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• Almost there with CMS… I will send you a Piazza message about this later 
today so I can compile a complete list of those who need to get on (

• Homework #2: due 11:59PM, Fri., Feb 17 and must be uploaded CMS (!!)

• I will hold office hours this Mon (Feb. 13) 12:30-2:30 by zoom

Announcements



Summary of lecture 6: Introduction 
to inference

• Last lecture, we discussed expected values, variances and 
covariances 

• Today we will begin our introduction to inference (!!) by 
introducing parameterized probability models, samples, and 
statistics!



Conceptual Overview
System

Que
sti

on

Experiment

Sample

Assumptions

Inference
Pr

ob
. M

od
els

Statistics



Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)
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Review: Random Variables



Review: Random vectors
• We are often in situations where we are interested in defining more than 

one r.v. on the same sample space

• When we do this, we define a random vector

• Note that a vector, in its simplest form, may be considered a set of numbers 
(e.g. [1.2,  2.0,  3.3] is a vector with three elements)

• Also note that vectors (when a vector space is defined) ARE NOT REALLY 
NUMBERS although we can define operations for them (e.g. addition, 
“multiplication”), which we will use later in this course

• Beyond keeping track of multiple r.v.’s, a random vector works just like a r.v., 
i.e. a probability function induces a probability function on the random 
vector and we may consider discrete or continuous (or mixed!) random 
vectors

• Note that we can define several r.v.’s on the same sample space (= a 
random vector), but this will result in one probability distribution function 
(why!?)



Review: Random vector conditional 
probability and independence

• Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define 
conditional probability for random vectors:

• As a simple example (discrete in this case - but continuous is analogous!), consider the two flip 
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads”:

• We can similarly consider whether r.v.’s of a random vector are independent, e.g.

• NOTE 1: we can use either                                or                                                 to check 
independence!

• NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the 
opposite is not true: if one does not show independence you’ve established they are not 
independent (!!)

where Pr(X1 = x1, X2 = x2) = Pr(X1 ⇤X2), etc. We can also write this using our table
notation:

X2 = 0 X2 = 1
X1 = 0 0.0 0.25 0.25
X1 = 1 0.25 0.25 0.5
X1 = 2 0.25 0.0 0.25

0.5 0.5

Note that with this table we have also written out the marginal pdf’s of X1 and X2,
which are just the pdf’s of X1 and X2: PX1(x1) = {Pr(X1 = 0) = 0.25, P r(X1 = 1) =
0.5, P r(X1 = 2) = 0.25} and PX2(x2) = {Pr(X2 = 0) = 0.5, P r(X2 = 1) = 0.5}.

Just as we defined conditional probabilities for subsets of a sample space S for which
we have defined a probability function Pr(S), we can similarly define the conditional prob-
abilities of random variables:

Pr(X1|X2) =
Pr(X1 ⇤X2)

Pr(X2)
(18)

such that we have for example:

Pr(X1 = 0|X2 = 1) =
Pr(X1 = 0 ⇤X2 = 1)

Pr(X2 = 1)
=

0.25

0.5
= 0.5 (19)

Note that we can in fact use random variables as a means to define sample space subsets,
so the concept of conditional probability defined for sample spaces and for joint random
variables are interchangeable.

We can similarly define an (interchangeable) concept of independent random variables.
Note that our current X1 and X2 are not independent, since:

Pr(X1 = 0 ⇤X2 = 1) = 0.25 ⇥= Pr(X1 = 0)Pr(X2 = 1) = 0.25 � 0.5 = 0.125 (20)

and for random variables to be independent, all possible combinations of outcomes must
adhere to the definition of independence. To provide an example of random variables that
are independent, let’s keep the same probability function (‘fair coin’) and define X1 to be
’first flip is heads’ and X2 to be the ‘second flip is heads’. In this case:

X1(S) =

�
X1(TH) = X1(TT ) = 0
X1(HH) = X1(HT ) = 1

(21)

X2(S) =

�
X2(HT ) = X2(TT ) = 0
X2(HH) = X2(TH) = 1

(22)

and the joint pdf PX1,X2(x1, x2) is:
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Review: Expectations and 
variances

• We are now going to introduce fundamental functions of random variables / 
vectors: expectations and variances

• These are functionals - map a function to a scalar (number) 

• These intuitively (but not rigorously!) these may be thought of as “a function on a 
function” with the following form:

• These are critical concepts for understanding the structure of probability models 
where the interpretation of the specific probability model under consideration

• They also have deep connections to many important concepts in probability and 
statistics

• Note that these are distinct from functions (Transformations) that are defined 
directly on X and not on Pr(X), i.e. Y = g(X):

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2010

Lecture 4: Expectations, Variances, Covariances, and Probability Models

Lecture: February 9; Version 1 posted: February 2; Version 2 posted: March 15

1 Introduction

Last lecture, we extended the concept of random variables to random vectors. Just as with
random variables, these have ‘joint’ pdfs and cdfs. We also discussed the concept that the
random variables that make up these random vectors may be independent of one another or
may have conditional relationships. Today, we will discuss some fundamental functions of
random variables/vectors: expectations (means), variances, covariances (and correlations).
These are critical concepts for understanding the structure of probability models, although
their interpretation is independent of the specific probability model under consideration
and they may be calculated for any random variable / vector. Today we will also discuss
some specific probability models that will be particularly useful to us in our study of
quantitative genomics.

2 Expectations, variances, and covariances

We have defined pdf’s and cdf’s, which provide a framework for defining probability mod-
els. We will now define some functions of random variables and random vectors, which are
useful independent of the probability model, and that have deep connections to important
concepts in statistics. These are expectations (also called means), variances, and covari-
ances (and correlations, which are a function of covariances and variances).

While you have likely discussed these previously in various contexts, it is important to
be aware that all of them are functions of random variables (vectors) and their associated
probability functions:

f(X(S), P r(X)) = f(X, P r(X)) : {X(S), P r(X)} � R (1)

Y = g(X) (2)

g(X) : X � Y (3)

1
g(X) � Y ⇥ Pr(X) � Pr(Y ) (4)

That is, we define a function that takes a random variable to a single value and a random
vector to a set of values. Expectations, variances, and covariances are special versions of
these functions because of their intuitive nature and because they have deep connections to
important principles in statistics.

2.1 Expected value

The expected value (or expectation) is defined as follows for a discrete random variable:

EX =

max(X)�

i=min(X)

XiPr(Xi) (5)

where min(X) and max(X) are the smallest and largest values taken by the random
variable. For example, for our coin system where we have a ‘fair coin’ probability model
and our random variable X, which is the ‘number of tails in two flips’:

X = {X(HH) = 0, X(HT ) = X(TH) = 1, X(TT ) = 2} (6)

the expected value of this random variable is:

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) = 1 (7)

We may similarly define the expectation of a continuous random variable:

EX =

⇥ +1

�1
XfX(x)dx (8)

which is analogous, i.e. we multiply ‘each’ value of the random variable by it’s probability
and sum them. A few comments about expectations of random variables:

1. In the discrete case, this is the same as adding up all the possibilities that can occur
for the random variable and dividing by the total number. For example, in our
example in equation (3), there are four possibilities because ‘one’ occurs twice so we
have: (0+1+1+2) / 4 = 1. An expectation is also therefore a mean (a term that is
often used interchangeably with expectation).

2. Intuitively, the mean is the ‘center of gravity’ of a symmetric pmf or pdf. That is,
imagine you were to take the graph of a pmf or pdf and place an arrow where the
mean occurs on the X-axis. There would be an equal amount of probability to the
left and to the right of this arrow. For non-symmetric pmf’s or pdf’s, the median
provides the ‘center of gravity’ where a median is the ‘middle’ value of a discrete
set of possibilities (and the mean of the two middle possibilities if there is an even

2

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R
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Review: Expectations I
• Following our analogous treatment of concepts for discrete and continuous 

random variables, we will do the same for expectations (and variances), 
which we also call expected values 

• Note that the interpretation of the expected value is the same in each 
case

• The expected value of a discrete random variable is defined as follows:

• For example, consider our two-coin flip experiment / fair coin probability 
model / random variable “number of tails”:

g(X) � Y ⇥ Pr(X) � Pr(Y ) (4)

That is, we define a function that takes a random variable to a single value and a random
vector to a set of values. Expectations, variances, and covariances are special versions of
these functions because of their intuitive nature and because they have deep connections to
important principles in statistics.

2.1 Expected value

The expected value (or expectation) is defined as follows for a discrete random variable:

EX =

max(X)�

i=min(X)

XiPr(Xi) (5)

where min(X) and max(X) are the smallest and largest values taken by the random
variable. For example, for our coin system where we have a ‘fair coin’ probability model
and our random variable X, which is the ‘number of tails in two flips’:

X = {X(HH) = 0, X(HT ) = X(TH) = 1, X(TT ) = 2} (6)

the expected value of this random variable is:

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) = 1 (7)

We may similarly define the expectation of a continuous random variable:

EX =

⇥ +1

�1
XfX(x)dx (8)

which is analogous, i.e. we multiply ‘each’ value of the random variable by it’s probability
and sum them. A few comments about expectations of random variables:

1. In the discrete case, this is the same as adding up all the possibilities that can occur
for the random variable and dividing by the total number. For example, in our
example in equation (3), there are four possibilities because ‘one’ occurs twice so we
have: (0+1+1+2) / 4 = 1. An expectation is also therefore a mean (a term that is
often used interchangeably with expectation).

2. Intuitively, the mean is the ‘center of gravity’ of a symmetric pmf or pdf. That is,
imagine you were to take the graph of a pmf or pdf and place an arrow where the
mean occurs on the X-axis. There would be an equal amount of probability to the
left and to the right of this arrow. For non-symmetric pmf’s or pdf’s, the median
provides the ‘center of gravity’ where a median is the ‘middle’ value of a discrete
set of possibilities (and the mean of the two middle possibilities if there is an even
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x

PX1(x1) =

max(X2)X

x2=min(X2)
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X

Pr(X1 = x1|X2 = x2)Pr(X2 = x2)

(196)

EX =

max(X)X

i=min(X)

(X = i)Pr(X = i) (197)

22



• The expected value of a continuous random variable is defined as follows:

• For example, consider our height measurement experiment / normal 
probability model / identity random variable:

Review: Expectations II

g(X) � Y ⇥ Pr(X) � Pr(Y ) (4)

That is, we define a function that takes a random variable to a single value and a random
vector to a set of values. Expectations, variances, and covariances are special versions of
these functions because of their intuitive nature and because they have deep connections to
important principles in statistics.

2.1 Expected value

The expected value (or expectation) is defined as follows for a discrete random variable:

EX =

max(X)�

i=min(X)

XiPr(Xi) (5)
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We may similarly define the expectation of a continuous random variable:

EX =

⇥ +1

�1
XfX(x)dx (8)

which is analogous, i.e. we multiply ‘each’ value of the random variable by it’s probability
and sum them. A few comments about expectations of random variables:

1. In the discrete case, this is the same as adding up all the possibilities that can occur
for the random variable and dividing by the total number. For example, in our
example in equation (3), there are four possibilities because ‘one’ occurs twice so we
have: (0+1+1+2) / 4 = 1. An expectation is also therefore a mean (a term that is
often used interchangeably with expectation).

2. Intuitively, the mean is the ‘center of gravity’ of a symmetric pmf or pdf. That is,
imagine you were to take the graph of a pmf or pdf and place an arrow where the
mean occurs on the X-axis. There would be an equal amount of probability to the
left and to the right of this arrow. For non-symmetric pmf’s or pdf’s, the median
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set of possibilities (and the mean of the two middle possibilities if there is an even
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• We will define variances for discrete and continuous random variables, 
where again, the interpretation for both is the same

• The variance of a discrete random variable is defined as follows:

• For example, consider our two-coin flip experiment / fair coin probability 
model / random variable “number of tails”:

Review: Variances I
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(⌦,F , P r)

x

PX1(x1) =

max(X2)X

x2=min(X2)

Pr(X1 = x1 \X2 = x2) =
X

Pr(X1 = x1|X2 = x2)Pr(X2 = x2)

(196)

EX =

max(X)X

i=min(X)

(X = i)Pr(X = i) (197)

Var(X) = V(X) =

max(X)X

i=min(X)

((X = i)� EX)2Pr(X = i) (198)
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Review: Variances II
• The variance of a continuous random variable is defined as follows:

• For example, consider our height measurement experiment / normal 
probability model / identity random variable:

number overall, e.g. median(0,1,2)=2 and median(0,1,1,2)=mean(1,1)=1) and for
a continuous pdf, the median is defined as having exactly 0.5 of the probability to
the left of the median and 0.5 to the right. In general, mean’s tend to have ‘better’
mathematical properties in many instances (although not all, e.g. robust statistics!)
so we like to try and work with means where possible. Also note, for symmetric
distributions EX=mean(X)=median(X).

3. The expectation of a random variable is the value that minimizes the sum of the
squared distances to each possibility (the di�erence between each value and the
mean). That is, if we were to subtract the expectation from each possibility, square
the di�erence, and add all these up, the result would be smaller than if we were to
subtract any other number. This is an example of least-squares, a concept we will
consider more explicitly later.

4. For some distributions, the expectation of the associated random variable may be
infinite. In such cases, the expectation ‘does not exist’, i.e. some random variables
do not have expected values.

2.2 Variance

The variance for a discrete random variable is defined as follows:

Var(X) = VX =

max(X)⇤

i=min(X)

(Xi � EX)2Pr(Xi) (9)

so for our ‘fair coin’, ‘number of tails’ example, we have:

Var(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5 (10)

and similarly for the continuous case, we have:

Var(X) = VX =

⌅ +1

�1
(X � EX)2fX(x)dx (11)

A few comments about expectations of random variables:

1. An intuitive interpretation of the variance is that it summarizes the ‘spread’ of a
distribution. That is, if you were to look at a pmf or pdf, the wider the distribution
of probability along the X-axis, the greater the variance and vice versa.

2. There are other ways besides equations (6) and (8) to write the formula for the
variance including:

Var(X) = E
�
(X � EX)2

⇥
(12)

Var(X) = E(X2)� (EX)2 (13)
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Review: Random vectors: 
expectations and variances

• Recall that a generalization of a random variable is a random vector, e.g.

• The expectation (a function of a random vector and its distribution!) is a 
vector with the expected value of each element of the random vector, 
e.g.

• Variances also result in variances of each element (and additional terms... 
see next slide!!)

• Note that we can determine the conditional expected value or variance 
of a random variable conditional on a value of another variable, e.g. 

3. While we will not see this in great detail, the ‘squared’ property allows variances to
have some nice properties having to do with the lengths of vectors if we were to view
these as defining triangles.

4. Instead of viewing the variance as including a ‘squared’ term (X � EX)2, we could
view this as (X � EX)(X � EX). This distinction will be important below.

A final note before we leave expectations and variances. Expectations are considered the
first moment of a distribution (random variable), where the kth moment has the following
definition:

EXk =

max(X)�

i=min(X)

Xk
i Pr(Xi) (14)

EXk =

⇥ +1

�1
XkfX(x)dx (15)

Similarly, variances are considered the second ‘central’ moment, where the kth central
moment is defined as follows:

C(Xk) =

max(X)�

i=min(X)

(Xi � EX)kPr(Xi) (16)

C(Xk) =

⇥ +1

�1
(X � EX)kfX(x)dx (17)

Moments are used extensively in advanced probability and statistics applications but we
will largely be concerned with expectations, variances, and their random vector analogs
(including covariances) in this course.

2.3 Random vectors: expectations, variances, and covariances

It should come as no surprise that we can define these functions for random vectors. Again,
recall that we are simply consider a random vector to be a vector valued function of a sample
space S, which has a multivariate pdf and cdf defined by a probability function of S. For
the moment, let’s consider a random vector with two values:

X = [X1, X2] (18)

and its associated bivariate distribution (discrete or continuous):

PX1,X2(x1, x2) or fX1,X2(x1, x2) (19)

In this case, the expectation of this random vector is:

EX = [EX1,EX2] (20)
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)
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X

Pr(X1 = x1|X2 = x2)Pr(X2 = x2)

(196)

EX =

max(X)X

i=min(X)

(X = i)Pr(X = i) (197)

EXk =
X

X
k
Pr(X) (198)

EXk =

Z
X

k
fX(x)dx (199)

Var(X) = V(X) =

max(X)X

i=min(X)

((X = i)� EX)2Pr(X = i) (200)

C(Xk) =
X

(X � EX)kPr(X) (201)

C(Xk) =

Z
(X � EX)kfX(x)dx (202)

E(X1|X2) =

max(X1)X

i=min(X1)

(X1 = i)Pr(Xi = i|X2) (203)

E(X1|X2) =

Z +1

�1
X1fX1|X2

(x1|x2)dx1 (204)
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Review: Random vectors: 
covariances

• Variances (again a function!) of a random vector are similar producing 
variances for each element, but they also produce covariances, which 
relate the relationships between random variables of a random vector!! 

• Intuitively, we can interpret a positive covariance as indicating “big values 
of X1 tend to occur with big values of X2 AND small values of X1 tend to 
occur with small values of X2”

• Negative covariance is the opposite (e.g. “big X1 with small X2 AND small 
X1 with big X2”)

• Zero covariance indicates no relationship between big and small values of 
X1 and X2

V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)
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Review: Covariance matrices

• Note that we have defined the “output” of applying an expectation 
function to a random vector but we have not yet defined the analogous 
output for applying a variance function to a random vector

• The output is a covariance matrix, which is square, symmetric matrix with 
variances on the diagonal and covariances on the off-diagonals

• For example, for two and three random variables:

• Note that not all square, symmetric matrices are covariance matrices (!!), 
technically they must be positive (semi)-definite to be a covariance matrix

vector is a covariance matrix, which has the following structure for our example X =
[X1, X2]:

Var(X) =


VarX1 Cov(X1, X2)

Cov(X1, X2) VarX2

�

with variances on the diagonal and covariances on the o↵ diagonal. The function produces
the same structure for larger random vectors, where for example we have:

Var(X) =

2

4
VarX1 Cov(X1, X2) Cov(X1, X3)

Cov(X1, X2) VarX2 Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Var(X3)

3

5

for the vector: X = [X1, X2, X3] and note that a correlation matrix of this vector will have
the following form:

Corr(X) =

2

4
1 Corr(X1, X2) Corr(X1, X3)

Corr(X1, X2) 1 Corr(X2, X3)
Corr(X1, X3) Corr(X2, X3) 1

3

5

2

4
1 0.96 0.83

0.96 1 0.89
0.83 0.89 1

3

5

which follows from the definition of a correlation.

A couple of quick notes about covariance matrices. First, as we discussed with our in-
troduction of vectors, we can define operations on matrices but for the moment, we are not
considering such concepts. Our matrix in this case (for the moment) is simply a system
of notation. Second, not all possible matrices can be covariance matrices. A covariance
matrix must be both symmetric (as you can see from the structure, and symmetry, of
covariances) and positive (semi-)definite. The latter is an advanced concept, so if you have
not been exposed to linear algebra do not worry about it (your homework will provide an
intuitive example of the positive definite restriction).

Just like expectations, covariance matrices provide a description of the pdf of random
vectors, regardless of the specific probability model, i.e. the matrix summarizes ‘spreads’
and ‘associations’ of the random variables that make up the vectors. We will make use of
covariance matrices throughout this course.

2.4 Algebra of expectations, variances, and covariances

With expectations, variances, and covariances, we have considered functions that take as
their input both the random variable or vector and the associated pdf (see equation 1).
We are often in the situation where we want to consider a new random variable that is a
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Review: Covariances and 
correlations

• Since the magnitude of covariances depends on the variances of X1 and 
X2, we often would like to scale these such that “1” indicates maximum 
“big with big / small with small” and “-1” indicates maximum “big with 
small” (and zero still indicates no relationship)

• A correlation captures this relationship:

• Where we can similarly calculate a correlation matrix, e.g. for three 
random variables: 

6. Intuitively, a covariance between genotype and phenotype is how we will assess whether
a genotype indicates a genetic locus that is responsible for variation in the phenotype.
We will make this concept explicit the week after next.

7. (Side note) While the following relationship does not naturally fall in our current
discussion, it is commonly referred to, so we mention it here: Var(X1 + X2) =
VarX1 +VarX2 + 2Cov(X1, X2).

The value of a covariance (when not zero) depends on the variances of X1 and X2, with
larger values of these producing larger values of covariance. Given the intuition of com-
ment (1), we are often in a position where we are interested in how close the associations
are between values of random variables with a value of ‘1’ indicating the closest possible
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Now that we’ve discussed the concept of covariance, let’s return to the concept of taking
the variance of a random vector. The result of applying the variance function to a random
vector is a covariance matrix, which has the following structure for our example X =
[X1, X2]:

VarX =

�
VarX1 Cov(X1, X2)

Cov(X1, X2) VarX2

⇥

with variances on the diagonal and covariances on the o� diagonal. The function produces
the same structure for larger random vectors, where for example we have:

VarX =

⇤

⇧
VarX1 Cov(X1, X2) Cov(X1, X3)

Cov(X1, X2) VarX2 Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Var(X3)

⌅

⌃

for the vector: X = [X1, X2, X3] and note that a correlation matrix of this vector will have
the following form:

CorrX =

⇤

⇧
1 Corr(X1, X2) Corr(X1, X3)

Corr(X1, X2) 1 Corr(X2, X3)
Corr(X1, X3) Corr(X2, X3) 1

⌅

⌃

which follows from the definition of a correlation.

A couple of quick notes about covariance matrices. First, as we discussed with our in-
troduction of vectors, we can define operations on matrices but for the moment, we are not
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which follows from the definition of a correlation.

A couple of quick notes about covariance matrices. First, as we discussed with our in-
troduction of vectors, we can define operations on matrices but for the moment, we are not
considering such concepts. Our matrix in this case (for the moment) is simply a system
of notation. Second, not all possible matrices can be covariance matrices. A covariance
matrix must be both symmetric (as you can see from the structure, and symmetry, of
covariances) and positive (semi-)definite. The latter is an advanced concept, so if you have
not been exposed to linear algebra do not worry about it (your homework will provide an
intuitive example of the positive definite restriction).

Just like expectations, covariance matrices provide a description of the pdf of random
vectors, regardless of the specific probability model, i.e. the matrix summarizes ‘spreads’
and ‘associations’ of the random variables that make up the vectors. We will make use of
covariance matrices throughout this course.

2.4 Algebra of expectations, variances, and covariances

With expectations, variances, and covariances, we have considered functions that take as
their input both the random variable or vector and the associated pdf (see equation 1).
We are often in the situation where we want to consider a new random variable that is a
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Algebra of expectations and 
variances

• If we consider a function (e.g., a transformation) on X (a function on the 
random variable but not on the probabilities directly!), recall that this can 
result in a different probability distribution for Y and therefore different 
expectations, variances, etc. for Y as well

• We will consider two types of functions on random variables and the 
result on expectation and variances: sums Y = X1 + X2 +... and Y = a + bX1 
where a and b are constants

• For example, for sums,  Y = X1 + X2 we have the following relationships:

• As another example, for Y = X1 + X2 + X3 we have:

3. Covariances are symmetric with respect to X1 and X2 such that Cov(X1, X2) =
Cov(X2, X1).

4. Other formulas for covariance are as follows:

Cov(X1, X2) = E [(X1 � EX1)(X2 � EX2)] (27)

Cov(X1, X2) = E(X1X2)� EX1EX2 (28)

5. From these formulas, it follows that the covariance of a random variable with itself
is the variance, e.g. :

Cov(X1, X1) = E(X1X1)� EX1EX1 = E(X2
1 )� (EX1)

2 = Var(X1) (29)

6. Intuitively, a covariance between genotype and phenotype is how we will assess whether
a genotype indicates a genetic locus that is responsible for variation in the phenotype.
We will make this concept explicit the week after next.

7. (Side note) While the following relationship does not naturally fall in our current
discussion, it is commonly referred to, so we mention it here:

E(Y ) = E(X1 +X2) = EX1 + EX2 (30)

E(Y ) = E(X1 +X2 +X3) = EX1 + EX2 + EX3 (31)

Var(Y ) = Var(X1 +X2) = VarX1 +VarX2 + 2Cov(X1, X2) (32)

Var(Y ) = Var(X1+X2+X2) = VarX1+VarX2+VarX3+2Cov(X1, X2)+2Cov(X1, X3)+2Cov(X2, X3)
(33)

The value of a covariance (when not zero) depends on the variances of X1 and X2, with
larger values of these producing larger values of covariance. Given the intuition of com-
ment (1), we are often in a position where we are interested in how close the associations
are between values of random variables with a value of ‘1’ indicating the closest possible
association of ‘big values with big values and small with small’ etc., a value ‘-1’ indicating
the maximum closest possible association of ‘big values with small values’, and a value of
‘0’ indicating no association. To do this, we can scale the covariance by the square root of
the variance. We define this as a correlation of two random variables:

Corr(X1, X2) =
Cov(X1, X2)�

Var(X1)
�
Var(X2)

(34)

Now that we’ve discussed the concept of covariance, let’s return to the concept of taking
the variance of a random vector. The result of applying the variance function to a random
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Algebra of expectations and 
variances

• For the function Y = a + bX1  we obtain the following relationships:  

• Finally, note that if we were to take the covariance (or correlation) of two 
random variables Y1 and Y2 with the relationship: 

If we take this function of X and add to it a constant a, we have the following relationship
for the expectation:

Y = a+ bX (34)

EY = a+ bEX (35)

that is, expectations are linear functions with respect to multiplication of the random
variable by a constant and adding a constant. This works the same for random variables,
e.g. EY = a+ bEX, and random vectors, e.g. E [Y1, Y2] = [a+ bEX1, a+ bEX2]. There is
a di�erent relationship when considering variances:

Var(Y) = b2VarX (36)

where Var(Y) may be a single value (for a random variable) or a covariance matrix. If we
consider di�erent sets of constants a1, b1 and a2, b2 where:

Y1 = a1 + b1X1, Y2 = a2 + b2X2 (37)

we have for covariances:
Cov(Y1, Y2) = b1b2Cov(X1, X2) (38)

and for correlation:
Corr(Y1, Y2) = Corr(X1, X2) (39)

which follows from equation (23).

Section 3 (probability models) was moved to the notes for Lecture 5.
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model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R

Cov(X1, X2) =

i=max(X1)X

i=min(X1)

j=max(X2)X

j=min(X2)

((X1 = i)� EX1)((X2 = j)� EX2)PX1,X2(x1, x2) (1)

[X1 = x1, ..., Xn = xn] (2)

Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

Pr(T (X)) (5)

EY = a+ bEX

Var(Y ) = b
2Var(X)
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So far

Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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the values taken by X to Y . For example, we can have the function Y = X2 (see figure
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))

23

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

3

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

3



Probability models I
• We have defined Pr(X), a probability model (=probability function!) on a 

random variable, which technically we produce by defining Pr function on the 
sigma algebra and the X (random variable function) on the sample space

• So far, we have generally considered such probability models / functions 
without defining them explicitly (except for a illustrative few examples)

• To define an explicit model for a given system / experiment we are going to 
assume that there is a “true” probability model, that is a consequence of the 
experiment that produces sample outcomes

• We place “true” in quotes since the defining a single true probability model 
for a given case could only really be accomplished if we knew every single 
detail about the system and experiment (would a probability model be useful 
in this case?) 

• In practice, we therefore assume that the true probability distribution is 
within a restricted family of probability distributions, where we are satisfied if 
the true probability distribution in the family describes the results of our 
experiment pretty well / seems reasonable given our assumptions



Probability models II

• In short, we therefore start a statistical investigation assuming that there 
is a single true probability model that correctly describes the possible 
experiment outcomes given the uncertainty in our system

• In general, the starting point of a statistical investigation is to make 
assumptions about the form of this probability model

• More specifically, a convenient assumption is to assume our true 
probability model is specific model in a family of distributions that can be 
described with a compact equation

• This is often done by defining equations indexed by parameters



• Parameter - a constant(s)     which indexes a probability model 
belonging to a family of models      such that  

• Each value of the parameter (or combination of values if there is more 
than on parameter) defines a different probability model: Pr(X)

• We assume one such parameter value(s) is the true model

• The advantage of this approach is this has reduced the problem of using 
results of experiments to answer a broad question to the problem of 
using a sample to make an educated guess at the value of the 
parameter(s)

• Remember that the foundation of such an approach is still an assumption 
about the properties of the sample outcomes, the experiment, and the 
system of interest (!!!) 

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 5: Probability Models, Inference, Samples, Statistics, and Estimators

Lecture: February 14; Version 1: February 20; Version 2, March 15

1 Introduction

Last lecture, we discussed some fundamental functions of random variables/vectors and
their probability distributions, the interpretation of which does not depend on the specific
probability model under consideration: expectations (means), variances, covariances (cor-
relations). Today we will discuss some specific probability models that will be particularly
useful to us in our study of quantitative genomics. After introducing these models, we will
introduce inference and discuss the first critical concepts for making inferences: samples,
statistics, and their sampling distributions. We will then begin our discussion of estimation
(a particular class of inference), where we will make use of samples to determine the value
of the parameter of the underlying probability model that is responsible for our sample,
which we will use to (indirectly) make statements about the system we are studying.

2 Probability models

We have now discussed that by defining a probability function Pr(S) and a random variable
X(S) on a sample space S, we define a probability distribution for the random variable
Pr(X), and we can use expectations, variances, and covariance, to characterize aspects
of the probability distribution regardless of the specific form of the distribution. While
choosing a specific probability model (a specific probability distribution) is in theory only
restricted according to the axioms of probability, we in general make use of probability mod-
els that are both intuitive and allow for mathematical conveniences. One such convenience
is the ability to (mathematically) simply define a large number of possible probability mod-
els with a compact equation. For the models we will consider, the way this is done is by
making our probability distributions functions of parameters:

Parameter � a constant which indexes a probability model belonging to a family of
models � such that � ⇥ �.
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Probability models III



Discrete parameterized examples

• Consider the probability model for the one coin flip experiment / number 
of tails.  

• This is the Bernoulli distribution with parameter    = p (what does p 
represent!?) where 

• We can write this X ~ Bern(p) and this family of probability models has 
the following form:

• For the experiment of n coin flips / number of tails, one possible family 
Binomial distribution X ~ Bin(n, p):

• There are many other discrete examples: hypergeometric, Poisson, etc.    

The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not
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Continuous parameterized 
examples

• Consider the measure heights experiment (reals as approximation to the 
sample space) / identity random variable

• For this example we can use the family of normal distributions that are 
parameterized by                       (what do these parameters represent!?) 
with the following possible values:                        , 

• We often write this as                    and the equation has the following 
form: 

• There are many other continuous examples: uniform, exponential, etc.  

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,⌅2) = fX(x|µ,⌅2) =
1⌃
2⇤⌅2

e�
(x�µ)2

2�2 (5)

This model therefore has two parameters (µ,⌅2) such that � is actually a parameter vec-
tor � =

�
µ,⌅2

⇥
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: � = (�⌅,⌅). The ⌅2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values � = [0,⌅). As we have seen previously, our shorthand for a normal distribution is
X ⇤ N(µ,⌅2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⇥ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) �) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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Example for random vectors

• Since random vectors are the generalization of r.v.’s, we similarly can 
define parameterized probability models for random vectors
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and “IQ” and we take the 2-D reals as the approximate sample space 
(vector identity function), we could assume the bivariate normal family of 
probability models:
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Introduction to inference I

• Recall that our eventual goal is to use a sample (generated by an 
experiment) to provide an answer to a question (about a system)

• So far, we have set up the mathematical foundation that we need to 
accomplish this goal in a probability / statistics setting (although note 
we have not yet provided formalism for a sample!!)

• Specifically, we have defined formal components of our framework and 
made assumptions that have reduced the scope of the problem

• With these components and assumptions in place, we are almost 
ready to perform inference, which will accomplish our goal  



• Our eventual goal is to use a sample (generated by an experiment) to 
provide an answer to a question (about a system)

• For our system and experiment, we are going to assume there is a single 
“correct” probability function (which in turn defines the probability of our 
possible random variable outcomes, the probability of possible random 
vectors that represent samples, and the probability of possible values of a 
statistic)

• For the purposes of inference, we often assume a parameterized family of 
probability models determine the possible cases that contain the “true” model 
that describes the result of the experiment   

• This reduces the problem of inference to identifying the “single” value(s) of 
the parameter that describes this true model

• Inference (informally) is the process of using the output of an experiment to 
answer the question

Introduction to inference II



Introduction to inference III

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family probability 
distributions, indexed by the value of parameter(s) ) on the basis of a 
sample

• There are two major types of inference we will consider in this 
course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to 
formally define: experimental trials, samples, sample probability 
distributions (or sampling distributions), statistics, statistic probability 
distributions (or statistic sampling distributions) 
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Then: Statistics!
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Statistic: Statistic Sampling 
Distribution:
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T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)
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Experiments to Samples (what 
we observe!)

• Experiment - a manipulation or measurement of a system that 
produces an outcome we can observe

• Experiment Outcome - a possible outcome of the experiment

• Sample Space - set comprising all possible outcomes of an 
experiment 

• Experimental Trial - one instance of an experiment

• Sample - (informal) results of one or more experimental trials

• Example (Experiment / Sample Space / Sample):

• Coin flip /  {H, T} /  T,  T,  H,  T,  H

• Two coin flips / {HH,  HT,  TH,  TT} /  HH,  HT,  HH,  TH,  HH

• Measure heights in this class / Reals / 5’9”, 5’2”, 5’1”, 6’0”, 5’7”



Samples I

• Sample - repeated observations of a random variable X, generated by 
experimental trials

• We will consider samples that result from n experimental trials (what 
would be the ideal n = ideal experiment!?)

• Since a set of actual experimental outcomes may not be numbers (e.g., a 
set of H and T’s) we want to map them to numbers…

• We already have the formalism to do this and represent a sample of size n, 
specifically this is a random vector:

• As an example, for our two coin flip experiment / number of tails r.v., we 
could perform n=2 experimental trials, which would produce a sample = 
random vector with two elements 

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
essential in quantitative genomics (the latter will often be our goal but the former is re-
quired for the latter). We will discuss these in general terms in the next two lectures and in
specific terms throughout the semester. Also, note that one of the nice aspects of assuming
that the probability model of our random variable is from a family indexed in a parameter
set �, the problem of inference is reduced to the problem of learning something about the
specific parameter value of our model �. However, before we get to concepts of inference
concerning �, we need to define several fundamental concepts: samples, statistics, and their
sampling distributions.

4 Samples and i.i.d.

Recall that the starting point of our discussion is a system we want to know something
about, and an experiment that produces a sample space S. We then define a probabil-
ity function and a random variable on S, which define a specific probability distribution
Pr(X = x), where by definition, we have defined a specific probability model (by making
assumptions) indexed by �. In general, we would like to know something about the pa-
rameter of our probability model �, which is defined by the system and experiment (and
by extrapolation from our many assumptions, can be used to learn about the system),
but is unknown to us. Inference is the process of determining something about the true
parameter value, and for this we need a sample.

Sample � repeated observations of a random variable X, generated by experiments.

The ideal set of experiments would have an infinite number of observations, but since
such cases are not possible, we will consider a sample of size n. Now, we have already seen
how to represent a sample, this is simply a random vector:

[X = x] = [X1 = x1, ..., Xn = xn] (7)

where unlike the random vectors we have considered before, each of the n random variables
have the same structure, they are simply indicate di⇥erent observations of the random
variable in our sample, e.g. for n = 2 in our coin flip example(s), we do not define X1=‘#
of Tails’ and X2=‘# of Heads’ but rather X1=‘# of Tails’ of the first flip (or pair of flips)
in an experiment and X2=‘# of Tails’ in the second flip (or pair of flips) in the same
experiment. Now, as we have discussed, defining a probability function on the sample
space Pr(S) induces a probability distribution of a random variable defined on the same
sample space Pr(X) and since our random vector is considering multiple realizations of
this random variable, the Pr(X) induces a probability distribution on our sample vector,
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• For example, for our one coin flip experiment / number of tails r.v., we could 
produce a sample of n = 10 experimental trials, which might look like:

• As another example, for our measure heights / identity r.v., we could produce a 
sample of n=10 experimental trails, which might look like:

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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Example: Observed Sample!



Samples II

• Recall that we have defined experiments (= experimental trials) in a 
probability / statistics setting where these involve observing individuals 
from a population or the results of a manipulation

• We have defined the possible outcome of an experimental trial, i.e. the 
sample space

• We have also defined a random variable X, where this can take values 
representing the outcomes of our experimental trials, i.e., X = x

• Since the random variable X also has an induced probability distribution 
associated with it, we can also consider Pr(X), i.e., the probability of each 
possible outcome of an experiment or the entire sample!

• Since this defines a probability model Pr(X), we have shifted our focus 
from the sample space to the random variable

� (7)

F (8)

Pr(F) (9)

⇤ ⇥ F (10)

This A ⇥ F then Ac ⇥ F

A1,A2, ... ⇥ F then
��

i=1Ai ⇥ F

⇤, {H}, {T}, {H,T} (11)

F (12)

E(S) (13)

E (14)

X(�) (15)

� (16)

Pr(F) (17)

X = x (18)

Pr(X) (19)

X = x , Pr(X)
S (20)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Example of sampling distributions
• As an example, consider our height experiment (reals as approximate 

sample space) / normal probability model (with true but unknown 
parameters                    / identity random variable  

• If we assume an i.i.d sample, each sample Xi = xi has a normal distribution 
with parameters                     and each is independent of all other Xj = xj

• For example, the sampling distribution for an i.i.d sample of n = 2 is:

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,�
2) = fX(x|µ,�

2) =
1p

2⇡�2
e
� (x�µ)2

2�2 (5)

This model therefore has two parameters (µ,�
2) such that ✓ is actually a parameter vec-

tor ✓ =
⇥
µ,�

2
⇤
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: ⇥ = (�1,1). The �

2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ⇥ = [0,1). As we have seen previously, our shorthand for a normal distribution is
X ⇠ N(µ,�

2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⌘ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) ✓) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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• Note that since we have defined (or more accurately induced!) a probability 
distribution Pr(X) on our random variable, this means we have induced a 
probability distribution on the sample (!!):

• This is the sample probability distribution or sampling distribution (often called the 
joint sampling distribution)

• While samples could take a variety of forms, we generally assume that each 
possible observation in the sample has the same form, such that they are 
identically distributed:

• We also generally assume that each observation is independent of all other 
observations:

• If both of these assumptions hold, than the sample is independent and identically 
distributed, which we abbreviate as i.i.d. 

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually

5

Sample Probability Distribution

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R

Cov(X1, X2) =

i=max(X1)X

i=min(X1)

j=max(X2)X

j=min(X2)

((X1 = i)� EX1)((X2 = j)� EX2)PX1,X2(x1, x2) (1)

[X1 = x1, ..., Xn = xn] (2)

Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (7)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)
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That’s it for today

• Next lecture, we will begin our discussion of statistics (and 
estimators)!


