without penalty BUT
® |If you are not VERY familiar with R programming you may want to go

® |[f you do not already use Latex you may want to go (e.g., homeworks!)



Announcements ||

Everybody should be signed up on Piazza (!!) - note we may
need to deal with advertisements...

Check the lab website: https://mezeylab.biohpc.cornell.edu

Class CMS is up (!): https://cmsx.cs.cornell.edu/web/guest/

® |f you have a NetID you should be able to access

® |[f you have a CWID (i.e., you are at Weill) we hope to
have you on by this afternoon

® We will post homework #| on CMS today (!!)

® [f we cannot get Weill folks up on CMS by the time we
post homework #1, we will distribute in another way...



Announcements ||

® Homework #| (PLEASE NOTE THE FOLLOWING):
® Due | 1:59PM,Weds., Feb 8 and MUST BE UPLOADED TO CMS (!!)

® If you upload late (even by a minute...) you will get a penalty (note that no
excuses will be accepted = you can always upload early...)

® Homeworks are “open book” and you may work together but hand in your
own work (!!)

® Answers must be typed (!!) including all equations - if this is a problem go to
computer lab this week (= intro to Latex!)

M ¢

® Problems are divided into “easy”,“medium, and “difficult”

® You can complete the “easy” and “medium” (make sure you give yourself
enough time!)

® For the “difficult” at least attempt (but note that you can get an “A” in the
class even if you do not / cannot complete these problems!)

® Please feel free to attend office hours for help (!!) see next slide



Announcements |V

| will hold office hours on MONDAYS every week
12:30-2:30 by zoom (please note: if this day / time turns
out to be inconvenient for many, we may change...)

| will send out a Piazza message with the zoom link for
office hours later today (please do not share beyond the
class!)

The first office hours will be this Mon, Feb 6 (I will send
out a reminder)

| will record office hours (and post them on CMY)

You may also set up individual sessions with me (Jason)
by appointment



Summary of lecture 4: Introduction
to random variables and vectors

® [ast class, we introduced conditional probability (and
independence)

® TJoday we will introduce and discuss a critical concept (!!) random
variables (and random vectors)



Conceptual Overview

Experiment

Statistics Assumptions




Review: Probability functions |

Probability Function - maps a Sigma Algebra of a sample to a subset of the

reals:
Pr(F): F —|[0,1]

Not all such functions that map a Sigma Algebra to [0, 1] are probability functions,
only those that satisfy the following Axioms of Probability (where an axiom is a
property assumed to be true):

1. For AC Q,Pr(A) >0
2. Pr(Q) =1
3. For Aj, Ag, ... € Q, if 4;NA; =0 (disjoint) for each i # j: Pr({J;° A;) ZPT

Note that since a probability function takes sets as an input and is restricted in
structure, we often refer to a probability function as a probability measure



Review: Conditional probability

® We have an intuitive concept of conditional probability: the
probability of an event, given another event has taken place

® We will formalize this using the following definition (note that
this is still a probability!!):

The formal definition of the conditional probability of A; given A; is:

Pr(A; N .Aj)
Pr(A;)

Pr(Ai|lA;) =

® While not obvious at first glance, this is actually an intuitive
definition that matches our conception of conditional
probability



Review:An example of
conditional prob.

® |ntuitively, if we condition on the first flip being “Heads”, we need
to rescale the total to be one (to be a probability function):

H2nd T2nd
Hi, | HH | HT
Tie | TH | 1T

H 2nd T2nd

B PT(HQstﬂHlst) . Pr({HH}) @ — 0.5
Pr(Hyy)  PrOHHTOLHTY - 05




Review: Independence

This requires that we define independence as follows:
If A; is independent of A;, then we have:
Pr(A;|A;) = Pr(A;)

This implies the following from the definition of conditional prob.:

Pr(AiNA)  Pr(A)Pr(4))

PrA) = ") Pr(4)

= Pr(A;)

This in turn produces the following relation for independent
events:

Pr(A;NA;) = Pr(A;)Pr(A;)



Review: Example of independence

® Consider the sample space of “two coin flips” and the following
probability model: Pr{HH} = Pr{HT} = Pr{TH} = Pr{TT} = 0.25

HQnd TQnd
Hlst PT(Hlst M HQnd) PT(Hlst M T2nd) PT(Hlst)
Tyst | Pr(Tist N Hopg) | Pr(Tise NTona) | Pr(Tist)
PT(HQnd) PT(T2nd)

Han TQnd
Hige | 0.25 | 0.25 | 0.5
T | 0.25 | 0.25 | 0.5
0.5 0.5

In this model, Hys and Hs,g are independent, i.e. Pr(Hig N Hopg) = Pr(His) Pr(Hong)



Review: Example of non-
independence

® Consider the sample space of “two coin flips” and the following

probability model:

H 2nd

TQnd

Hlst PT(Hlst a HQnd)

PT(Hlst M T2nd) PT(Hlst)

Tist | Pr(Tise N Hopg)

PT(Tlst M T2nd) PT(Tlst)

PT(HQnd) PT(T2nd)
HQnd T2nd

Hiy | 04 0.1 | 0.5

T st 0.1 0.4 | 0.5
0.5 0.5

In this model His and Hsy,g are not independent, i.e. Pr(HisNHopg) # Pr(Hist) Pr(Hang)



Next Essential Concept:

Random Variables
Pr(F)
Experiment () F

(Sample Space) (Sigma Algebra)



Next Essential Concept:

Random Variables
T Pr(F)
A A
Experiment () F

(Sample Space) (Sigma Algebra)



Next Essential Concept:

Random Variables
X
Random Variable
X X(w),w e Pr(F)
A A A
Experiment () F

(Sample Space) (Sigma Algebra)



Random variables |

A probability function / measure takes the Sigma Algebra to the reals and provides a model of the
uncertainty in our system / experiment:

Pr(F):F —|0,1]

When we define a probability function, this is an assumption (!!), i.e. what we believe is an
appropriate probabilistic description of our system / experimen

We would like to have a concept that connects the actual outcomes of our experiment to this
probability mode

What'’s more, we are often in situations where we are interested in using numbers to represent
the outcomes, e.g.,, “Heads” and “Tails” accurately represent the outcomes of a coin flip example
but they are not numbers (e.g., we may be interested in “number of heads”)

In addition, many of the mathematical tools we use in probability and statistics require the
outcomes being represented within the reals

We therefore are often interested in a function of the original sample space that maps this space
to the reals

We will define a random variable for this purpose

In general, the concept of a random variable is a “bridging” concept between the actual
experiment and the probability model, this provides a numeric description of sample outcomes
that can be defined many ways (i.e. provides great versatility)



Random variables |l
Random variable - a real valued function on the sample space:

X: Q=R

Intuitively:

) — |[X(w),wec|—R

Note that these functions are not constrained by the axioms of
probability, e.g. not constrained to be between zero or one (although they
must be measurable functions and admit a probability distribution on the
random variable!!)

We generally define them in a manner that captures information that is of
interest

As an example, let’s define a random variable for the sample space of the
“two coin flip” experiment that maps each sample outcome to the
“number of Tails” of the outcome:

X(HH) =0, X(HT) =1, X(TH) =1, X(TT) = 2



Random variables llI

®  Why we might want a concept like X:

® This approach allows us to handle non-numeric and numeric sample
spaces (sets) in the same framework (e.g., {H,T} is non-numeric but a
random variable maps them to something numeric)

® We often want to define several random variables on the same sample
space (e.g., for a “two coin flips” experiment “number of heads” and
“number of heads on the first of the two flips”):

X1 Q) — R Q
X9 : (0 >R
® A random variable provides a bridge between the abstract sample space

that is mapped by X and the actual outcomes of the experiment that we
run (the sample), which produces specific numbers x

—> X

—> X2

® As an example, the notation X = x bridges the abstract notion of what
values could occur X and values we actually measured x



Random variables IV

A critical point to note: because we have defined a probability function on the
sigma algebra, this “induces” a probability function on the random variable X:

Pr(F) — Pr(X)

In fact, this relationship allows us to “start” our modeling with the random variable
and the probability on this random variable (i.e. the Sample Space, Sigma Algebra,
and original probability function on random variable are implicit - but remember
these foundations are always there!!)

To bridge probability of an occurrence and what actually occurs in the experiment
e often use an “upper” case letter to represent the function and a “lower” case
letter to represent the values we actually observe:

Pr(X = x)

We will divide our discussion of random variables (which we will abbreviate r.v.)
and the induced probability distributions into cases that are discrete (taking
individual point values) or continuous (taking on values within an interval of the
reals), since these have slightly different properties (but the same foundation is
used to define both!!)



Next Essential Concept:

Random Variables
X
Random Variable
X X(w),w e Pr(F)
A A A
Experiment () F

(Sample Space) (Sigma Algebra)



Random Variables

Random Variable

X X(w),w e Pr(F)
A A A
Experiment () F

(Sample Space) (Sigma Algebra)



Random Variables

=
/Ran’dom Varl:ble\

X X(w),w e Pr(F)
A A A
Experiment () F

(Sample Space) (Sigma Algebra)



Discrete random variables /
probability mass functions (pmf)

° If we define a random variable on a discrete sample space, we produce a
discrete random variable. For example, our two coin flip / number of Tails
example:

X(HH) =0, X(HT) =1, X(TH) =1, X(TT) = 2

®  The probability function in this case will induce a probability distribution that
we call a probability mass function which we will abbreviate as pmf

® For our example, if we consider a fair coin probability model (assumption!) for
our two coin flip experiment and define a “number of Tails” r.v., we induce the
following pmf:

1.0

Pri{HHY}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25

Z,

Pr(X =0) =0.25

Px(zx)=Pr(X=xz)=< Pr(X=1)=0.5 S
Pr(X =2) =0.25 -

|||||||||||||||||||||



Discrete random variables /
cumulative mass functions (cmf)

An alternative (and important!) representation of a discrete probability model is a
cumulative mass function which we will abbreviate (cmf):

Fx(z) = Pr(X < x)
where we define this function for X from —oo to +o0.
This definition is not particularly intuitive, so it is often helpful to consider a

graph illustration. For example, for our two coin flip / fair coin / number of Tails
example:

S
-

0.8

{

Re(x)
, 0f4 ‘ 0.6
Fy (%)

0.2
0.2

0.0
0.0

|||||||||||||||||||||



Continuous random variables /
probability density functions (pdf)

For a continuous sample space, we can define a discrete random
variable or a continuous random variable (or a mixture!)

For continuous random variables, we will define analogous
“probability” and “cumulative” functions, although these will have
different properties

For this class, we are considering only one continuous sample
space: the reals (or more generally the multidimensional
Euclidean space)

Recall that we will use the reals as a convenient approximation to
the true sample space



Mathematical properties of
continuous r.v.s

For the reals, we define a probability density function (pdf): fx ()

The pdf of X, a continuous r.v., does not represent the probability of a
specific value of X, rather we can use it to find the probability that a value
of X falls in an interval [a,b]:

b
Pra < X <b) = / fx(x)dx

Related to this concept, for a continuous random variable, the probability
of specific value (or point) is zero (why is this!?)

For a specific continuous distribution the cdf is unique but the pdf is not,
since we can assign values to non-measurable sets

If this is the case, how would we ever get a specific value when
performing an experiment!?



Probability density functions (pdf):
normal example

To illustrate the concept of a pdf, let’s consider the reals as the
(approximate!) sample space of human heights, the normal (also called
Gaussian) probability function as a probability model for human heights,
and the random variable X that takes the value “height” (what kind of
function is this!?)

1 _E@w?
In this case, the pdf of X has the following form: fx () = \/2726 202
o

(=0 o
- -

0.8
0.8
I

B((X)O.B

04

0.2

0.0

0.46(()()

0.2

0.0




Continuous random variables /
cumulative density functions (cdf)

e
-

@ _
o

For continuous random variables,

we also have an analog to the =37
cmf, which is the cumulative n
density function abbreviated i
as cdf: =

<
o

Fx(o)= [ " fx(@)de

1.0

0.8

Again, a graph illustration is
instructive

T 06

0.4

=

Note the cdf runs from zero to
one (why is this?)

0.0

T T
-10 -5 0 5 10



Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Example of a discrete random

vector

Consider the two coin flip experiment and assume a probability function

for a fair coin: Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25

X1 (HH) =0
X1 = { X1(HT) =X (TH) =1
X(TT) =2

Let’s define two random variables: “number of Tails” and “first flip is Heads”

Xo(TH) = Xo(TT) =0
Ao = { Xo(HH) = Xo(HT) = 1

The probability function induces the following pmf for the random vector

X=[X1, X2], where we use bold X do indicate a vector (or matrix):

PT(X) = P’I“(Xl = Scl,XQ = 332) = Px(X) = PXI,X2(331,902)

PT(Xl = O,XQ = O) = 0.0,PT‘(Xl = O,XQ = 1) = 0.25
Pr(X;=1,X,=0)=0.25Pr(X;=1,X,=1) =025
Pr(X;=2,Xy=0)=025Pr(X; =2,X,=1) = 0.0

PX1,X2 (x1,x2)
-1.0 -05 00 05 10

-

ot

x |

2.0

Nt

Wt

1.5

1.0

0.5

-0.5

-1.0



Example of a continuous random
vector

® Consider an experiment where we define a two-dimensional Reals sample space
for “height” and “IQ” for every individual in the US (as a reasonable approximation)

® |et’s define a bivariate normal probability function for this sample space and
random variables Xi and X2 that are identity functions for each of the two
dimensions

® In this case, the pdf of X=[Xi, X2] is a bivariate normal (we will not write out the
formula for this distribution - yet):

Pr(X) = Pr(X) = x1, Xo = x2) = fx(X) = fx;,x, (21, 72)

Again, note that we cannot use this probability function
to define the probabilities of points (or lines!) but we can
use it to define the probabilities that values of the
random vector fall within (square) intervals of the two
random variables (!) [a,b], [c,d]

b rd
Pria < X1 <b,c< X <d) = / / Ix1,x, (1, 22)dz1, d2s
a C




Review: random vector conditional
probability and independence |

Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define
conditional probability for random vectors:

PT<X1|X2) =

PT(Xl M XQ)
P?“(XQ)

As a simple example (discrete in this case - but continuous is analogous!), consider the two flip
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads’”:

Xo=0]| Xo=1
X, =0| 00 | 02 |02
X, = 0.25 025 | 0.5 Pr(X;=0NnXy=1) 0.25
Pr(X;=0X2=1) = = =0.5
X, =2 025 | 00 |02 r(&n =02 =1) Pr(Xo=1) 0.5
0.5 0.5

We can similarly consider whether r.v's of a random vector are independent, e.g.

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125

NOTE |:we can use either Pr(X;|X;) = Pr(X;) or Pr(X;NX;)= Pr(X;)Pr(X;) to check
independence!

NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the
opposite is not true: if one does not show independence you’ve established they are not
independent (!!)



Review: random vectors conditional
probability and independence ||

Pr({HHY) = Pr({HTY}) = Pr({TH}) = Pr({TT}) = 0.25

Xi\(HH) =0 _ _
Xq = { Xi(HT) = X,(TH) =1 X9 = { 257;2 )) :))(52(<II’JTT)) :01
X\(TT) =2
Pr(X,=0)= Pr({HH}) = 0.25 Pr(X1=0,Xo=0)=Pr({HH}N{TH,TT}) = Pr(0) =0
Pr(X,=1)= Pr({HT,TH}) = 0.5 Pr(Xy =1,Xs =0) = Pr({HT,TH} N {TH,TT}) = Pr({TH}) = 0.25

Xo=0]| Xo=1
X = 0.0 0.25 |0.25
Pr(X;=0NX;=1) 0.2
X;=1] 025 | 025 | 05 Pr(X; =0/X,=1) = riXi=0nXe=1) 025
X, = 0.25 0.0 |0.25 Pr(X; =1) 0.5
0.5 0.5

Pr(X;N X;) = Pr(X;)Pr(X;)

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125



Marginal distributions of random
vectors

® Note that marginal distributions of random vectors are the
probability of a r.v. of a random vector after summing (discrete) or
integrating (continuous) over all the values of the other random variables:

maz(Xa)
Py, (2131) = Z PT‘(Xl =11 NXg = :UQ) = ZPT(Xl = ZI?l‘XQ == xz)PT(XQ = 332)

xo=min(X2)

oo

le ($1) = / PT(Xl = CElﬂXQ = Jjg)dxg = / PT(Xl = $1|X2 = xg)PT(Xg = $2)d332

— 00

®  Again,as a simple illustration, consider our two coin flip example:

Xo=0] Xo=1
X1=0 0.0 0.25 0.25
X1 =1 0.25 0.25 0.5
X1 =2 0.25 0.0 0.25
0.5 0.5




Three last points about random
vectors

® Just as we can define cmf’s / cdf’s for r.vs, we can do the same for random
vectors:

Fx, x,(z1,22) = Pr(X1 < x1, X2 < 22)

1 o
Fx, x,(z1,22) = / / fx, x,(x1, x2)dxr1d2s
—00 J —00

®  We have been discussing random vectors with two r.vs, but we can
consider any number n of r.v’s:

Pr(X)=Pr(X; =21, Xo=29,...., X, =)

®  We refer to probability distributions defined over r.v. to be univariate,
when defined over vectors with two r.v.s they are bivariate, and when
defined over three or more, they are multivariate



That’s it for today

® Next lecture, we will introduce expectations, variances, and related!



