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• Everyone should be all set with Piazza and the class website

• For CMS, everyone with a netID should now be good 
(please Piazza message me and let me know if you have a 
netID and are still not able to see the class CMS!) and we 
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Announcements I



• Homework 1, question 1 edit-correction 

• Note after class, I will post this version to CMS and send by 
Piazza message (and note: fine to hand in your work on the 
previous latex version!)

Announcements IIQuantitative Genomics and Genetics - Spring 2023
BTRY 4830/6830; PBSB 5201.01

Homework 1 (version 1 - posted February 2; version 2 - posted February 7) )

Assigned February 2; Due 11:59PM February 8

Problem 1 (Easy)

Consider a coin (system) that you would like to learn about and two types of experiments: 1. One
flip of the coin (Experiment 1), and Two flips of the coin (Experiment 2). Consider the case where
you are going to perform Experiment 1 TWICE and Experiment 2 ONCE.

a. Write out BOTH the sample spaces AND the Sigma Algebras for BOTH Experiments 1 and 2.

Note for Experiment 1 the answer is: ⌦ = {H,T}, �-algebra= ;, {H}, {T}, {H,T}

b. Using one sentence at most, explain why the sets {H1, T2} describing the result of ‘heads’
when running the Experiment 1 the first time and a ‘tails’ when running Experiment 1 the
second time, is distinct from the set {HT} describing the results of running Experiment 2
one time.

c. Define a probability model on ⌦ (i.e. assign specific probabilities to each outcome) for Ex-
periment 1 such that Pr({H}) = 0.8, P r({T}) = 0.2. What is the probability of each event
of the Sigma-algebra that you defined for this Experiment in part [a]? Note: we are asking
for the probabilities for the Sigma-algebra of Experiment 1 (i.e., Problem 1a) and NOT for
what resulted from running this experiment two times (i.e., Problem 1b)? Could this be a
legitimate probability model for a coin / this experiment? Explain your answer using no more
than one sentence.

d. Considering the probability model in part [c] calculate Pr({H} \ {T}) and explain why this
demonstrates the events {H} and {T} are not independent.

Problem 2 (Medium)

Consider a coin that you plan to learn about with the following experiment: 3 flips of the coin.

a. Write out the sample space of this experiment.
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Summary of lecture 5: Expectations, 
Variances, Covariances

• Last class, we introduced probability distributions of random 
variables (including discrete and continuous forms)

• Today, we will continue our discussion by introducing random 
vectors ad their probability distributions (and conditional 
probability for random vectors)

• We will also discuss the extremely useful concept of expectations, 
variances, and covariances
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• Probability Function - maps a Sigma Algebra of a sample to a subset of the 
reals:

• Not all such functions that map a Sigma Algebra to [0,1] are probability functions, 
only those that satisfy the following Axioms of Probability (where an axiom is a 
property assumed to be true):

• Note that since a probability function takes sets as an input and is restricted in 
structure, we often refer to a probability function as a probability measure

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(⌦) : F ! [0, 1] (11)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ ⌦, P r(A) > 0

2. Pr(⌦) = 1

3. For A1,A2, ... 2 ⌦, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A)
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Review: Probability functions I

l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

6= (36)

Yi = �
�1(X�) + ✏i (37)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(38)

✓̂1 (39)

x =

2

6664

1 x1,a x1,d

1 x2,a x2,d
...

...
. . .

1 xn,a xn,d

3

7775

1 0 -1
0 0 0
-1 0 1

Pr(Xi|Xj) = Pr(Xi) (40)

Pr(Xi \Xj) = Pr(Xi)Pr(Xj) (41)

1X

i

Pr(Ai) (42)
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• Random variable - a real valued function on the sample space:

• Intuitively:

• Note that these functions are not constrained by the axioms of 
probability, e.g. not constrained to be between zero or one (although they 
must be measurable functions and admit a probability distribution on the 
random variable!!)

• We generally define them in a manner that captures information that is of 
interest

• As an example, let’s define a random variable for the sample space of the 
“two coin flip” experiment that maps each sample outcome to the 
“number of Tails” of the outcome:

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =

�
⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,
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Lecture 3: Random Variables, Random Vectors, and Probability Distribution Functions

Lecture: January 31; Version 1 Posted: February 2

1 Introduction

Last lecture, we introduced critical concepts for probabilistic modeling: sample spaces
and probability functions. Today, we will introduce additional critical concepts: random
variables and their associated probability distribution functions. We will do this for random
variables that are discrete or continuous. We will then generalize the concept of a random
variable to a random vector.

2 Random variables

As we discussed last lecture, a probability function or measure is a function that takes a
sample space to the reals:

Pr(S) : S ! R (1)

and that abides by certain rules (the axioms of probability). For example, we can define a
probability function on the sample space for ‘a pair of coin flips’ as S = {HH,HT, TH, TT}
using Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25, i.e. a fair coin example. As we
make use of sample spaces and the probability functions that we define, we are often in a
position where we want to quantify specific types of outcomes, e.g. the number of ‘Tails’
in our two flips. To do this, we define a random variable, which is a real valued function
on the sample space f(S), where we generally substitute X for f :

X(S) : S ! R (2)

A random variable di↵ers from a probability function in that it is not constrained to follow
the axioms of probability (although it must adhere to rules such that it is still considered a
mathematical function!). For example, it is not constrained to be greater than zero, if need
not take the entire probability space to 1, and it need enforce additivity on disjoint sets (the
third axiom of probability). While these functions are unconstrained, we in general define
them in such a way such that they capture useful information about sample outcomes.
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Review: Random variables I
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X = x , Pr(X)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

7

X(⌦) : X(H) = 0, X(T ) = 1

X : ⌦ ! R

24

V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Experiment
(Sample Space) (Sigma Algebra)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x
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Review: Discrete random variables / 
probability mass functions (pmf)

• If we define a random variable on a discrete sample space, we produce a 
discrete random variable.  For example, our two coin flip / number of Tails 
example: 

• The probability function in this case will induce a probability distribution that 
we call a probability mass function which we will abbreviate as pmf

• For our example, if we consider a fair coin probability model (assumption!) for 
our two coin flip experiment and define a “number of Tails” r.v., we induce the 
following pmf:

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =

�
⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,
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X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,

2

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)
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Review: Discrete random variables / 
cumulative mass functions (cmf)

• An alternative (and important!) representation of a discrete probability model is a 
cumulative mass function which we will abbreviate (cmf):

• This definition is not particularly intuitive, so it is often helpful to consider a 
graph illustration.  For example, for our two coin flip / fair coin / number of Tails 
example: 

since they provide an alternative representation of a probability model (versus a pmf) that
has better properties in some cases (we will see this below when discussing the uniqueness
of the analogous concept for continuous distributions) and they have strong connections to
critical concepts in statistics, e.g. such as a p-value. For the moment, you should take my
word for it that cumulative functions are worth knowing about.

We define a cmf as follows:
FX(x) = Pr(X 6 x) (6)

where we define this function for X from �⇥ to +⇥. Equation (6) is actually enough to
define the cmf completely. However, it is often more intuitive to see how this is calculated
using the following formalism:

FX(x) =
x�

i

Pr(X = i) (7)

where the sum is over a discrete set of values over the real line that we wish to consider
(again, note that only values defined in our probability model are assigned non-zero prob-
ability). For example, for the probability model in equation (5) we we can use equation
(7) to calculate the value of the cmf at particular values:

FX(�1) = 0, FX(0) = 0.25, FX(0.5) = 0.25, FX(1) = 0.75
FX(1.2) = 0.75, FX(1) = 1.0, FX(12) = 1.0

(8)

When graphing a cmf from �⇥ to ⇥ with X on the X-axis and FX(x) on the Y-axis, this
produces a ‘step function’. For example, from (�⇥, 0) (the interval that gets infinitely
close to zero but does not include zero) the function takes the value zero. It then makes a
‘step’ or ‘jump’ up to 0.25 for the interval [0, 1), etc. (see graph from class).

4 Continuous random variables

We define random variables that can take any value on the real line or an interval of the
real line R to be continuous random variables. It turns out that considering intervals of
(or the entire) real line adds considerable complexity for defining the analogous concepts
we have considered with discrete random variables (although not if we define a discrete
random variable on a continuous probability space - see your first Homework!). To mo-
tivate the reason for using continuous random variables, let’s consider our example of a
sample space of ‘human heights’. As we have discussed last lecture, human heights cannot
take any possible value on the real line, but we assume heights could actually take any
continuous value between �⇥ and ⇥ for mathematical convenience (and because we can
define probability functions in such a way that this assumption provides a reasonable ap-
proximation of reality).
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Review: Continuous random 
variables / probability density 

functions (pdf)
• For a continuous sample space, we can define a discrete random 

variable or a continuous random variable (or a mixture!)

• For continuous random variables, we will define analogous 
“probability” and “cumulative” functions, although these will have 
different properties

• For this class, we are considering only one continuous sample 
space: the reals (or more generally the multidimensional 
Euclidean space)

• Recall that we will use the reals as a convenient approximation to 
the true sample space



Review: Mathematical properties 
of continuous r.v.’s

• For the reals, we define a probability density function (pdf): 

• The pdf of X, a continuous r.v., does not represent the probability of a 
specific value of X, rather we can use it to find the probability that a value 
of X falls in an interval [a,b]:

• Related to this concept, for a continuous random variable, the probability 
of specific value (or point) is zero (why is this!?)

• For a specific continuous distribution the cdf is unique but the pdf is not, 
since we can assign values to non-measurable sets 

• If this is the case, how would we ever get a specific value when 
performing an experiment!?

For our continuous probability space, defining a probability function and random vari-
able results in a probability density function (pdf) fX(x) which we can use to define the
probability of an interval of the random variable:

Pr(a 6 X 6 b) =

� b

a
fX(x)dx (9)

where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):

FX(x) =

� x

�⇤
fX(x)dx (10)

where intuitively, the cdf evaluated at a value x is the area under the curve of the pdf,
starting from �⇤ to x, e.g. for a symmetric distribution, the value of x right under the
‘peak’ of the pdf produces FX(x) = 0.5 (and note this relationship holds for all continuous
distributions if we consider x=median(X) where we will define median in our next lecture).

As an example, assuming our height case, where you will recall from last lecture we define
the sample space of heights to be all open, closed, and combination open/closed intervals
on the real line, we will define a random variable X, which takes each of these intervals
as an input and returns same interval as an output (note that as we will discuss in our
lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
and returns the same value as an output, i.e. the function has the general form f(x) = x.

Since we are allowing heights to (in theory) take any value on the real line, we define
a probability function that induces the normal distribution on X, a reasonable model for
heights. The pdf of a normal distribution has the following form:

fX(x) =
1⌅
2⇥⇤2

e�
(x�µ)2

2�2 (11)

where we often use the following shorthand to represent this pdf fX(x) ⇥ N(µ,⇤2) and
where the µ and ⇤2 are constants the we call parameters (see your notes from class for
a picture of this pdf). The cdf of the normal FX(x) = �(x) is easy to draw (see your
class notes for a picture) and while it cannot be written in a ‘closed form’, the function
can be calculated to very high precision (we define an equation that has a closed form ex-
pression as one that we can write as a single expression that includes only simple functions).

4

For our continuous probability space, defining a probability function and random vari-
able results in a probability density function (pdf) fX(x) which we can use to define the
probability of an interval of the random variable:

Pr(a 6 X 6 b) =

� b

a
fX(x)dx (9)

where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):

FX(x) =

� x

�⇤
fX(x)dx (10)

where intuitively, the cdf evaluated at a value x is the area under the curve of the pdf,
starting from �⇤ to x, e.g. for a symmetric distribution, the value of x right under the
‘peak’ of the pdf produces FX(x) = 0.5 (and note this relationship holds for all continuous
distributions if we consider x=median(X) where we will define median in our next lecture).

As an example, assuming our height case, where you will recall from last lecture we define
the sample space of heights to be all open, closed, and combination open/closed intervals
on the real line, we will define a random variable X, which takes each of these intervals
as an input and returns same interval as an output (note that as we will discuss in our
lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
and returns the same value as an output, i.e. the function has the general form f(x) = x.

Since we are allowing heights to (in theory) take any value on the real line, we define
a probability function that induces the normal distribution on X, a reasonable model for
heights. The pdf of a normal distribution has the following form:

fX(x) =
1⌅
2⇥⇤2

e�
(x�µ)2

2�2 (11)

where we often use the following shorthand to represent this pdf fX(x) ⇥ N(µ,⇤2) and
where the µ and ⇤2 are constants the we call parameters (see your notes from class for
a picture of this pdf). The cdf of the normal FX(x) = �(x) is easy to draw (see your
class notes for a picture) and while it cannot be written in a ‘closed form’, the function
can be calculated to very high precision (we define an equation that has a closed form ex-
pression as one that we can write as a single expression that includes only simple functions).

4



Review: Continuous random variable 
/ cumulative density functions (cdf)

• For continuous random variables, 
we also have an analog to the 
cmf, which is the cumulative 
density function abbreviated 
as cdf:

• Again, a graph illustration is 
instructive

• Note the cdf runs from zero to 
one (why is this?)

For our continuous probability space, defining a probability function and random vari-
able results in a probability density function (pdf) fX(x) which we can use to define the
probability of an interval of the random variable:

Pr(a 6 X 6 b) =

� b

a
fX(x)dx (9)

where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):
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lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
and returns the same value as an output, i.e. the function has the general form f(x) = x.

Since we are allowing heights to (in theory) take any value on the real line, we define
a probability function that induces the normal distribution on X, a reasonable model for
heights. The pdf of a normal distribution has the following form:

fX(x) =
1⌅
2⇥⇤2
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2�2 (11)

where we often use the following shorthand to represent this pdf fX(x) ⇥ N(µ,⇤2) and
where the µ and ⇤2 are constants the we call parameters (see your notes from class for
a picture of this pdf). The cdf of the normal FX(x) = �(x) is easy to draw (see your
class notes for a picture) and while it cannot be written in a ‘closed form’, the function
can be calculated to very high precision (we define an equation that has a closed form ex-
pression as one that we can write as a single expression that includes only simple functions).
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 Probability density functions (pdf): 
normal example

• To illustrate the concept of a pdf, let’s consider the reals as the 
(approximate!) sample space of human heights, the normal (also called 
Gaussian) probability function as a probability model for human heights, 
and the random variable X that takes the value “height” (what kind of 
function is this!?) 

• In this case, the pdf of X has the following form:

For our continuous probability space, defining a probability function and random vari-
able results in a probability density function (pdf) fX(x) which we can use to define the
probability of an interval of the random variable:

Pr(a 6 X 6 b) =

� b

a
fX(x)dx (9)

where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):

FX(x) =

� x

�⇤
fX(x)dx (10)

where intuitively, the cdf evaluated at a value x is the area under the curve of the pdf,
starting from �⇤ to x, e.g. for a symmetric distribution, the value of x right under the
‘peak’ of the pdf produces FX(x) = 0.5 (and note this relationship holds for all continuous
distributions if we consider x=median(X) where we will define median in our next lecture).

As an example, assuming our height case, where you will recall from last lecture we define
the sample space of heights to be all open, closed, and combination open/closed intervals
on the real line, we will define a random variable X, which takes each of these intervals
as an input and returns same interval as an output (note that as we will discuss in our
lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
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Random vectors
• We are often in situations where we are interested in defining more than 

one r.v. on the same sample space

• When we do this, we define a random vector

• Note that a vector, in its simplest form, may be considered a set of numbers 
(e.g. [1.2,  2.0,  3.3] is a vector with three elements)

• Also note that vectors (when a vector space is defined) ARE NOT REALLY 
NUMBERS although we can define operations for them (e.g. addition, 
“multiplication”), which we will use later in this course

• Beyond keeping track of multiple r.v.’s, a random vector works just like a r.v., 
i.e. a probability function induces a probability function on the random 
vector and we may consider discrete or continuous (or mixed!) random 
vectors

• Note that we can define several r.v.’s on the same sample space (= a 
random vector), but this will result in one probability distribution function 
(why!?)



Example of a discrete random 
vector

• Consider the two coin flip experiment and assume a probability function 
for a fair coin:

• Let’s define two random variables: “number of Tails” and “first flip is Heads”

• The probability function induces the following pmf for the random vector 
X=[X1, X2], where we use bold X do indicate a vector (or matrix): 

This occurs as a consequence of ‘unmeasurable’ sets, which we attempt to deal with
by defining a sigma field.

6. A notation inconsistency is as follows: we abbreviate probability mass function (pmf),
cumulative mass function (cmf), probability density function (pdf), and cumulative
density function (cdf). However, we also use probability density function, which
we abbreviate pdf, to refer to either a pmf or a pdf, and a cumulative probability
distribution, which we abbreviate cdf, to refer to either a cmf or a cdf.

5 Random vectors

We are often in situations where we define more than a single random variable for a sample
space S. For example, in our ‘two coin flip’ sample space where we define our ‘fair coin’
probability function Pr(S), such that Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25,
we could define two random variables, where the first is ‘number of tails’:

X1(S) =

⇥
⌅

⇤

X1(HH) = 0
X1(HT ) = X1(TH) = 1
X1(TT ) = 2

(13)

and the second is an indicator function that the ‘first flip is a head’:

X2(S) =

�
X2(TH) = X2(TT ) = 0
X2(HH) = X2(HT ) = 1

(14)

In this case, we have defined a random vector for this sample space, i.e. a vector that has
two elements: X = [X1, X2]. Note that if we define a vector space, we can start treating
vector much as we do numbers and start defining operations such as vector addition or
vector multiplication. We will do this in our next computer lab and our following lectures.
For the moment, we will simply consider vectors as a notation system to keep track of
multiple random variables.

Just as a probability function Pr(S) induced a pdf (pmf) on a single random variable
X, in our example of two random variables, X = [X1, X2], the probability function now
induces a joint probability function (a joint pdf), which we symbolize as follows:

Pr(X) = Pr(X1 = x1, X2 = x2) = PX(x) = PX1,X2(x1, x2) (15)

For the specific probability function and random variables we have defined, this produces
the following PX1,X2(x1, x2):

Pr(X1 = 0, X2 = 0) = 0.0, P r(X1 = 0, X2 = 1) = 0.25
Pr(X1 = 1, X2 = 1) = 0.25, P r(X1 = 1, X2 = 1) = 0.25
Pr(X1 = 1, X2 = 2) = 0.25, P r(X1 = 2, X2 = 1) = 0.0

(16)
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For the specific probability function and random variables we have defined, this produces
the following PX1,X2(x1, x2):

Pr(X1 = 0, X2 = 0) = 0.0, P r(X1 = 0, X2 = 1) = 0.25
Pr(X1 = 1, X2 = 0) = 0.25, P r(X1 = 1, X2 = 1) = 0.25
Pr(X1 = 2, X2 = 0) = 0.25, P r(X1 = 2, X2 = 1) = 0.0

(18)

where Pr(X1 = x1, X2 = x2) = Pr(X1 ⇤X2), etc. We can also write this using our table
notation:

X2 = 0 X2 = 1
X1 = 0 0.0 0.25 0.25
X1 = 1 0.25 0.25 0.5
X1 = 2 0.25 0.0 0.25

0.5 0.5

Note that with this table we have also written out the marginal pdf’s of X1 and X2,
which are just the pdf’s of X1 and X2: PX1(x1) = {Pr(X1 = 0) = 0.25, P r(X1 = 1) =
0.5, P r(X1 = 2) = 0.25} and PX2(x2) = {Pr(X2 = 0) = 0.5, P r(X2 = 1) = 0.5}.

Just as we defined conditional probabilities for subsets of a sample space S for which
we have defined a probability function Pr(S), we can similarly define the conditional prob-
abilities of random variables:

Pr(X1|X2) =
Pr(X1 ⇤X2)

Pr(X2)
(19)

such that we have for example:

Pr(X1 = 0|X2 = 1) =
Pr(X1 = 0 ⇤X2 = 1)

Pr(X2 = 1)
=

0.25

0.5
= 0.5 (20)

Note that we can in fact use random variables as a means to define sample space subsets,
so the concept of conditional probability defined for sample spaces and for joint random
variables are interchangeable.

We can similarly define an (interchangeable) concept of independent random variables.
Note that our current X1 and X2 are not independent, since:

Pr(X1 = 0 ⇤X2 = 1) = 0.25 ⇥= Pr(X1 = 0)Pr(X2 = 1) = 0.25 � 0.5 = 0.125 (21)

and for random variables to be independent, all possible combinations of outcomes must
adhere to the definition of independence. To provide an example of random variables that
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This allows us to take advantage of the many tools of calculus when dealing with
continuous random variables (which is why we often like to use these as approxima-
tions).

5. Note that while FX(x) is a unique function for a specific distribution, the pdf may be
defined an infinite number of ways that would still allow consistency of the principle.
This occurs as a consequence of ‘unmeasurable’ sets, which we attempt to deal with
by defining a sigma field.

6. A notation inconsistency is as follows: we abbreviate probability mass function (pmf),
cumulative mass function (cmf), probability density function (pdf), and cumulative
density function (cdf). However, we also use probability density function, which
we abbreviate pdf, to refer to either a pmf or a pdf, and a cumulative probability
distribution, which we abbreviate cdf, to refer to either a cmf or a cdf.

5 Random vectors

We are often in situations where we define more than a single random variable for a sample
space S. For example, in our ‘two coin flip’ sample space where we define our ‘fair coin’
probability function Pr(S), such that Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25,
we could define two random variables, where the first is ‘number of tails’:

X1(⌦) =

8
<

:

X1(HH) = 0
X1(HT ) = X1(TH) = 1
X1(TT ) = 2

(17)

and the second is an indicator function that the ‘first flip is a head’:

X2(⌦) =

⇢
X2(TH) = X2(TT ) = 0
X2(HH) = X2(HT ) = 1

(18)

In this case, we have defined a random vector for this sample space, i.e. a vector that has
two elements: X = [X1, X2]. Note that if we define a vector space, we can start treating
vector much as we do numbers and start defining operations such as vector addition or
vector multiplication. We will do this in our next computer lab and our following lectures.
For the moment, we will simply consider vectors as a notation system to keep track of
multiple random variables.

Just as a probability function Pr(S) induced a pdf (pmf) on a single random variable
X, in our example of two random variables, X = [X1, X2], the probability function now
induces a joint probability function (a joint pdf), which we symbolize as follows:

Pr(X) = Pr(X1 = x1, X2 = x2) = PX(x) = PX1,X2(x1, x2) (19)
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X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

Pr(F) ! Pr(X)

24

X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

Pr(F) ! Pr(X)

24

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)
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Example of a continuous random 
vector

• Consider an experiment where we define a two-dimensional Reals sample space 
for “height” and “IQ” for every individual in the US (as a reasonable approximation)

• Let’s define a bivariate normal probability function for this sample space and 
random variables X1 and X2 that are identity functions for each of the two 
dimensions

• In this case, the pdf of X=[X1, X2] is a bivariate normal (we will not write out the 
formula for this distribution - yet):

This occurs as a consequence of ‘unmeasurable’ sets, which we attempt to deal with
by defining a sigma field.

6. A notation inconsistency is as follows: we abbreviate probability mass function (pmf),
cumulative mass function (cmf), probability density function (pdf), and cumulative
density function (cdf). However, we also use probability density function, which
we abbreviate pdf, to refer to either a pmf or a pdf, and a cumulative probability
distribution, which we abbreviate cdf, to refer to either a cmf or a cdf.

5 Random vectors

We are often in situations where we define more than a single random variable for a sample
space S. For example, in our ‘two coin flip’ sample space where we define our ‘fair coin’
probability function Pr(S), such that Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25,
we could define two random variables, where the first is ‘number of tails’:

X1(S) =

⇥
⌅

⇤

X1(HH) = 0
X1(HT ) = X1(TH) = 1
X1(TT ) = 2

(13)

and the second is an indicator function that the ‘first flip is a head’:

X2(S) =

�
X2(TH) = X2(TT ) = 0
X2(HH) = X2(HT ) = 1

(14)

In this case, we have defined a random vector for this sample space, i.e. a vector that has
two elements: X = [X1, X2]. Note that if we define a vector space, we can start treating
vector much as we do numbers and start defining operations such as vector addition or
vector multiplication. We will do this in our next computer lab and our following lectures.
For the moment, we will simply consider vectors as a notation system to keep track of
multiple random variables.

Just as a probability function Pr(S) induced a pdf (pmf) on a single random variable
X, in our example of two random variables, X = [X1, X2], the probability function now
induces a joint probability function (a joint pdf), which we symbolize as follows:

Pr(X) = Pr(X1 = x1, X2 = x2) = PX(x) = PX1,X2(x1, x2) (15)

Pr(X) = Pr(X1 = x1, X2 = x2) = fX(x) = fX1,X2(x1, x2) (16)

For the specific probability function and random variables we have defined, this produces
the following PX1,X2(x1, x2):

Pr(X1 = 0, X2 = 0) = 0.0, P r(X1 = 0, X2 = 1) = 0.25
Pr(X1 = 1, X2 = 1) = 0.25, P r(X1 = 1, X2 = 1) = 0.25
Pr(X1 = 1, X2 = 2) = 0.25, P r(X1 = 2, X2 = 1) = 0.0

(17)

6

Again, note that we cannot use this probability function 
to define the probabilities of points (or lines!) but we can 

use it to define the probabilities that values of the 
random vector fall within (square) intervals of the two 

random variables (!) [a,b], [c,d]
FX(x) = FX1,X1(x1, x2) =

� i

�⇥

� j

�⇥
fX1,X2(i, j) (26)

Pr(a 6 X1 6 b, c 6 X1 6 d) =

� b

a

� d

c
fX1,X2(x1, x2)dx1, dx2 (27)

for discrete and continuous random vectors respectively, and similarly for vectors
with more than two elements.

Before we leave the concept of joint pdf’s, let’s consider a conceptual extension. Note that
it is possible to define more than one sample space on the same experimental outcome.
For example, if we were interested in the genetics of human height, our experiment might
be to measure both the genotype (e.g. ‘A’ or ‘T’ at a particular SNP) and the phenotype
(‘height’) of each individual. This produces ‘two’ sample spaces S1 and S2, which have
a relationship, i.e. values of genotype occur with values of phenotype. We can therefore
also define a single sample space S = S1 � S2, which indicates this relationship. For both
of these sample spaces S1 and S2, we could define distinct probability functions, although
again, these probability functions would be related and define a single pdf for S = S1 �S2.
We could also define random vectors for each sample space S1 and S2 but only where
each element of these random vectors is associated with only one probability function, i.e.
while a single probability function can be associated with multiple random variables, a
single random variable cannot be associated with more than one probability function. If
we consider the sample space S = S1 �S2, we would now have a single random vector that
combined the random vectors defined on S1 and S2, e.g. we could have random vectors
that include both discrete and continuous random variables.

Finally, let’s introduce one last more formal concept. A vector-valued function Y = f(X)
is a function which takes an input X and returns a vector Y = [Y1, Y2, ..., Yn] (note that
the input X could also be a vector). A random vector is therefor a vector-valued function
on a sample space.
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Random vector conditional 
probability and independence I

• Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define 
conditional probability for random vectors:

• As a simple example (discrete in this case - but continuous is analogous!), consider the two flip 
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads”:

• We can similarly consider whether r.v.’s of a random vector are independent, e.g.

• NOTE 1: we can use either                                or                                                 to check 
independence!

• NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the 
opposite is not true: if one does not show independence you’ve established they are not 
independent (!!)

where Pr(X1 = x1, X2 = x2) = Pr(X1 ⇤X2), etc. We can also write this using our table
notation:

X2 = 0 X2 = 1
X1 = 0 0.0 0.25 0.25
X1 = 1 0.25 0.25 0.5
X1 = 2 0.25 0.0 0.25

0.5 0.5

Note that with this table we have also written out the marginal pdf’s of X1 and X2,
which are just the pdf’s of X1 and X2: PX1(x1) = {Pr(X1 = 0) = 0.25, P r(X1 = 1) =
0.5, P r(X1 = 2) = 0.25} and PX2(x2) = {Pr(X2 = 0) = 0.5, P r(X2 = 1) = 0.5}.

Just as we defined conditional probabilities for subsets of a sample space S for which
we have defined a probability function Pr(S), we can similarly define the conditional prob-
abilities of random variables:

Pr(X1|X2) =
Pr(X1 ⇤X2)

Pr(X2)
(18)

such that we have for example:

Pr(X1 = 0|X2 = 1) =
Pr(X1 = 0 ⇤X2 = 1)

Pr(X2 = 1)
=

0.25

0.5
= 0.5 (19)

Note that we can in fact use random variables as a means to define sample space subsets,
so the concept of conditional probability defined for sample spaces and for joint random
variables are interchangeable.

We can similarly define an (interchangeable) concept of independent random variables.
Note that our current X1 and X2 are not independent, since:

Pr(X1 = 0 ⇤X2 = 1) = 0.25 ⇥= Pr(X1 = 0)Pr(X2 = 1) = 0.25 � 0.5 = 0.125 (20)

and for random variables to be independent, all possible combinations of outcomes must
adhere to the definition of independence. To provide an example of random variables that
are independent, let’s keep the same probability function (‘fair coin’) and define X1 to be
’first flip is heads’ and X2 to be the ‘second flip is heads’. In this case:

X1(S) =

�
X1(TH) = X1(TT ) = 0
X1(HH) = X1(HT ) = 1

(21)

X2(S) =

�
X2(HT ) = X2(TT ) = 0
X2(HH) = X2(TH) = 1

(22)

and the joint pdf PX1,X2(x1, x2) is:
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where Pr(X1 = x1, X2 = x2) = Pr(X1 ⇤X2), etc. We can also write this using our table
notation:

X2 = 0 X2 = 1
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X1 = 1 0.25 0.25 0.5
X1 = 2 0.25 0.0 0.25

0.5 0.5

Note that with this table we have also written out the marginal pdf’s of X1 and X2,
which are just the pdf’s of X1 and X2: PX1(x1) = {Pr(X1 = 0) = 0.25, P r(X1 = 1) =
0.5, P r(X1 = 2) = 0.25} and PX2(x2) = {Pr(X2 = 0) = 0.5, P r(X2 = 1) = 0.5}.

Just as we defined conditional probabilities for subsets of a sample space S for which
we have defined a probability function Pr(S), we can similarly define the conditional prob-
abilities of random variables:
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=
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0.5
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Note that we can in fact use random variables as a means to define sample space subsets,
so the concept of conditional probability defined for sample spaces and for joint random
variables are interchangeable.

We can similarly define an (interchangeable) concept of independent random variables.
Note that our current X1 and X2 are not independent, since:

Pr(X1 = 0 ⇤X2 = 1) = 0.25 ⇥= Pr(X1 = 0)Pr(X2 = 1) = 0.25 � 0.5 = 0.125 (20)

and for random variables to be independent, all possible combinations of outcomes must
adhere to the definition of independence. To provide an example of random variables that
are independent, let’s keep the same probability function (‘fair coin’) and define X1 to be
’first flip is heads’ and X2 to be the ‘second flip is heads’. In this case:

X1(S) =

�
X1(TH) = X1(TT ) = 0
X1(HH) = X1(HT ) = 1
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X2(S) =
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X2(HH) = X2(TH) = 1
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This allows us to take advantage of the many tools of calculus when dealing with
continuous random variables (which is why we often like to use these as approxima-
tions).

5. Note that while FX(x) is a unique function for a specific distribution, the pdf may be
defined an infinite number of ways that would still allow consistency of the principle.
This occurs as a consequence of ‘unmeasurable’ sets, which we attempt to deal with
by defining a sigma field.

6. A notation inconsistency is as follows: we abbreviate probability mass function (pmf),
cumulative mass function (cmf), probability density function (pdf), and cumulative
density function (cdf). However, we also use probability density function, which
we abbreviate pdf, to refer to either a pmf or a pdf, and a cumulative probability
distribution, which we abbreviate cdf, to refer to either a cmf or a cdf.

5 Random vectors

We are often in situations where we define more than a single random variable for a sample
space S. For example, in our ‘two coin flip’ sample space where we define our ‘fair coin’
probability function Pr(S), such that Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25,
we could define two random variables, where the first is ‘number of tails’:

X1(⌦) =

8
<

:

X1(HH) = 0
X1(HT ) = X1(TH) = 1
X1(TT ) = 2

(17)

and the second is an indicator function that the ‘first flip is a head’:

X2(⌦) =

⇢
X2(TH) = X2(TT ) = 0
X2(HH) = X2(HT ) = 1

(18)

In this case, we have defined a random vector for this sample space, i.e. a vector that has
two elements: X = [X1, X2]. Note that if we define a vector space, we can start treating
vector much as we do numbers and start defining operations such as vector addition or
vector multiplication. We will do this in our next computer lab and our following lectures.
For the moment, we will simply consider vectors as a notation system to keep track of
multiple random variables.

Just as a probability function Pr(S) induced a pdf (pmf) on a single random variable
X, in our example of two random variables, X = [X1, X2], the probability function now
induces a joint probability function (a joint pdf), which we symbolize as follows:

Pr(X) = Pr(X1 = x1, X2 = x2) = PX(x) = PX1,X2(x1, x2) (19)
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This allows us to take advantage of the many tools of calculus when dealing with
continuous random variables (which is why we often like to use these as approxima-
tions).

5. Note that while FX(x) is a unique function for a specific distribution, the pdf may be
defined an infinite number of ways that would still allow consistency of the principle.
This occurs as a consequence of ‘unmeasurable’ sets, which we attempt to deal with
by defining a sigma field.

6. A notation inconsistency is as follows: we abbreviate probability mass function (pmf),
cumulative mass function (cmf), probability density function (pdf), and cumulative
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we abbreviate pdf, to refer to either a pmf or a pdf, and a cumulative probability
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We are often in situations where we define more than a single random variable for a sample
space S. For example, in our ‘two coin flip’ sample space where we define our ‘fair coin’
probability function Pr(S), such that Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25,
we could define two random variables, where the first is ‘number of tails’:
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and the second is an indicator function that the ‘first flip is a head’:

X2(⌦) =
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X2(TH) = X2(TT ) = 0
X2(HH) = X2(HT ) = 1

(18)

In this case, we have defined a random vector for this sample space, i.e. a vector that has
two elements: X = [X1, X2]. Note that if we define a vector space, we can start treating
vector much as we do numbers and start defining operations such as vector addition or
vector multiplication. We will do this in our next computer lab and our following lectures.
For the moment, we will simply consider vectors as a notation system to keep track of
multiple random variables.

Just as a probability function Pr(S) induced a pdf (pmf) on a single random variable
X, in our example of two random variables, X = [X1, X2], the probability function now
induces a joint probability function (a joint pdf), which we symbolize as follows:

Pr(X) = Pr(X1 = x1, X2 = x2) = PX(x) = PX1,X2(x1, x2) (19)
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X1 : ⌦ ! R

X2 : ⌦ ! R

Pr(F) ! Pr(X)
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.25 (48)

6

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

6

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)
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Marginal distributions of random 
vectors

• Note that marginal distributions of random vectors are the 
probability of a r.v. of a random vector after summing (discrete) or 
integrating (continuous) over all the values of the other random variables:

• Again, as a simple illustration, consider our two coin flip example:
where Pr(X1 = x1, X2 = x2) = Pr(X1 ⇤X2), etc. We can also write this using our table
notation:

X2 = 0 X2 = 1
X1 = 0 0.0 0.25 0.25
X1 = 1 0.25 0.25 0.5
X1 = 2 0.25 0.0 0.25

0.5 0.5

Note that with this table we have also written out the marginal pdf’s of X1 and X2,
which are just the pdf’s of X1 and X2: PX1(x1) = {Pr(X1 = 0) = 0.25, P r(X1 = 1) =
0.5, P r(X1 = 2) = 0.25} and PX2(x2) = {Pr(X2 = 0) = 0.5, P r(X2 = 1) = 0.5}.

Just as we defined conditional probabilities for subsets of a sample space S for which
we have defined a probability function Pr(S), we can similarly define the conditional prob-
abilities of random variables:

Pr(X1|X2) =
Pr(X1 ⇤X2)

Pr(X2)
(18)

such that we have for example:

Pr(X1 = 0|X2 = 1) =
Pr(X1 = 0 ⇤X2 = 1)

Pr(X2 = 1)
=

0.25

0.5
= 0.5 (19)

Note that we can in fact use random variables as a means to define sample space subsets,
so the concept of conditional probability defined for sample spaces and for joint random
variables are interchangeable.

We can similarly define an (interchangeable) concept of independent random variables.
Note that our current X1 and X2 are not independent, since:

Pr(X1 = 0 ⇤X2 = 1) = 0.25 ⇥= Pr(X1 = 0)Pr(X2 = 1) = 0.25 � 0.5 = 0.125 (20)

and for random variables to be independent, all possible combinations of outcomes must
adhere to the definition of independence. To provide an example of random variables that
are independent, let’s keep the same probability function (‘fair coin’) and define X1 to be
’first flip is heads’ and X2 to be the ‘second flip is heads’. In this case:

X1(S) =

�
X1(TH) = X1(TT ) = 0
X1(HH) = X1(HT ) = 1

(21)

X2(S) =

�
X2(HT ) = X2(TT ) = 0
X2(HH) = X2(TH) = 1

(22)

and the joint pdf PX1,X2(x1, x2) is:
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PX1(x1) =

max(X2)X

X2=min(X2)

Pr(X1 = x1\X2 = x2) =
X

Pr(X1 = x1|X2 = x2)Pr(X2 = x2)

(28)

fX1(x1) =

Z 1

�1
Pr(X1 = x1\X2 = x2)dx2 =

Z 1

�1
Pr(X1 = x1|X2 = x2)Pr(X2 = x2)dx2

(29)

4. Our examples have been discrete random variables but the analogous concepts also
apply to continuous random variables, e.g. the joint pdf of two continuous random
variable X1 and X2 is fX1,X2(x1, x2).

5. We can define joint cdf’s as follows:

FX(x) = FX1,X1(x1, x2) =
x1X

i

x2X

j

PX1,X2(x1 = i, x2 = j) (30)

FX(x) = FX1,X1(x1, x2) =

Z i

�1

Z j

�1
fX1,X2(i, j) (31)

Pr(a 6 X1 6 b, c 6 X1 6 d) =

Z b

a

Z d

c
fX1,X2(x1, x2)dx1, dx2 (32)

for discrete and continuous random vectors respectively, and similarly for vectors
with more than two elements.

Before we leave the concept of joint pdf’s, let’s consider a conceptual extension. Note that
it is possible to define more than one sample space on the same experimental outcome.
For example, if we were interested in the genetics of human height, our experiment might
be to measure both the genotype (e.g. ‘A’ or ‘T’ at a particular SNP) and the phenotype
(‘height’) of each individual. This produces ‘two’ sample spaces S1 and S2, which have
a relationship, i.e. values of genotype occur with values of phenotype. We can therefore
also define a single sample space S = S1 \ S2, which indicates this relationship. For both
of these sample spaces S1 and S2, we could define distinct probability functions, although
again, these probability functions would be related and define a single pdf for S = S1 \S2.
We could also define random vectors for each sample space S1 and S2 but only where
each element of these random vectors is associated with only one probability function, i.e.
while a single probability function can be associated with multiple random variables, a
single random variable cannot be associated with more than one probability function. If
we consider the sample space S = S1 \S2, we would now have a single random vector that
combined the random vectors defined on S1 and S2, e.g. we could have random vectors
that include both discrete and continuous random variables.

9

Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x

PX1(x1) =

max(X2)X

x2=min(X2)

Pr(X1 = x1 \X2 = x2) =
X

Pr(X1 = x1|X2 = x2)Pr(X2 = x2)

(196)
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Three last points about random 
vectors

• Just as we can define cmf’s / cdf’s for r.v.’s, we can do the same for random 
vectors:

• We have been discussing random vectors with two r.v.’s, but we can 
consider any number n of r.v.’s:

• We refer to probability distributions defined over r.v. to be univariate, 
when defined over vectors with two r.v.’s they are bivariate, and when 
defined over three or more, they are multivariate

since they provide an alternative representation of a probability model (versus a pmf) that
has better properties in some cases (we will see this below when discussing the uniqueness
of the analogous concept for continuous distributions) and they have strong connections to
critical concepts in statistics, e.g. such as a p-value. For the moment, you should take my
word for it that cumulative functions are worth knowing about.

We define a cmf as follows:
FX(x) = Pr(X 6 x) (6)

FX1,X2(x1, x2) = Pr(X1 6 x1, X2 6 x2) (7)

where we define this function for X from �⇥ to +⇥. Equation (6) is actually enough to
define the cmf completely. However, it is often more intuitive to see how this is calculated
using the following formalism:

FX(x) =
x�

i

Pr(X = i) (8)

where the sum is over a discrete set of values over the real line that we wish to consider
(again, note that only values defined in our probability model are assigned non-zero prob-
ability). For example, for the probability model in equation (5) we we can use equation
(7) to calculate the value of the cmf at particular values:

FX(�1) = 0, FX(0) = 0.25, FX(0.5) = 0.25, FX(1) = 0.75
FX(1.2) = 0.75, FX(1) = 1.0, FX(12) = 1.0

(9)

When graphing a cmf from �⇥ to ⇥ with X on the X-axis and FX(x) on the Y-axis, this
produces a ‘step function’. For example, from (�⇥, 0) (the interval that gets infinitely
close to zero but does not include zero) the function takes the value zero. It then makes a
‘step’ or ‘jump’ up to 0.25 for the interval [0, 1), etc. (see graph from class).

4 Continuous random variables

We define random variables that can take any value on the real line or an interval of the
real line R to be continuous random variables. It turns out that considering intervals of
(or the entire) real line adds considerable complexity for defining the analogous concepts
we have considered with discrete random variables (although not if we define a discrete
random variable on a continuous probability space - see your first Homework!). To mo-
tivate the reason for using continuous random variables, let’s consider our example of a
sample space of ‘human heights’. As we have discussed last lecture, human heights cannot
take any possible value on the real line, but we assume heights could actually take any
continuous value between �⇥ and ⇥ for mathematical convenience (and because we can
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are independent, let’s keep the same probability function (‘fair coin’) and define X1 to be
’first flip is heads’ and X2 to be the ‘second flip is heads’. In this case:

X1(S) =

�
X1(TH) = X1(TT ) = 0
X1(HH) = X1(HT ) = 1

(22)

X2(S) =

�
X2(HT ) = X2(TT ) = 0
X2(HH) = X2(TH) = 1

(23)

and the joint pdf PX1,X2(x1, x2) is:

X2 = 0 X2 = 1
X1 = 0 0.25 0.25 0.5
X1 = 1 0.25 0.25 0.5

0.55 0.5

In this case, all combinations of values taken by X2 and X2 adhere to the definition of
independence. Note that we will consider multiple random variables that have the same
definition when considering samples in a later lecture, where we consider a sample to be
multiple realizations of the ‘same’ random variable (or more specifically, several random
variables with the same definition).

A few comments about the probability distributions of random vectors:

1. While we have considered cases of random vectors with two elements, we can define
vectors that have any number of n elements:

Pr(X) = Pr(X1 = x1, X2 = x2, ..., Xn = xn).

We will not consider vectors with an infinite numbers of elements in this course
(although such vectors are an important construction for concepts in advanced statis-
tics).

2. A note on terminology: we can interchangeably refer to PX(x) as the joint probability
distribution or a multivariate distribution of a random vector.

3. We can use the definition of conditional random variables to symbolize the marginal
pdf of X1, which we have written as PX1(x1) as follows: PX1|X2

(x1|x2) (and similarly
for X2 of course). This definition makes intuitive sense if you think of a marginal
pdf of X1 as the probability of X1 taking values after ‘conditioning’ on each of the
values of X2, e.g. stating this more rigorously for our last example:

PX1(0) = PX1=0|X2
= Pr(X1 = 0|(X2 = 0 �X2 = 1)) = 0.5

PX1(1) = PX1=1|X2
= Pr(X1 = 1|(X2 = 0 �X2 = 1)) = 0.5

(24)
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)
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Expectations and variances
• We are now going to introduce fundamental functions of random variables / 

vectors: expectations and variances

• These are functionals - map a function to a scalar (number) 

• These intuitively (but not rigorously!) these may be thought of as “a function on a 
function” with the following form:

• These are critical concepts for understanding the structure of probability models 
where the interpretation of the specific probability model under consideration

• They also have deep connections to many important concepts in probability and 
statistics

• Note that these are distinct from functions (Transformations) that are defined 
directly on X and not on Pr(X), i.e. Y = g(X):

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2010

Lecture 4: Expectations, Variances, Covariances, and Probability Models

Lecture: February 9; Version 1 posted: February 2; Version 2 posted: March 15

1 Introduction

Last lecture, we extended the concept of random variables to random vectors. Just as with
random variables, these have ‘joint’ pdfs and cdfs. We also discussed the concept that the
random variables that make up these random vectors may be independent of one another or
may have conditional relationships. Today, we will discuss some fundamental functions of
random variables/vectors: expectations (means), variances, covariances (and correlations).
These are critical concepts for understanding the structure of probability models, although
their interpretation is independent of the specific probability model under consideration
and they may be calculated for any random variable / vector. Today we will also discuss
some specific probability models that will be particularly useful to us in our study of
quantitative genomics.

2 Expectations, variances, and covariances

We have defined pdf’s and cdf’s, which provide a framework for defining probability mod-
els. We will now define some functions of random variables and random vectors, which are
useful independent of the probability model, and that have deep connections to important
concepts in statistics. These are expectations (also called means), variances, and covari-
ances (and correlations, which are a function of covariances and variances).

While you have likely discussed these previously in various contexts, it is important to
be aware that all of them are functions of random variables (vectors) and their associated
probability functions:

f(X(S), P r(X)) = f(X, P r(X)) : {X(S), P r(X)} � R (1)

Y = g(X) (2)

g(X) : X � Y (3)

1
g(X) � Y ⇥ Pr(X) � Pr(Y ) (4)

That is, we define a function that takes a random variable to a single value and a random
vector to a set of values. Expectations, variances, and covariances are special versions of
these functions because of their intuitive nature and because they have deep connections to
important principles in statistics.

2.1 Expected value

The expected value (or expectation) is defined as follows for a discrete random variable:

EX =

max(X)�

i=min(X)

XiPr(Xi) (5)

where min(X) and max(X) are the smallest and largest values taken by the random
variable. For example, for our coin system where we have a ‘fair coin’ probability model
and our random variable X, which is the ‘number of tails in two flips’:

X = {X(HH) = 0, X(HT ) = X(TH) = 1, X(TT ) = 2} (6)

the expected value of this random variable is:

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) = 1 (7)

We may similarly define the expectation of a continuous random variable:

EX =

⇥ +1

�1
XfX(x)dx (8)

which is analogous, i.e. we multiply ‘each’ value of the random variable by it’s probability
and sum them. A few comments about expectations of random variables:

1. In the discrete case, this is the same as adding up all the possibilities that can occur
for the random variable and dividing by the total number. For example, in our
example in equation (3), there are four possibilities because ‘one’ occurs twice so we
have: (0+1+1+2) / 4 = 1. An expectation is also therefore a mean (a term that is
often used interchangeably with expectation).

2. Intuitively, the mean is the ‘center of gravity’ of a symmetric pmf or pdf. That is,
imagine you were to take the graph of a pmf or pdf and place an arrow where the
mean occurs on the X-axis. There would be an equal amount of probability to the
left and to the right of this arrow. For non-symmetric pmf’s or pdf’s, the median
provides the ‘center of gravity’ where a median is the ‘middle’ value of a discrete
set of possibilities (and the mean of the two middle possibilities if there is an even

2

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R

3



Expectations I
• Following our analogous treatment of concepts for discrete and continuous 

random variables, we will do the same for expectations (and variances), 
which we also call expected values 

• Note that the interpretation of the expected value is the same in each 
case

• The expected value of a discrete random variable is defined as follows:

• For example, consider our two-coin flip experiment / fair coin probability 
model / random variable “number of tails”:

g(X) � Y ⇥ Pr(X) � Pr(Y ) (4)

That is, we define a function that takes a random variable to a single value and a random
vector to a set of values. Expectations, variances, and covariances are special versions of
these functions because of their intuitive nature and because they have deep connections to
important principles in statistics.

2.1 Expected value

The expected value (or expectation) is defined as follows for a discrete random variable:

EX =

max(X)�

i=min(X)

XiPr(Xi) (5)

where min(X) and max(X) are the smallest and largest values taken by the random
variable. For example, for our coin system where we have a ‘fair coin’ probability model
and our random variable X, which is the ‘number of tails in two flips’:

X = {X(HH) = 0, X(HT ) = X(TH) = 1, X(TT ) = 2} (6)

the expected value of this random variable is:

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) = 1 (7)

We may similarly define the expectation of a continuous random variable:

EX =

⇥ +1

�1
XfX(x)dx (8)

which is analogous, i.e. we multiply ‘each’ value of the random variable by it’s probability
and sum them. A few comments about expectations of random variables:

1. In the discrete case, this is the same as adding up all the possibilities that can occur
for the random variable and dividing by the total number. For example, in our
example in equation (3), there are four possibilities because ‘one’ occurs twice so we
have: (0+1+1+2) / 4 = 1. An expectation is also therefore a mean (a term that is
often used interchangeably with expectation).

2. Intuitively, the mean is the ‘center of gravity’ of a symmetric pmf or pdf. That is,
imagine you were to take the graph of a pmf or pdf and place an arrow where the
mean occurs on the X-axis. There would be an equal amount of probability to the
left and to the right of this arrow. For non-symmetric pmf’s or pdf’s, the median
provides the ‘center of gravity’ where a median is the ‘middle’ value of a discrete
set of possibilities (and the mean of the two middle possibilities if there is an even
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Expectations II

• The expected value of a continuous random variable is defined as follows:

• For example, consider our height measurement experiment / normal 
probability model / identity random variable:

g(X) � Y ⇥ Pr(X) � Pr(Y ) (4)

That is, we define a function that takes a random variable to a single value and a random
vector to a set of values. Expectations, variances, and covariances are special versions of
these functions because of their intuitive nature and because they have deep connections to
important principles in statistics.

2.1 Expected value

The expected value (or expectation) is defined as follows for a discrete random variable:

EX =

max(X)�

i=min(X)

XiPr(Xi) (5)

where min(X) and max(X) are the smallest and largest values taken by the random
variable. For example, for our coin system where we have a ‘fair coin’ probability model
and our random variable X, which is the ‘number of tails in two flips’:

X = {X(HH) = 0, X(HT ) = X(TH) = 1, X(TT ) = 2} (6)

the expected value of this random variable is:

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) = 1 (7)

We may similarly define the expectation of a continuous random variable:

EX =

⇥ +1

�1
XfX(x)dx (8)

which is analogous, i.e. we multiply ‘each’ value of the random variable by it’s probability
and sum them. A few comments about expectations of random variables:

1. In the discrete case, this is the same as adding up all the possibilities that can occur
for the random variable and dividing by the total number. For example, in our
example in equation (3), there are four possibilities because ‘one’ occurs twice so we
have: (0+1+1+2) / 4 = 1. An expectation is also therefore a mean (a term that is
often used interchangeably with expectation).

2. Intuitively, the mean is the ‘center of gravity’ of a symmetric pmf or pdf. That is,
imagine you were to take the graph of a pmf or pdf and place an arrow where the
mean occurs on the X-axis. There would be an equal amount of probability to the
left and to the right of this arrow. For non-symmetric pmf’s or pdf’s, the median
provides the ‘center of gravity’ where a median is the ‘middle’ value of a discrete
set of possibilities (and the mean of the two middle possibilities if there is an even

2



Expectations III

• In the discrete case, this is the same as adding up all the possibilities that 
can occur and dividing by the total number, e.g. (0+1+1+2) / 4 = 1 (hence 
it is often referred to as the mean of the random variable

• An expected value may be thought of as the “center of gravity”, where a 
median (defined as the number where half of the probability is on either 
side) is the “middle” of the distribution (note that for symmetric 
distributions, these two are the same!) 

• The expectation of a random variable X is the value of X that minimizes 
the sum of the squared distance to each possibility

• For some distributions, the expectation of the random variable may be 
infinite.  In such cases, the expectation does not exist



Variances I

• We will define variances for discrete and continuous random variables, 
where again, the interpretation for both is the same

• The variance of a discrete random variable is defined as follows:

• For example, consider our two-coin flip experiment / fair coin probability 
model / random variable “number of tails”:
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PX1(x1) =

max(X2)X

x2=min(X2)

Pr(X1 = x1 \X2 = x2) =
X

Pr(X1 = x1|X2 = x2)Pr(X2 = x2)

(196)

EX =

max(X)X

i=min(X)

(X = i)Pr(X = i) (197)

Var(X) = V(X) =

max(X)X

i=min(X)

((X = i)� EX)2Pr(X = i) (198)
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model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5
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Variances II
• The variance of a continuous random variable is defined as follows:

• For example, consider our height measurement experiment / normal 
probability model / identity random variable:

number overall, e.g. median(0,1,2)=2 and median(0,1,1,2)=mean(1,1)=1) and for
a continuous pdf, the median is defined as having exactly 0.5 of the probability to
the left of the median and 0.5 to the right. In general, mean’s tend to have ‘better’
mathematical properties in many instances (although not all, e.g. robust statistics!)
so we like to try and work with means where possible. Also note, for symmetric
distributions EX=mean(X)=median(X).

3. The expectation of a random variable is the value that minimizes the sum of the
squared distances to each possibility (the di�erence between each value and the
mean). That is, if we were to subtract the expectation from each possibility, square
the di�erence, and add all these up, the result would be smaller than if we were to
subtract any other number. This is an example of least-squares, a concept we will
consider more explicitly later.

4. For some distributions, the expectation of the associated random variable may be
infinite. In such cases, the expectation ‘does not exist’, i.e. some random variables
do not have expected values.

2.2 Variance

The variance for a discrete random variable is defined as follows:

Var(X) = VX =

max(X)⇤

i=min(X)

(Xi � EX)2Pr(Xi) (9)

so for our ‘fair coin’, ‘number of tails’ example, we have:

Var(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5 (10)

and similarly for the continuous case, we have:

Var(X) = VX =

⌅ +1

�1
(X � EX)2fX(x)dx (11)

A few comments about expectations of random variables:

1. An intuitive interpretation of the variance is that it summarizes the ‘spread’ of a
distribution. That is, if you were to look at a pmf or pdf, the wider the distribution
of probability along the X-axis, the greater the variance and vice versa.

2. There are other ways besides equations (6) and (8) to write the formula for the
variance including:

Var(X) = E
�
(X � EX)2

⇥
(12)

Var(X) = E(X2)� (EX)2 (13)
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Variances III

• Intuitively, the variance quantifies the “spread” of a distribution

• The squared component of variance has convenient mathematical 
properties, e.g. we can view them as sides of triangles

• Other equivalent (and often used) formulations of variance:

• Instead of viewing variance as including a squared term, we could view the 
relationship as follows:
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distribution. That is, if you were to look at a pmf or pdf, the wider the distribution
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variance including:
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⇥
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Var(X) = E(X2)� (EX)2 (13)
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3. While we will not see this in great detail, the ‘squared’ property allows variances to
have some nice properties having to do with the lengths of vectors if we were to view
these as defining triangles.

4. Instead of viewing the variance as including a ‘squared’ term Var(X) = E[(X�EX)2],
we could view this as Var(X) = E[(X � EX)(X � EX)]. This distinction will be
important below.

E(X1|X2) =

max(X1)�

i=min(X1)

X1(i)Pr(X1(i)|X2) (14)

E(X1|X2) =

⇥ +⇥

�⇥
X1fX1|X2

(x1|x2)dx1 (15)

V(X1|X2) =

max(X1)�

i=min(X1)

(X1(i) � EX1)
2Pr(X1(i)|X2) (16)

V(X1|X2) =

⇥ +⇥

�⇥
(X1(i) � EX1)

2fX1|X2
(x1|x2)dx1 (17)

A final note before we leave expectations and variances. Expectations are considered the
first moment of a distribution (random variable), where the kth moment has the following
definition:

EXk =

max(X)�

i=min(X)

Xk
i Pr(Xi) (18)

EXk =

⇥ +⇥

�⇥
XkfX(x)dx (19)

Similarly, variances are considered the second ‘central’ moment, where the kth central
moment is defined as follows:

C(Xk) =

max(X)�

i=min(X)

(Xi � EX)kPr(Xi) (20)

C(Xk) =

⇥ +⇥

�⇥
(X � EX)kfX(x)dx (21)

Moments are used extensively in advanced probability and statistics applications but we
will largely be concerned with expectations, variances, and their random vector analogs
(including covariances) in this course.
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Generalization: higher moments

• The expectation of a random variable is the “first” moment and we can 
generalize this concept to “higher” moments:

• The variance is the second “central” moment (i.e. calculating a moment 
after subtracting off the mean) and we can generalize this concept to 
higher moments as well:
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Random vectors: expectations 
and variances

• Recall that a generalization of a random variable is a random vector, e.g.

• The expectation (a function of a random vector and its distribution!) is a 
vector with the expected value of each element of the random vector, 
e.g.

• Variances also result in variances of each element (and additional terms... 
see next slide!!)

• Note that we can determine the conditional expected value or variance 
of a random variable conditional on a value of another variable, e.g. 

3. While we will not see this in great detail, the ‘squared’ property allows variances to
have some nice properties having to do with the lengths of vectors if we were to view
these as defining triangles.

4. Instead of viewing the variance as including a ‘squared’ term (X � EX)2, we could
view this as (X � EX)(X � EX). This distinction will be important below.

A final note before we leave expectations and variances. Expectations are considered the
first moment of a distribution (random variable), where the kth moment has the following
definition:

EXk =

max(X)�

i=min(X)

Xk
i Pr(Xi) (14)

EXk =

⇥ +1

�1
XkfX(x)dx (15)

Similarly, variances are considered the second ‘central’ moment, where the kth central
moment is defined as follows:

C(Xk) =

max(X)�

i=min(X)

(Xi � EX)kPr(Xi) (16)

C(Xk) =

⇥ +1

�1
(X � EX)kfX(x)dx (17)

Moments are used extensively in advanced probability and statistics applications but we
will largely be concerned with expectations, variances, and their random vector analogs
(including covariances) in this course.

2.3 Random vectors: expectations, variances, and covariances

It should come as no surprise that we can define these functions for random vectors. Again,
recall that we are simply consider a random vector to be a vector valued function of a sample
space S, which has a multivariate pdf and cdf defined by a probability function of S. For
the moment, let’s consider a random vector with two values:

X = [X1, X2] (18)

and its associated bivariate distribution (discrete or continuous):

PX1,X2(x1, x2) or fX1,X2(x1, x2) (19)

In this case, the expectation of this random vector is:

EX = [EX1,EX2] (20)
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2
Pr(Xi = i|X2) (205)
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E(X1|X2) =

Z +1

�1
X1fX1|X2

(x1|x2)dx1 (204)
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Random vectors: covariances
• Variances (again a function!) of a random vector are similar producing 

variances for each element, but they also produce covariances, which 
relate the relationships between random variables of a random vector!! 

• Intuitively, we can interpret a positive covariance as indicating “big values 
of X1 tend to occur with big values of X2 AND small values of X1 tend to 
occur with small values of X2”

• Negative covariance is the opposite (e.g. “big X1 with small X2 AND small 
X1 with big X2”)

• Zero covariance indicates no relationship between big and small values of 
X1 and X2

V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)
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((X1 = i)� EX1)((X2 = j)� EX2)PX1,X2(x1, x2) (1)

3



An illustrative example

• For example, consider our experiment where we have measured “height” 
and “IQ” / bivariate normal probability model / identity random variable:



Notes about covariances

• Covariance and independence, while related, are NOT synonymous (!!), 
although if random variables are independent, then their covariance is 
zero (but necessarily vice versa!) 

• Covariances are symmetric:

• Other equivalent (and often used) formulations of covariances:

• From these formulas, it follows that the covariance of a random variable 
and itself is the variance:

Variances are similar in the sense that when we apply the variance function to X, we return
VarX1 and VarX2. However, notice that if we consider variance as being a function of the
‘mean centered X’ times ‘mean centered X’, when there are two X’s, i.e. X1 and X2, there
is the possibility of considering ‘mean centered X1 times mean centered X2’ and vice versa.
This introduces the concept of covariances, which is defined as follows for discrete random
variables:

Cov(X1, X2) =

max(X1)�

i=min(X1)

max(X2)�

j=min(X2)

(Xi,1 � EX1)(Xj,2 � EX2)PX1,X2(x1, x2) (21)

where Xi,1 indexes the possible values that can be taken by X1 and similarly for Xj,2. For
continuous random variables, covariances are defined as:

Cov(X1, X2) =

⇥ +1

�1

⇥ +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dX1dX2 (22)

where the integrals are over X1 and X2. A number of comments about covariances:

1. Intuitively, a positive covariance indicates that ‘big values of X1 tend to occur with
big values of X2 and small values of X1 tend to occur with small values of X2’. A
negative covariance indicates that ‘big values of X1 tend to occur with small values
of X2 and small values of X1 tend to occur with big values of X2’. A covariance of
zero indicates that ‘big or small values of X1 are just as likely to occur with big or
small values of X2’. See figures from class for this explanation.

2. Covariance and independence, while related, are not synonymous. If random variables
are independent, their covariance is zero. However, a covariance of zero means does
not necessarily mean random variables are independent.

3. Covariances are symmetric with respect to X1 and X2 such that Cov(X1, X2) =
Cov(X2, X1).

4. Other formulas for covariance are as follows:

Cov(X1, X2) = E [(X1 � EX1)(X2 � EX2)] (23)

Cov(X1, X2) = E(X1X2)� EX1EX2 (24)

5. From these formulas, it follows that the covariance of a random variable with itself
is the variance, e.g. :

Cov(X1, X1) = E(X1X1)� EX1EX1 = E(X2
1 )� (EX1)

2 = Var(X1) (25)
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Covariance matrices

• Note that we have defined the “output” of applying an expectation 
function to a random vector but we have not yet defined the analogous 
output for applying a variance function to a random vector

• The output is a covariance matrix, which is square, symmetric matrix with 
variances on the diagonal and covariances on the off-diagonals

• For example, for two and three random variables:

• Note that not all square, symmetric matrices are covariance matrices (!!), 
technically they must be positive (semi)-definite to be a covariance matrix

vector is a covariance matrix, which has the following structure for our example X =
[X1, X2]:

Var(X) =


VarX1 Cov(X1, X2)

Cov(X1, X2) VarX2

�

with variances on the diagonal and covariances on the o↵ diagonal. The function produces
the same structure for larger random vectors, where for example we have:

Var(X) =

2

4
VarX1 Cov(X1, X2) Cov(X1, X3)

Cov(X1, X2) VarX2 Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Var(X3)

3

5

for the vector: X = [X1, X2, X3] and note that a correlation matrix of this vector will have
the following form:

Corr(X) =

2

4
1 Corr(X1, X2) Corr(X1, X3)

Corr(X1, X2) 1 Corr(X2, X3)
Corr(X1, X3) Corr(X2, X3) 1

3

5

2

4
1 0.96 0.83

0.96 1 0.89
0.83 0.89 1

3

5

which follows from the definition of a correlation.

A couple of quick notes about covariance matrices. First, as we discussed with our in-
troduction of vectors, we can define operations on matrices but for the moment, we are not
considering such concepts. Our matrix in this case (for the moment) is simply a system
of notation. Second, not all possible matrices can be covariance matrices. A covariance
matrix must be both symmetric (as you can see from the structure, and symmetry, of
covariances) and positive (semi-)definite. The latter is an advanced concept, so if you have
not been exposed to linear algebra do not worry about it (your homework will provide an
intuitive example of the positive definite restriction).

Just like expectations, covariance matrices provide a description of the pdf of random
vectors, regardless of the specific probability model, i.e. the matrix summarizes ‘spreads’
and ‘associations’ of the random variables that make up the vectors. We will make use of
covariance matrices throughout this course.

2.4 Algebra of expectations, variances, and covariances

With expectations, variances, and covariances, we have considered functions that take as
their input both the random variable or vector and the associated pdf (see equation 1).
We are often in the situation where we want to consider a new random variable that is a
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Covariances and correlations

• Since the magnitude of covariances depends on the variances of X1 and 
X2, we often would like to scale these such that “1” indicates maximum 
“big with big / small with small” and “-1” indicates maximum “big with 
small” (and zero still indicates no relationship)

• A correlation captures this relationship:

• Where we can similarly calculate a correlation matrix, e.g. for three 
random variables: 

6. Intuitively, a covariance between genotype and phenotype is how we will assess whether
a genotype indicates a genetic locus that is responsible for variation in the phenotype.
We will make this concept explicit the week after next.

7. (Side note) While the following relationship does not naturally fall in our current
discussion, it is commonly referred to, so we mention it here: Var(X1 + X2) =
VarX1 +VarX2 + 2Cov(X1, X2).

The value of a covariance (when not zero) depends on the variances of X1 and X2, with
larger values of these producing larger values of covariance. Given the intuition of com-
ment (1), we are often in a position where we are interested in how close the associations
are between values of random variables with a value of ‘1’ indicating the closest possible
association of ‘big values with big values and small with small’ etc., a value ‘-1’ indicating
the maximum closest possible association of ‘big values with small values’, and a value of
‘0’ indicating no association. To do this, we can scale the covariance by the square root of
the variance. We define this as a correlation of two random variables:

Corr(X1, X2) =
Cov(X1, X2)⌥

Var(X1)
⌥

Var(X2)
(26)

Now that we’ve discussed the concept of covariance, let’s return to the concept of taking
the variance of a random vector. The result of applying the variance function to a random
vector is a covariance matrix, which has the following structure for our example X =
[X1, X2]:

VarX =

�
VarX1 Cov(X1, X2)

Cov(X1, X2) VarX2

⇥

with variances on the diagonal and covariances on the o� diagonal. The function produces
the same structure for larger random vectors, where for example we have:

VarX =

⇤

⇧
VarX1 Cov(X1, X2) Cov(X1, X3)

Cov(X1, X2) VarX2 Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Var(X3)

⌅

⌃

for the vector: X = [X1, X2, X3] and note that a correlation matrix of this vector will have
the following form:

CorrX =

⇤

⇧
1 Corr(X1, X2) Corr(X1, X3)

Corr(X1, X2) 1 Corr(X2, X3)
Corr(X1, X3) Corr(X2, X3) 1

⌅

⌃

which follows from the definition of a correlation.

A couple of quick notes about covariance matrices. First, as we discussed with our in-
troduction of vectors, we can define operations on matrices but for the moment, we are not

6

vector is a covariance matrix, which has the following structure for our example X =
[X1, X2]:

Var(X) =


VarX1 Cov(X1, X2)

Cov(X1, X2) VarX2

�

with variances on the diagonal and covariances on the o↵ diagonal. The function produces
the same structure for larger random vectors, where for example we have:

Var(X) =

2

4
VarX1 Cov(X1, X2) Cov(X1, X3)

Cov(X1, X2) VarX2 Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Var(X3)

3

5

for the vector: X = [X1, X2, X3] and note that a correlation matrix of this vector will have
the following form:

Corr(X) =

2

4
1 Corr(X1, X2) Corr(X1, X3)

Corr(X1, X2) 1 Corr(X2, X3)
Corr(X1, X3) Corr(X2, X3) 1

3

5

2

4
1 0.96 0.83

0.96 1 0.89
0.83 0.89 1

3

5

which follows from the definition of a correlation.

A couple of quick notes about covariance matrices. First, as we discussed with our in-
troduction of vectors, we can define operations on matrices but for the moment, we are not
considering such concepts. Our matrix in this case (for the moment) is simply a system
of notation. Second, not all possible matrices can be covariance matrices. A covariance
matrix must be both symmetric (as you can see from the structure, and symmetry, of
covariances) and positive (semi-)definite. The latter is an advanced concept, so if you have
not been exposed to linear algebra do not worry about it (your homework will provide an
intuitive example of the positive definite restriction).

Just like expectations, covariance matrices provide a description of the pdf of random
vectors, regardless of the specific probability model, i.e. the matrix summarizes ‘spreads’
and ‘associations’ of the random variables that make up the vectors. We will make use of
covariance matrices throughout this course.

2.4 Algebra of expectations, variances, and covariances

With expectations, variances, and covariances, we have considered functions that take as
their input both the random variable or vector and the associated pdf (see equation 1).
We are often in the situation where we want to consider a new random variable that is a

7



Algebra of expectations and 
variances

• If we consider a function (e.g., a transformation) on X (a function on the 
random variable but not on the probabilities directly!), recall that this can 
result in a different probability distribution for Y and therefore different 
expectations, variances, etc. for Y as well

• We will consider two types of functions on random variables and the 
result on expectation and variances: sums Y = X1 + X2 +... and Y = a + bX1 
where a and b are constants

• For example, for sums,  Y = X1 + X2 we have the following relationships:

• As another example, for Y = X1 + X2 + X3 we have:

3. Covariances are symmetric with respect to X1 and X2 such that Cov(X1, X2) =
Cov(X2, X1).

4. Other formulas for covariance are as follows:

Cov(X1, X2) = E [(X1 � EX1)(X2 � EX2)] (27)

Cov(X1, X2) = E(X1X2)� EX1EX2 (28)

5. From these formulas, it follows that the covariance of a random variable with itself
is the variance, e.g. :

Cov(X1, X1) = E(X1X1)� EX1EX1 = E(X2
1 )� (EX1)

2 = Var(X1) (29)

6. Intuitively, a covariance between genotype and phenotype is how we will assess whether
a genotype indicates a genetic locus that is responsible for variation in the phenotype.
We will make this concept explicit the week after next.

7. (Side note) While the following relationship does not naturally fall in our current
discussion, it is commonly referred to, so we mention it here:

E(Y ) = E(X1 +X2) = EX1 + EX2 (30)

E(Y ) = E(X1 +X2 +X3) = EX1 + EX2 + EX3 (31)

Var(Y ) = Var(X1 +X2) = VarX1 +VarX2 + 2Cov(X1, X2) (32)

Var(Y ) = Var(X1+X2+X2) = VarX1+VarX2+VarX3+2Cov(X1, X2)+2Cov(X1, X3)+2Cov(X2, X3)
(33)

The value of a covariance (when not zero) depends on the variances of X1 and X2, with
larger values of these producing larger values of covariance. Given the intuition of com-
ment (1), we are often in a position where we are interested in how close the associations
are between values of random variables with a value of ‘1’ indicating the closest possible
association of ‘big values with big values and small with small’ etc., a value ‘-1’ indicating
the maximum closest possible association of ‘big values with small values’, and a value of
‘0’ indicating no association. To do this, we can scale the covariance by the square root of
the variance. We define this as a correlation of two random variables:

Corr(X1, X2) =
Cov(X1, X2)�

Var(X1)
�
Var(X2)

(34)

Now that we’ve discussed the concept of covariance, let’s return to the concept of taking
the variance of a random vector. The result of applying the variance function to a random
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Algebra of expectations and 
variances

• For the function Y = a + bX1  we obtain the following relationships:  

• Finally, note that if we were to take the covariance (or correlation) of two 
random variables Y1 and Y2 with the relationship: 

If we take this function of X and add to it a constant a, we have the following relationship
for the expectation:

Y = a+ bX (34)

EY = a+ bEX (35)

that is, expectations are linear functions with respect to multiplication of the random
variable by a constant and adding a constant. This works the same for random variables,
e.g. EY = a+ bEX, and random vectors, e.g. E [Y1, Y2] = [a+ bEX1, a+ bEX2]. There is
a di�erent relationship when considering variances:

Var(Y) = b2VarX (36)

where Var(Y) may be a single value (for a random variable) or a covariance matrix. If we
consider di�erent sets of constants a1, b1 and a2, b2 where:

Y1 = a1 + b1X1, Y2 = a2 + b2X2 (37)

we have for covariances:
Cov(Y1, Y2) = b1b2Cov(X1, X2) (38)

and for correlation:
Corr(Y1, Y2) = Corr(X1, X2) (39)

which follows from equation (23).

Section 3 (probability models) was moved to the notes for Lecture 5.
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model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R

Cov(X1, X2) =

i=max(X1)X

i=min(X1)

j=max(X2)X

j=min(X2)

((X1 = i)� EX1)((X2 = j)� EX2)PX1,X2(x1, x2) (1)

[X1 = x1, ..., Xn = xn] (2)

Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

Pr(T (X)) (5)

EY = a+ bEX

Var(Y ) = b
2Var(X)
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That’s it for today

• Next lecture, we will introduce expectations, variances, and related!


