Quantitative Genomics and Genetics
 BTRY 4830/6830; PBSB.520I. 03

Lecture 6: Introduction to Inference (Probability Models and Samples)

Jason Mezey
Feb 9, 2023 (Th) 8:05-9:20

Announcements

- Almost there with CMS... I will send you a Piazza message about this later today so I can compile a complete list of those who need to get on (
- Homework \#2: due II:59PM, Fri., Feb I7 and must be uploaded CMS (!!)
- I will hold office hours this Mon (Feb. I3) I2:30-2:30 by zoom

Summary of lecture 6: Introduction to inference

- Last lecture, we discussed expected values, variances and covariances
- Today we will begin our introduction to inference (!!) by introducing parameterized probability models, samples, and statistics!

Conceptual Overview

Review: Random Variables

Review: Random vectors

- We are often in situations where we are interested in defining more than one r.v. on the same sample space
- When we do this, we define a random vector
- Note that a vector, in its simplest form, may be considered a set of numbers (e.g. [I.2, 2.0, 3.3] is a vector with three elements)
- Also note that vectors (when a vector space is defined) ARE NOT REALLY NUMBERS although we can define operations for them (e.g. addition, "multiplication"), which we will use later in this course
- Beyond keeping track of multiple r.v.'s, a random vector works just like a r.v., i.e. a probability function induces a probability function on the random vector and we may consider discrete or continuous (or mixed!) random vectors
- Note that we can define several r.v.'s on the same sample space (= a random vector), but this will result in one probability distribution function (why!?)

Review: Random vector conditional probability and independence

- Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define conditional probability for random vectors:

$$
\operatorname{Pr}\left(X_{1} \mid X_{2}\right)=\frac{\operatorname{Pr}\left(X_{1} \cap X_{2}\right)}{\operatorname{Pr}\left(X_{2}\right)}
$$

- As a simple example (discrete in this case - but continuous is analogous!), consider the two flip sample space, fair coin probability model, random variables: "number of tails" and "first flip is heads":

	$X_{2}=0$	$X_{2}=1$	
$X_{1}=0$	0.0	0.25	0.25
$X_{1}=1$	0.25	0.25	0.5
$X_{1}=2$	0.25	0.0	0.25
	0.5	0.5	

$$
\operatorname{Pr}\left(X_{1}=0 \mid X_{2}=1\right)=\frac{\operatorname{Pr}\left(X_{1}=0 \cap X_{2}=1\right)}{\operatorname{Pr}\left(X_{2}=1\right)}=\frac{0.25}{0.5}=0.5
$$

- We can similarly consider whether r.v.s of a random vector are independent, e.g.

$$
\operatorname{Pr}\left(X_{1}=0 \cap X_{2}=1\right)=0.25 \neq \operatorname{Pr}\left(X_{1}=0\right) \operatorname{Pr}\left(X_{2}=1\right)=0.25 * 0.5=0.125
$$

- NOTE I: we can use either $\operatorname{Pr}\left(X_{i} \mid X_{j}\right)=\operatorname{Pr}\left(X_{i}\right)$ or $\operatorname{Pr}\left(X_{i} \cap X_{j}\right)=\operatorname{Pr}\left(X_{i}\right) \operatorname{Pr}\left(X_{j}\right)$ to check independence!
- NOTE II: to establish $\mathrm{Xi}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}$ are independent you must check all possible relationships but the opposite is not true: if one does not show independence you've established they are not independent (!!)

Review: Expectations and variances

- We are now going to introduce fundamental functions of random variables / vectors: expectations and variances
- These are functionals - map a function to a scalar (number)
- These intuitively (but not rigorously!) these may be thought of as "a function on a function" with the following form:

$$
f(\mathbf{X}(\Omega), \operatorname{Pr}(\mathbf{X})):\{\mathbf{X}, \operatorname{Pr}(\mathbf{X})\} \rightarrow \mathbb{R}
$$

- These are critical concepts for understanding the structure of probability models where the interpretation of the specific probability model under consideration
- They also have deep connections to many important concepts in probability and statistics
- Note that these are distinct from functions (Transformations) that are defined directly on X and not on $\operatorname{Pr}(X)$, i.e. $Y=g(X)$:

$$
\begin{gathered}
g(\mathbf{X}): X \rightarrow Y \\
g(\mathbf{X}) \rightarrow Y \Rightarrow \operatorname{Pr}(X) \rightarrow \operatorname{Pr}(Y)
\end{gathered}
$$

Review: Expectations I

- Following our analogous treatment of concepts for discrete and continuous random variables, we will do the same for expectations (and variances), which we also call expected values
- Note that the interpretation of the expected value is the same in each case
- The expected value of a discrete random variable is defined as follows:

$$
\mathrm{E} X=\sum_{i=\min (X)}^{\max (X)}(X=i) \operatorname{Pr}(X=i)
$$

- For example, consider our two-coin flip experiment / fair coin probability model / random variable "number of tails":
$\mathrm{E} X=(0)(0.25)+(1)(0.5)+(2)(0.25)=1$

Review: Expectations II

- The expected value of a continuous random variable is defined as follows:

$$
\mathrm{E} X=\int_{-\infty}^{+\infty} X f_{X}(x) d x
$$

- For example, consider our height measurement experiment / normal probability model / identity random variable:

Review:Variances I

- We will define variances for discrete and continuous random variables, where again, the interpretation for both is the same
- The variance of a discrete random variable is defined as follows:

$$
\operatorname{Var}(X)=\mathrm{V}(X)=\sum_{i=\min (X)}^{\max (X)}((X=i)-\mathrm{E} X)^{2} \operatorname{Pr}(X=i)
$$

- For example, consider our two-coin flip experiment / fair coin probability model / random variable "number of tails":
$\operatorname{Var}(X)=(0-1)^{2}(0.25)+(1-1)^{2}(0.5)+(2-1)^{2}(0.25)=0.5$

Review:Variances II

- The variance of a continuous random variable is defined as follows:

$$
\operatorname{Var}(X)=\mathrm{V} X=\int_{-\infty}^{+\infty}(X-\mathrm{E} X)^{2} f_{X}(x) d x
$$

- For example, consider our height measurement experiment / normal probability model / identity random variable:

Review: Random vectors:

expectations and variances

- Recall that a generalization of a random variable is a random vector, e.g.

$$
\mathbf{X}=\left[X_{1}, X_{2}\right] \quad P_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \text { or } f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

- The expectation (a function of a random vector and its distribution!) is a vector with the expected value of each element of the random vector, e.g.

$$
\mathrm{EX}=\left[\mathrm{E} X_{1}, \mathrm{E} X_{2}\right]
$$

- Variances also result in variances of each element (and additional terms... see next slide!!)
- Note that we can determine the conditional expected value or variance of a random variable conditional on a value of another variable, e.g.

$$
\begin{array}{rr}
\mathrm{E}\left(X_{1} \mid X_{2}\right)=\sum_{i=\min \left(X_{1}\right)}^{\max \left(X_{1}\right)}\left(X_{1}=i\right) \operatorname{Pr}\left(X_{i}=i \mid X_{2}\right) & \mathrm{V}\left(X_{1} \mid X_{2}\right)=\sum_{i=\min \left(X_{1}\right)}^{\max \left(X_{1}\right)}\left(\left(X_{1}=i\right)-\mathrm{E} X_{1}\right)^{2} \operatorname{Pr}\left(X_{i}=i \mid X_{2}\right) \\
\mathrm{E}\left(X_{1} \mid X_{2}\right)=\int_{-\infty}^{+\infty} X_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1} & \mathrm{~V}\left(X_{1} \mid X_{2}\right)=\int_{-\infty}^{+\infty}\left(X_{1}-\mathrm{E} X_{1}\right)^{2} f_{X_{1} \mid X_{2}\left(x_{1} \mid x_{2}\right) d x_{1}}
\end{array}
$$

Review: Random vectors:

covariances

- Variances (again a function!) of a random vector are similar producing variances for each element, but they also produce covariances, which relate the relationships between random variables of a random vector!!

$$
\begin{array}{r}
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sum_{i=\min \left(X_{1}\right)}^{i=\max \left(X_{1}\right)} \sum_{j=\min \left(X_{2}\right)}^{j=\max \left(X_{2}\right)}\left(\left(X_{1}=i\right)-\mathrm{E} X_{1}\right)\left(\left(X_{2}=j\right)-\mathrm{E} X_{2}\right) P_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(X_{1}-\mathrm{E} X_{1}\right)\left(X_{2}-\mathrm{E} X_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{array}
$$

- Intuitively, we can interpret a positive covariance as indicating "big values of X_{1} tend to occur with big values of X_{2} AND small values of X_{1} tend to occur with small values of X_{2} "
- Negative covariance is the opposite (e.g."big X_{1} with small X_{2} AND small X_{1} with big $X_{2}{ }^{\prime \prime}$)
- Zero covariance indicates no relationship between big and small values of X_{1} and X_{2}

Review: Covariance matrices

- Note that we have defined the "output" of applying an expectation function to a random vector but we have not yet defined the analogous output for applying a variance function to a random vector
- The output is a covariance matrix, which is square, symmetric matrix with variances on the diagonal and covariances on the off-diagonals
- For example, for two and three random variables:

$$
\begin{aligned}
& \operatorname{Var}(\mathbf{X})=\left[\begin{array}{ccc}
\operatorname{Var} X_{1} & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var} X_{2}
\end{array}\right] \\
& \operatorname{Var}(\mathbf{X})=\left[\begin{array}{ccc}
\operatorname{Var} X_{1} & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var} X_{2} & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{3}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) & \operatorname{Var}\left(X_{3}\right)
\end{array}\right]
\end{aligned}
$$

- Note that not all square, symmetric matrices are covariance matrices (!!), technically they must be positive (semi)-definite to be a covariance matrix

Review: Covariances and correlations

- Since the magnitude of covariances depends on the variances of XI and $X 2$, we often would like to scale these such that " I " indicates maximum "big with big / small with small" and "-l" indicates maximum "big with small" (and zero still indicates no relationship)
- A correlation captures this relationship:

$$
\operatorname{Corr}\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right)} \sqrt{\operatorname{Var}\left(X_{2}\right)}}
$$

- Where we can similarly calculate a correlation matrix, e.g. for three random variables:

$$
\operatorname{Corr}(\mathbf{X})=\left[\begin{array}{ccc}
1 & \operatorname{Corr}\left(X_{1}, X_{2}\right) & \operatorname{Corr}\left(X_{1}, X_{3}\right) \\
\operatorname{Corr}\left(X_{1}, X_{2}\right) & 1 & \operatorname{Corr}\left(X_{2}, X_{3}\right) \\
\operatorname{Corr}\left(X_{1}, X_{3}\right) & \operatorname{Corr}\left(X_{2}, X_{3}\right) & 1
\end{array}\right]
$$

Algebra of expectations and variances

- If we consider a function (e.g., a transformation) on X (a function on the random variable but not on the probabilities directly!), recall that this can result in a different probability distribution for Y and therefore different expectations, variances, etc. for Y as well
- We will consider two types of functions on random variables and the result on expectation and variances: sums $Y=X_{1}+X_{2}+\ldots$ and $Y=a+b X_{1}$ where a and b are constants
- For example, for sums, $Y=X_{1}+X_{2}$ we have the following relationships:

$$
\begin{gathered}
\mathrm{E}(Y)=\mathrm{E}\left(X_{1}+X_{2}\right)=\mathrm{E} X_{1}+\mathrm{E} X_{2} \\
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var} X_{1}+\operatorname{Var} X_{2}+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)
\end{gathered}
$$

- As another example, for $Y=X_{1}+X_{2}+X_{3}$ we have:

$$
\mathrm{E}(Y)=\mathrm{E}\left(X_{1}+X_{2}+X_{3}\right)=\mathrm{E} X_{1}+\mathrm{E} X_{2}+\mathrm{E} X_{3}
$$

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}+X_{2}+X_{3}\right)=\operatorname{Var} X_{1}+\operatorname{Var} X_{2}+\operatorname{Var} X_{3}+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{3}\right)+2 \operatorname{Cov}\left(X_{2}, X_{3}\right)
$$

Algebra of expectations and variances

- For the function $Y=a+b X$ । we obtain the following relationships:

$$
\mathrm{E} Y=a+b \mathrm{E} X
$$

$$
\operatorname{Var}(Y)=b^{2} \operatorname{Var}(X)
$$

- Finally, note that if we were to take the covariance (or correlation) of two random variables Y_{1} and Y_{2} with the relationship:

$$
\begin{gathered}
Y_{1}=a_{1}+b_{1} X_{1}, \quad Y_{2}=a_{2}+b_{2} X_{2} \\
\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=b_{1} b_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Corr}\left(Y_{1}, Y_{2}\right)=\operatorname{Corr}\left(X_{1}, X_{2}\right)
\end{gathered}
$$

So far

Probability models I

- We have defined $\operatorname{Pr}(X)$, a probability model (=probability function!) on a random variable, which technically we produce by defining Pr function on the sigma algebra and the X (random variable function) on the sample space
- So far, we have generally considered such probability models / functions without defining them explicitly (except for a illustrative few examples)
- To define an explicit model for a given system / experiment we are going to assume that there is a "true" probability model, that is a consequence of the experiment that produces sample outcomes
- We place "true" in quotes since the defining a single true probability model for a given case could only really be accomplished if we knew every single detail about the system and experiment (would a probability model be useful in this case?)
- In practice, we therefore assume that the true probability distribution is within a restricted family of probability distributions, where we are satisfied if the true probability distribution in the family describes the results of our experiment pretty well / seems reasonable given our assumptions

Probability models II

- In short, we therefore start a statistical investigation assuming that there is a single true probability model that correctly describes the possible experiment outcomes given the uncertainty in our system
- In general, the starting point of a statistical investigation is to make assumptions about the form of this probability model
- More specifically, a convenient assumption is to assume our true probability model is specific model in a family of distributions that can be described with a compact equation
- This is often done by defining equations indexed by parameters

Probability models III

- Parameter - a constant(s) θ which indexes a probability model belonging to a family of models Θ such that $\theta \in \Theta$
- Each value of the parameter (or combination of values if there is more than on parameter) defines a different probability model: $\operatorname{Pr}(X)$
- We assume one such parameter value(s) is the true model
- The advantage of this approach is this has reduced the problem of using results of experiments to answer a broad question to the problem of using a sample to make an educated guess at the value of the parameter(s)
- Remember that the foundation of such an approach is still an assumption about the properties of the sample outcomes, the experiment, and the system of interest (!!!)

Discrete parameterized examples

- Consider the probability model for the one coin flip experiment / number of tails.
- This is the Bernoulli distribution with parameter $\theta=p$ (what does p represent!?) where $\Theta=[0,1]$
- We can write this $X \sim \operatorname{Bern}(p)$ and this family of probability models has the following form:

$$
\operatorname{Pr}(X=x \mid p)=P_{X}(x \mid p)=p^{x}(1-p)^{1-x}
$$

- For the experiment of n coin flips / number of tails, one possible family Binomial distribution $X \sim \operatorname{Bin}(n, p)$:
$\operatorname{Pr}(X=x \mid n, p)=P_{X}(x \mid n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$

$$
\begin{gathered}
\binom{n}{x}=\frac{n!}{x!(n-x)!} \\
n!=n *(n-1) *(n-2) * \ldots * 1
\end{gathered}
$$

- There are many other discrete examples: hypergeometric, Poisson, etc.

Continuous parameterized examples

- Consider the measure heights experiment (reals as approximation to the sample space) / identity random variable
- For this example we can use the family of normal distributions that are parameterized by $\theta=\left[\mu, \sigma^{2}\right]$ (what do these parameters represent!?) with the following possible values: $\Theta_{\mu}=(-\infty, \infty), \Theta_{\sigma^{2}}=[0, \infty)$
- We often write this as $X \sim N\left(\mu, \sigma^{2}\right)$ and the equation has the following form:

$$
\operatorname{Pr}\left(X=x \mid \mu, \sigma^{2}\right)=f_{X}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- There are many other continuous examples: uniform, exponential, etc.

Example for random vectors

- Since random vectors are the generalization of r.v.'s, we similarly can define parameterized probability models for random vectors
- As an example, if we consider an experiment where we measure "height" and "IQ" and we take the 2-D reals as the approximate sample space (vector identity function), we could assume the bivariate normal family of probability models:
$f_{\mathbf{X}}\left(\mathbf{x} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{1}\right)^{2}}{2 \sigma_{2}^{2}}\right)\right]$

Introduction to inference I

- Recall that our eventual goal is to use a sample (generated by an experiment) to provide an answer to a question (about a system)
- So far, we have set up the mathematical foundation that we need to accomplish this goal in a probability / statistics setting (although note we have not yet provided formalism for a sample!!)
- Specifically, we have defined formal components of our framework and made assumptions that have reduced the scope of the problem
- With these components and assumptions in place, we are almost ready to perform inference, which will accomplish our goal

Introduction to inference II

- Our eventual goal is to use a sample (generated by an experiment) to provide an answer to a question (about a system)
- For our system and experiment, we are going to assume there is a single "correct" probability function (which in turn defines the probability of our possible random variable outcomes, the probability of possible random vectors that represent samples, and the probability of possible values of a statistic)
- For the purposes of inference, we often assume a parameterized family of probability models determine the possible cases that contain the "true" model that describes the result of the experiment
- This reduces the problem of inference to identifying the "single" value(s) of the parameter that describes this true model
- Inference (informally) is the process of using the output of an experiment to answer the question

Introduction to inference III

- Inference - the process of reaching a conclusion about the true probability distribution (from an assumed family probability distributions, indexed by the value of parameter(s)) on the basis of a sample
- There are two major types of inference we will consider in this course: estimation and hypothesis testing
- Before we get to these specific forms of inference, we need to formally define: experimental trials, samples, sample probability distributions (or sampling distributions), statistics, statistic probability distributions (or statistic sampling distributions)

So far

Where we're headed: Samples

$$
\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]: \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right)
$$

Then: Statistics!

Experiments to Samples (what we observe!)

- Experiment - a manipulation or measurement of a system that produces an outcome we can observe
- Experiment Outcome - a possible outcome of the experiment
- Sample Space - set comprising all possible outcomes of an experiment
- Experimental Trial - one instance of an experiment
- Sample - (informal) results of one or more experimental trials
- Example (Experiment / Sample Space / Sample):
- Coin flip / $\{\mathrm{H}, \mathrm{T}\}$ / T, T, H, T, H
- Two coin flips / \{HH, HT, TH, TT\} / HH, HT, HH, TH, HH
- Measure heights in this class / Reals / 5'9", $5^{\prime} 2^{\prime \prime}, 5^{\prime} 1$ ", $6^{\prime} 0^{\prime \prime}, 5^{\prime \prime} 7^{\prime \prime}$

Samples I

- Sample - repeated observations of a random variable X, generated by experimental trials
- We will consider samples that result from n experimental trials (what would be the ideal $n=$ ideal experiment!?)
- Since a set of actual experimental outcomes may not be numbers (e.g., a set of H and T 's) we want to map them to numbers...
- We already have the formalism to do this and represent a sample of size n, specifically this is a random vector:

$$
[\mathbf{X}=\mathbf{x}]=\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

- As an example, for our two coin flip experiment / number of tails r.v., we could perform $n=2$ experimental trials, which would produce a sample $=$ random vector with two elements

Example: Observed Sample!

- For example, for our one coin flip experiment / number of tails r.v., we could produce a sample of $n=10$ experimental trials, which might look like:

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

- As another example, for our measure heights / identity r.v., we could produce a sample of $\mathrm{n}=10$ experimental trails, which might look like:

$$
\mathbf{x}=[-2.3,0.5,3.7,1.2,-2.1,1.5,-0.2,-0.8,-1.3,-0.1]
$$

Samples II

- Recall that we have defined experiments (= experimental trials) in a probability / statistics setting where these involve observing individuals from a population or the results of a manipulation
- We have defined the possible outcome of an experimental trial, i.e. the sample space Ω
- We have also defined a random variable X, where this can take values representing the outcomes of our experimental trials, i.e., $X=x$
- Since the random variable X also has an induced probability distribution associated with it, we can also consider $\operatorname{Pr}(\mathrm{X})$, i.e., the probability of each possible outcome of an experiment or the entire sample!
- Since this defines a probability model $\operatorname{Pr}(X)$, we have shifted our focus from the sample space to the random variable

Example of sampling distributions

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta=\left[\mu, \sigma^{2}\right] /$ identity random variable
- If we assume an i.i.d sample, each sample $X_{i}=x_{i}$ has a normal distribution with parameters $\theta=\left[\mu, \sigma^{2}\right]$ and each is independent of all other $X_{i}=x_{j}$
- For example, the sampling distribution for an i.i.d sample of $n=2$ is:

Sample Probability Distribution

- Note that since we have defined (or more accurately induced!) a probability distribution $\operatorname{Pr}(X)$ on our random variable, this means we have induced a probability distribution on the sample (!!):

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=P_{\mathbf{X}}(\mathbf{x}) \text { or } f_{\mathbf{X}}(\mathbf{x})
$$

- This is the sample probability distribution or sampling distribution (often called the joint sampling distribution)
- While samples could take a variety of forms, we generally assume that each possible observation in the sample has the same form, such that they are identically distributed:

$$
\operatorname{Pr}\left(X_{1}=x_{1}\right)=\operatorname{Pr}\left(X_{2}=x_{2}\right)=\ldots=\operatorname{Pr}\left(X_{n}=x_{n}\right)
$$

- We also generally assume that each observation is independent of all other observations:

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}\right) \operatorname{Pr}\left(X_{2}=x_{2}\right) \ldots \operatorname{Pr}\left(X_{n}=x_{n}\right)
$$

- If both of these assumptions hold, than the sample is independent and identically distributed, which we abbreviate as i.i.d.

That's it for today

- Next lecture, we will begin our discussion of statistics (and estimators)!

