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Announcements |

® Everyone should be all set with Piazza and the class website

® For CMS, everyone with a netlD should now be good
(please Piazza message me and let me know if you have a
netlD and are still not able to see the class CMS!) and we
are working on CWID folks (note



Announcements ||

® Homework |, question | edit-correction

Problem 1 (Easy)

Consider a coin (system) that you would like to learn about and two types of experiments: 1. One
flip of the coin (Experiment 1), and Two flips of the coin (Experiment 2). Consider the case where
you are going to perform Experiment 1 TWICE and Experiment 2 ONCE.

a. Write out BOTH the sample spaces AND the Sigma Algebras for BOTH Experiments 1 and 2.

Note for Experiment 1 the answer is: Q = {H, T}, o-algebra= 0, {H},{T},{H,T}

b. Using one sentence at most, explain why the sets {Hy, T} describing the result of ‘heads’
when running the Experiment 1 the first time and a ‘tails’ when running Experiment 1 the
second time, is distinct from the set {HT} describing the results of running Experiment 2
one time.

c. Define a probability model on € (i.e. assign specific probabilities to each outcome) for Ex-
periment 1 such that Pr({H}) = 0.8, Pr({T}) = 0.2. What is the probability of each event
of the Sigma-algebra that you defined for this Experiment in part [a]? Note: we are asking
for the probabilities for the Sigma-algebra of Experiment 1 (i.e., Problem 1a) and NOT for
what resulted from running this experiment two times (i.e., Problem 1b)? Could this be a
legitimate probability model for a coin / this experiment? Explain your answer using no more
than one sentence.

® Note after class, | will post this version to CMS and send by
Piazza message (and note: fine to hand in your work on the
previous latex version!)



Summary of lecture 5: Expectations,
Variances, Covariances

® [ast class, we introduced probability distributions of random
variables (including discrete and continuous forms)

® Today, we will continue our discussion by introducing random
vectors ad their probability distributions (and conditional
probability for random vectors)

® We will also discuss the extremely useful concept of expectations,
variances, and covariances



Conceptual Overview

Experiment

Statistics Assumptions




Review: Probability functions |

Probability Function - maps a Sigma Algebra of a sample to a subset of the

reals:
Pr(F): F —|[0,1]

Not all such functions that map a Sigma Algebra to [0, 1] are probability functions,
only those that satisfy the following Axioms of Probability (where an axiom is a
property assumed to be true):

1. For AC Q,Pr(A) >0
2. Pr(Q) =1

3. For A;, A4 if A;NA; =0 (disjoint) for each i # j: Pr(|J;° A;) ZP”P

Note tha{since a probability function takes sets as an input and is restricted in
structdre, we often refer to a probability function as a probability measure



Review: Random variables |
Random variable - a real valued function on the sample space:

X: Q=R

Intuitively:

) — |[X(w),wec|—R

Note that these functions are not constrained by the axioms of
probability, e.g. not constrained to be between zero or one (although they
must be measurable functions and admit a probability distribution on the
random variable!!)

We generally define them in a manner that captures information that is of
interest

As an example, let’s define a random variable for the sample space of the
“two coin flip” experiment that maps each sample outcome to the
“number of Tails” of the outcome:

X(HH) =0, X(HT) =1, X(TH) =1, X(TT) = 2



Review: Random Variables ||
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Review: Discrete random variables /
probability mass functions (pmf)

° If we define a random variable on a discrete sample space, we produce a
discrete random variable. For example, our two coin flip / number of Tails
example:

X(HH) =0, X(HT) =1, X(TH) =1, X(TT) = 2

®  The probability function in this case will induce a probability distribution that
we call a probability mass function which we will abbreviate as pmf

® For our example, if we consider a fair coin probability model (assumption!) for
our two coin flip experiment and define a “number of Tails” r.v., we induce the
following pmf: 2

0.8
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Review: Discrete random variables /
cumulative mass functions (cmf)

An alternative (and important!) representation of a discrete probability model is a
cumulative mass function which we will abbreviate (cmf):

Fx(z) = Pr(X < x)
where we define this function for X from —oo to +o0.
This definition is not particularly intuitive, so it is often helpful to consider a

graph illustration. For example, for our two coin flip / fair coin / number of Tails
example:
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Review: Continuous random
variables / probability density
functions (pdf)

For a continuous sample space, we can define a discrete random
variable or a continuous random variable (or a mixture!)

For continuous random variables, we will define analogous
“probability” and “cumulative” functions, although these will have
different properties

For this class, we are considering only one continuous sample
space: the reals (or more generally the multidimensional
Euclidean space)

Recall that we will use the reals as a convenient approximation to
the true sample space



Review: Mathematical properties
of continuous r.v.s

For the reals, we define a probability density function (pdf): fx ()

The pdf of X, a continuous r.v., does not represent the probability of a
specific value of X, rather we can use it to find the probability that a value
of X falls in an interval [a,b]:

b
Pra < X <b) = / fx(x)dx

Related to this concept, for a continuous random variable, the probability
of specific value (or point) is zero (why is this!?)

For a specific continuous distribution the cdf is unique but the pdf is not,
since we can assign values to non-measurable sets

If this is the case, how would we ever get a specific value when
performing an experiment!?



Review: Continuous random variable
[ cumulative density functions (cdf)

For continuous random variables,
we also have an analog to the
cmf, which is the cumulative
density function abbreviated
as cdf:

—
ted

T
Fx(x) :/ fx(x)dx
—0
Again, a graph illustration is
instructive

Note the cdf runs from zero to
one (why is this?)
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Probability density functions (pdf):
normal example

To illustrate the concept of a pdf, let’s consider the reals as the
(approximate!) sample space of human heights, the normal (also called
Gaussian) probability function as a probability model for human heights,
and the random variable X that takes the value “height” (what kind of
function is this!?)

1 _E@w?
In this case, the pdf of X has the following form: fx () = \/2726 202
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Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Example of a discrete random

vector

Consider the two coin flip experiment and assume a probability function

for a fair coin: Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25

X1 (HH) =0
X1 = { X1(HT) =X (TH) =1
X(TT) =2

Let’s define two random variables: “number of Tails” and “first flip is Heads”

Xo(TH) = Xo(TT) =0
Ao = { Xo(HH) = Xo(HT) = 1

The probability function induces the following pmf for the random vector

X=[X1, X2], where we use bold X do indicate a vector (or matrix):

PT(X) = P’I“(Xl = Scl,XQ = 332) = Px(X) = PXI,X2(331,902)

PT(Xl = O,XQ = O) = 0.0,PT‘(Xl = O,XQ = 1) = 0.25
Pr(X;=1,X,=0)=0.25Pr(X;=1,X,=1) =025
Pr(X;=2,Xy=0)=025Pr(X; =2,X,=1) = 0.0

PX1,X2 (x1,x2)
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Example of a continuous random
vector

® Consider an experiment where we define a two-dimensional Reals sample space
for “height” and “IQ” for every individual in the US (as a reasonable approximation)

® |et’s define a bivariate normal probability function for this sample space and
random variables Xi and X2 that are identity functions for each of the two
dimensions

® In this case, the pdf of X=[Xi, X2] is a bivariate normal (we will not write out the
formula for this distribution - yet):

Pr(X) = Pr(X) = x1, Xo = x2) = fx(X) = fx;,x, (21, 72)

Again, note that we cannot use this probability function
to define the probabilities of points (or lines!) but we can
use it to define the probabilities that values of the
random vector fall within (square) intervals of the two
random variables (!) [a,b], [c,d]

b rd
Pria < X1 <b,c< X <d) = / / Ix1,x, (1, 22)dz1, d2s
a C




Random vector conditional

probability and independence |

Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define
conditional probability for random vectors:

PT<X1|X2) =

PT(Xl M XQ)
P?“(XQ)

As a simple example (discrete in this case - but continuous is analogous!), consider the two flip
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads’”:

Xo=0]| Xo=1
X, =0| 00 | 02 |02
X, = 0.25 025 | 0.5 Pr(X;=0NnXy=1) 0.25
Pr(X;=0X2=1) = = =0.5
X, =2 025 | 00 |02 r(&n =02 =1) Pr(Xo=1) 0.5
0.5 0.5

We can similarly consider whether r.v's of a random vector are independent, e.g.

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125

NOTE |:we can use either Pr(X;|X;) = Pr(X;) or Pr(X;NX;)= Pr(X;)Pr(X;) to check
independence!

NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the
opposite is not true: if one does not show independence you’ve established they are not
independent (!!)



Random vectors conditional
probability and independence ||

Pr({HHY) = Pr({HTY}) = Pr({TH}) = Pr({TT}) = 0.25

Xi\(HH) =0 _ _
Xq = { Xi(HT) = X,(TH) =1 X9 = { 257;2 )) :);Q(éTT)) :01
X\(TT) =2
Pr(X,=0)= Pr({HH}) = 0.25 Pr(X1=0,Xo=0)=Pr({HH}N{TH,TT}) = Pr(0) =0
Pr(X,=1)= Pr({HT,TH}) = 0.5 Pr(Xy =1,Xs =0) = Pr({HT,TH} N {TH,TT}) = Pr({TH}) = 0.25

Xo=0]| Xo=1
X, = 0.0 0.25 | 0.25
PrX;=0NnXy=1) 0.25
X;=1] 025 | 025 | 05 Pr(X, = 0[X; =1) = r(Xy 2=1) 0
X, = 0.25 0.0 |0.25 Pr(X; =1) 0.5
0.5 0.5

Pr(X;N X;) = Pr(X;)Pr(X;)

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125



Marginal distributions of random
vectors

® Note that marginal distributions of random vectors are the
probability of a r.v. of a random vector after summing (discrete) or
integrating (continuous) over all the values of the other random variables:

maz(Xa)
Py, (2131) = Z PT‘(Xl =11 NXg = :UQ) = ZPT(Xl = ZI?l‘XQ == xz)PT(XQ = 332)

xo=min(X2)

oo

le ($1) = / PT(Xl = CElﬂXQ = Jjg)dxg = / PT(Xl = $1|X2 = xg)PT(Xg = $2)d332

— 00

®  Again,as a simple illustration, consider our two coin flip example:

Xo=0] Xo=1
X1=0 0.0 0.25 0.25
X1 =1 0.25 0.25 0.5
X1 =2 0.25 0.0 0.25
0.5 0.5




Three last points about random
vectors

® Just as we can define cmf’s / cdf’s for r.vs, we can do the same for random
vectors:

Fx, x,(z1,22) = Pr(X1 < x1, X2 < 22)

1 o
Fx, x,(z1,22) = / / fx, x,(x1, x2)dxr1d2s
—00 J —00

®  We have been discussing random vectors with two r.vs, but we can
consider any number n of r.v’s:

Pr(X)=Pr(X; =21, Xo=29,...., X, =)

®  We refer to probability distributions defined over r.v. to be univariate,
when defined over vectors with two r.v.s they are bivariate, and when
defined over three or more, they are multivariate



Expectations and variances

We are now going to introduce fundamental functions of random variables /
vectors: expectations and variances

These are functionals - map a function to a scalar (humber)

These intuitively (but not rigorously!) these may be thought of as “a function on a
function” with the following form:

f(X(Q),Pr(X)) : {X,Pr(X)} - R

These are critical concepts for understanding the structure of probability models
where the interpretation of the specific probability model under consideration

They also have deep connections to many important concepts in probability and
statistics

Note that these are distinct from functions (Transformations) that are defined
directly on X and not on Pr(X), i.e. Y = g(X):

X)X Y
g(X) =Y = Pr(X)— Pr(Y)



Expectations |

Following our analogous treatment of concepts for discrete and continuous
random variables, we will do the same for expectations (and variances),
which we also call expected values

Note that the interpretation of the expected value is the same in each
case

The expected value of a discrete random variable is defined as follows:
max(X)
EX= ) (X=iPr(X=1i)
i=min(X)

For example, consider our two-coin flip experlment / fair coin probability
model / random variable “number of tails™: )

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) =

Re(X)

0.0 0.2 04 0.6 0.8
T S N R B

.....................



Expectations |l

The expected value of a continuous random variable is defined as follows:

+00
EX = X fx(x)dx

— O

For example, consider our height measurement experiment / normal
probability model / identity random variable:

<
-

0.6 0.8

f(x)

04

0.0 0.2
| |




Expectations |l

In the discrete case, this is the same as adding up all the possibilities that
can occur and dividing by the total number, e.g. (0+1+1+2) /4 = | (hence
it is often referred to as the mean of the random variable

An expected value may be thought of as the “center of gravity”, where a
median (defined as the number where half of the probability is on either
side) is the “middle” of the distribution (note that for symmetric
distributions, these two are the same!)

The expectation of a random variable X is the value of X that minimizes
the sum of the squared distance to each possibility

For some distributions, the expectation of the random variable may be
infinite. In such cases, the expectation does not exist



Variances |

° We will define variances for discrete and continuous random variables,
where again, the interpretation for both is the same

° The variance of a discrete random variable is defined as follows:

mazx(X)
Var(X)=V(X)= ) (X =i)-EX)’Pr(X =1)
i=min(X)

®  For example, consider our two-coin flip experiment / fair coin probability
model / random variable “number of tails™:

< |
-

0.8
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© |
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Var(X) = (0 —1)2(0.25) + (1 — 1)2(0.5) + (2 — 1)2(0.25) = 0.5 §<§_E
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Variances |l

The variance of a continuous random variable is defined as follows:

+0o0
Var(X) = VX = /_ (X —EX)*fx(x)dx

For example, consider our height measurement experiment / normal
probability model / identity random variable:

1.0

—{ Means and SDs
m=0,sd=1
m=1,sd=2
m=3,sd=0.5
m=

m
m
[m|
o -2,5d=3

0.8

0.6

f(x)
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0.2




Variances llI

Intuitively, the variance quantifies the “spread” of a distribution

The squared component of variance has convenient mathematical
properties, e.g. we can view them as sides of triangles

Other equivalent (and often used) formulations of variance:
Var(X) = E [(X — EX)?]
Var(X) = E(X?) — (EX)?

Instead of viewing variance as including a squared term, we could view the
relationship as follows:

Var(X) = E[(X — EX)(X — EX)]



Generalization: higher moments

The expectation of a random variable is the “first” moment and we can
generalize this concept to “higher” moments:

EXF =Y XFPr(X)

EXF = / X*fx(x)dx

The variance is the second “central” moment (i.e. calculating a moment

after subtracting off the mean) and we can generalize this concept to
higher moments as well:

C(X*) =) (X —EX)"Pr(X)

C(xF) = /(X _EX) fy (2)da



Random vectors: expectations
and variances

®  Recall that a generalization of a random variable is a random vector, e.g.
X: [XlaXQ] PX17X2(CU1,ZUQ) OT le,XQ(.Tl,CUQ)

® The expectation (a function of a random vector and its distribution!) is a
vector with the expected value of each element of the random vector,

& EX = [EX1, EXo]
®  Variances also result in variances of each element (and additional terms...
see next slide!!)

® Note that we can determine the conditional expected value or variance
of a random variable conditional on a value of another variable, e.g.

max(X1) max(X1)
E(Xi|X2) = ) (Xi=iPr(Xi=ilXs) V(Xi[Xo)= Y ((X1=1)—EX1)’Pr(X; = i|Xs)
i=min(X1) i=min(X1)
+oo +o0
E(Xl‘XQ) = leX1|X2 (331|£E2)da?1 V(X1|X2) = / (Xl — EXl)QfX1|X2 (xl‘xg)dilﬁl



Random vectors: covariances

Variances (again a function!) of a random vector are similar producing
variances for each element, but they also produce covariances, which
relate the relationships between random variables of a random vector!!

i=max(X1) j=mazx(X2)

Cov(X1,X2) = > > (X1 =1) —EX1)((X2 = j) — EX2) Px, x, (21, 32)
i=min(X1) j=min(X2)

+00 +00
COV(Xl, XQ) = / (X1 - EXl)(XQ - EXQ)le’XQ (xl, .’L‘Q)d.%’ldwg

Intuitively, we can interpret a positive covariance as indicating “big values
of Xi tend to occur with big values of X2 AND small values of Xi tend to
occur with small values of X2"”

Negative covariance is the opposite (e.g.“big X1 with small X2 AND small
X1 with big X2")

Zero covariance indicates no relationship between big and small values of
X1 and X2



An illustrative example

For example, consider our experiment where we have measured “height”
and “IQ” / bivariate normal probability model / identity random variable:




Notes about covariances

Covariance and independence, while related, are NOT synonymous (!!),
although if random variables are independent, then their covariance is
zero (but necessarily vice versa!)

Covariances are symmetric: Cov(X, X2) = Cov(Xa, X1)
Other equivalent (and often used) formulations of covariances:
Cov(X1, X2) = E[(X1 — EX1)(X2 — EX>)]
Cov(X1, X2) = E(X1X2) — EX1EX>

From these formulas, it follows that the covariance of a random variable
and itself is the variance:

Cov(X1,X1) = E(X1X:) —EX,EX; = E(X?) — (EX})? = Var(X))



Covariance matrices

Note that we have defined the “output” of applying an expectation
function to a random vector but we have not yet defined the analogous

output for applying a variance function to a random vector

The output is a covariance matrix, which is square, symmetric matrix with
variances on the diagonal and covariances on the off-diagonals

For example, for two and three random variables:

. VarX1 COV(Xl,XQ)
Var(X) = cov(Xy, Xa)  VarX,

VarX1 COV(Xl,XQ) COV(Xl,Xg)
Var(X) = |Cov(X1, X2) Var Xs Cov(Xa, X3)
COV(Xl,Xg) COV(XQ,Xg) Var(Xg)

Note that not all square, symmetric matrices are covariance matrices (!!),
technically they must be positive (semi)-definite to be a covariance matrix



Covariances and correlations

Since the magnitude of covariances depends on the variances of XI and
X2, we often would like to scale these such that “1” indicates maximum
“big with big / small with small” and “-1”" indicates maximum “big with
small” (and zero still indicates no relationship)

A correlation captures this relationship:

COV(Xl,X2>

Corr(X1, X3) = v/ Var(X1)+/Var(Xz)

Where we can similarly calculate a correlation matrix, e.g. for three
random variables:

1 Corr(X1, X2) Corr(X7, X3)
Corr(X) = | Corr(Xy, Xo) 1 Corr( X2, X3)
Corr(X1, X3) Corr(Xa, X3) 1



Algebra of expectations and
variances

® If we consider a function (e.g., a transformation) on X (a function on the
random variable but not on the probabilities directly!), recall that this can
result in a different probability distribution for Y and therefore different
expectations, variances, etc. for Y as well

®  We will consider two types of functions on random variables and the
result on expectation and variances:sums Y = X1+ X2+...and Y = a + bXi
where a and b are constants

®  For example, for sums, Y = Xi + X2 we have the following relationships:
E(Y) = E(X1 + XQ) = EX| + EXy
Var(Y') = Var(X; + X3) = VarX; + VarXs + 2Cov(X7, Xo)

®  As another example, for Y = Xi + X2 + X3 we have:
E(Y) = E(Xl + X2 + Xg) = EX1 + EX2 + EX3
Var(Y) = Var(X;+Xo+X3) = VarX;+VarXo+Var X3+2Cov (X1, X2)4+2Cov(X1, X3)+2Cov(Xs, X3)



Algebra of expectations and
variances

For the function Y = a + bXi we obtain the following relationships:

BEY = a4 bEX
Var(Y) = b*Var(X)

Finally, note that if we were to take the covariance (or correlation) of two
random variables Y1 and Y2 with the relationship:

Yi=a1 + 01X, Yo =az + baXo
COV(Yl,YQ) = bleCOV(Xl,XQ)

Corr (Y7, Ys) = Corr(X1, Xo)



That’s it for today

® Next lecture, we will introduce expectations, variances, and related!



