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Announcements

Almost there with CMS... | will send you a Piazza message about this later
today so | can compile a complete list of those who need to get on (

® Homework #2: due | 1:59PM, Fri., Feb 17 and must be uploaded CMS (!!)

® | will hold office hours this Mon (Feb. 13) 12:30-2:30 by zoom



Summary of lecture 6: Introduction
to inference

® |ast lecture, we discussed expected values, variances and
covariances

® Today we will begin our introduction to inference (!!) by
introducing parameterized probability models, samples, and

statistics!



Conceptual Overview

Experiment

Statistics Assumptions




Review: Random Variables
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Review: Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Review: Random vector conditional
probability and independence

Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define
conditional probability for random vectors:

PT(Xl M XQ)
P?“(XQ)

PT<X1|X2) =

As a simple example (discrete in this case - but continuous is analogous!), consider the two flip
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads’”:

Xo=0]| Xo=1
X, =0| 00 | 02 |02
X, = 0.25 025 | 0.5 Pr(X;=0NnXy=1) 0.25
Pr(X;=0X2=1) = = =0.5
X, =2 025 | 00 |02 r(&n =02 =1) Pr(Xo=1) 0.5
0.5 0.5

We can similarly consider whether r.v's of a random vector are independent, e.g.

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125

NOTE |:we can use either Pr(X;|X;) = Pr(X;) or Pr(X;NX;)= Pr(X;)Pr(X;) to check
independence!

NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the
opposite is not true: if one does not show independence you’ve established they are not
independent (!!)



Review: Expectations and
variances

We are now going to introduce fundamental functions of random variables /
vectors: expectations and variances

These are functionals - map a function to a scalar (humber)

These intuitively (but not rigorously!) these may be thought of as “a function on a
function” with the following form:

f(X(Q),Pr(X)) : {X,Pr(X)} - R

These are critical concepts for understanding the structure of probability models
where the interpretation of the specific probability model under consideration

They also have deep connections to many important concepts in probability and
statistics

Note that these are distinct from functions (Transformations) that are defined
directly on X and not on Pr(X), i.e. Y = g(X):

X)X Y
g(X) =Y = Pr(X)— Pr(Y)



Review: Expectations |

Following our analogous treatment of concepts for discrete and continuous
random variables, we will do the same for expectations (and variances),
which we also call expected values

Note that the interpretation of the expected value is the same in each
case

The expected value of a discrete random variable is defined as follows:
max(X)
EX= ) (X=iPr(X=1i)
i=min(X)

For example, consider our two-coin flip experlment / fair coin probability
model / random variable “number of tails™: )

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) =

Re(X)
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Review: Expectations ||

The expected value of a continuous random variable is defined as follows:

+00
EX = X fx(x)dx

— O

For example, consider our height measurement experiment / normal
probability model / identity random variable:

<
-

0.6 0.8

f(x)

04

0.0 0.2
| |




Review:Variances |

° We will define variances for discrete and continuous random variables,
where again, the interpretation for both is the same

° The variance of a discrete random variable is defined as follows:

mazx(X)
Var(X)=V(X)= ) (X =i)-EX)’Pr(X =1)
i=min(X)

®  For example, consider our two-coin flip experiment / fair coin probability
model / random variable “number of tails™:

< |
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0.8
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© |
o

Var(X) = (0 —1)2(0.25) + (1 — 1)2(0.5) + (2 — 1)2(0.25) = 0.5 §<§_E
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Review:Variances ||

The variance of a continuous random variable is defined as follows:

+0o0
Var(X) = VX = /_ (X —EX)*fx(x)dx

For example, consider our height measurement experiment / normal
probability model / identity random variable:

—{ Means and SDs
B m=0sd=1
B m=1sd=2
0O m=3,sd=0.5
O m=-2sd=3
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Review: Random vectors:
expectations and variances

®  Recall that a generalization of a random variable is a random vector, e.g.
X: [XlaXQ] PX17X2(CU1,ZUQ) OT le,XQ(.Tl,CUQ)

® The expectation (a function of a random vector and its distribution!) is a
vector with the expected value of each element of the random vector,

& EX = [EX1, EXo]
®  Variances also result in variances of each element (and additional terms...
see next slide!!)

® Note that we can determine the conditional expected value or variance
of a random variable conditional on a value of another variable, e.g.

max(X1) max(X1)
E(Xi|X2) = ) (Xi=iPr(Xi=ilXs) V(Xi[Xo)= Y ((X1=1)—EX1)’Pr(X; = i|Xs)
i=min(X1) i=min(X1)
+oo +o0
E(Xl‘XQ) = leX1|X2 (331|£E2)da?1 V(X1|X2) = / (Xl — EXl)QfX1|X2 (xl‘xg)dilﬁl



Review: Random vectors:
covariances

Variances (again a function!) of a random vector are similar producing
variances for each element, but they also produce covariances, which
relate the relationships between random variables of a random vector!!

i=max(X1) j=mazx(X2)

Cov(X1,X2) = > > (X1 =1) —EX1)((X2 = j) — EX2) Px, x, (21, 32)
i=min(X1) j=min(X2)

+00 +00
COV(Xl, XQ) = / (X1 - EXl)(XQ - EXQ)le’XQ (xl, .’L‘Q)d.%’ldwg

Intuitively, we can interpret a positive covariance as indicating “big values
of Xi tend to occur with big values of X2 AND small values of Xi tend to
occur with small values of X2"”

Negative covariance is the opposite (e.g.“big X1 with small X2 AND small
X1 with big X2")

Zero covariance indicates no relationship between big and small values of
X1 and X2



Review: Covariance matrices

Note that we have defined the “output” of applying an expectation
function to a random vector but we have not yet defined the analogous

output for applying a variance function to a random vector

The output is a covariance matrix, which is square, symmetric matrix with
variances on the diagonal and covariances on the off-diagonals

For example, for two and three random variables:

. VarX1 COV(Xl,XQ)
Var(X) = cov(Xy, Xa)  VarX,

VarX1 COV(Xl,XQ) COV(Xl,Xg)
Var(X) = |Cov(X1, X2) Var Xs Cov(Xa, X3)
COV(Xl,Xg) COV(XQ,Xg) Var(Xg)

Note that not all square, symmetric matrices are covariance matrices (!!),
technically they must be positive (semi)-definite to be a covariance matrix



Review: Covariances and
correlations

Since the magnitude of covariances depends on the variances of XI and
X2, we often would like to scale these such that “1” indicates maximum
“big with big / small with small” and “-1”" indicates maximum “big with
small” (and zero still indicates no relationship)

A correlation captures this relationship:

COV(Xl,X2>

Corr(X1, X3) = v/ Var(X1)+/Var(Xz)

Where we can similarly calculate a correlation matrix, e.g. for three
random variables:

1 Corr(X1, X2) Corr(X7, X3)
Corr(X) = | Corr(Xy, Xo) 1 Corr( X2, X3)
Corr(X1, X3) Corr(Xa, X3) 1



Algebra of expectations and
variances

® If we consider a function (e.g., a transformation) on X (a function on the
random variable but not on the probabilities directly!), recall that this can
result in a different probability distribution for Y and therefore different
expectations, variances, etc. for Y as well

®  We will consider two types of functions on random variables and the
result on expectation and variances:sums Y = X1+ X2+...and Y = a + bXi
where a and b are constants

®  For example, for sums, Y = Xi + X2 we have the following relationships:
E(Y) = E(X1 + XQ) = EX| + EXy
Var(Y') = Var(X; + X3) = VarX; + VarXs + 2Cov(X7, Xo)

®  As another example, for Y = Xi + X2 + X3 we have:
E(Y) = E(Xl + X2 + Xg) = EX1 + EX2 + EX3
Var(Y) = Var(X;+Xo+X3) = VarX;+VarXo+Var X3+2Cov (X1, X2)4+2Cov(X1, X3)+2Cov(Xs, X3)



Algebra of expectations and
variances

For the function Y = a + bXi we obtain the following relationships:

BEY = a4 bEX
Var(Y) = b*Var(X)

Finally, note that if we were to take the covariance (or correlation) of two
random variables Y1 and Y2 with the relationship:

Yi=a1 + 01X, Yo =az + baXo
COV(Yl,YQ) = bleCOV(Xl,XQ)

Corr (Y7, Ys) = Corr(X1, Xo)



So far
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Probability models |

We have defined Pr(X), a probability model (=probability function!) on a
random variable, which technically we produce by defining Pr function on the
sigma algebra and the X (random variable function) on the sample space

So far, we have generally considered such probability models / functions
without defining them explicitly (except for a illustrative few examples)

To define an explicit model for a given system / experiment we are going to
assume that there is a “true” probability model, that is a consequence of the
experiment that produces sample outcomes

We place “true” in quotes since the defining a single true probability model
for a given case could only really be accomplished if we knew every single
detail about the system and experiment (would a probability model be useful
in this case?)

In practice, we therefore assume that the true probability distribution is
within a restricted family of probability distributions, where we are satisfied if
the true probability distribution in the family describes the results of our
experiment pretty well / seems reasonable given our assumptions



Probability models |l

In short, we therefore start a statistical investigation assuming that there
is a single true probability model that correctly describes the possible
experiment outcomes given the uncertainty in our system

In general, the starting point of a statistical investigation is to make
assumptions about the form of this probability model

More specifically, a convenient assumption is to assume our true
probability model is specific model in a family of distributions that can be
described with a compact equation

This is often done by defining equations indexed by parameters



Probability models ||

Parameter - a constant(s) § which indexes a probability model
belonging to a family of models ® such that § € ©

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to the problem of
using a sample to make an educated guess at the value of the
parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the sample outcomes, the experiment, and the
system of interest (!!!)



Discrete parameterized examples

®  Consider the probability model for the one coin flip experiment / number
of tails.

e This is the Bernoulli distribution with parameter §) = p (what does p
represent!?) where © = [0, 1]

®  We can write this X ~ Bern(p) and this family of probability models has
the following form:

P’I“(X — Qj‘p) — PX(ZU’p) :px(l _p)l_x

®  For the experiment of n coin flips / number of tails, one possible family
Binomial distribution X ~ Bin(n, p):
n\ n!
(:U) - al(n—x)!

nl=nx(n—1)%x(n—2)*..x1

Pr(X = z|n,p) = Px(z|n,p) = (Z)px(l —-p)""

® There are many other discrete examples: hypergeometric, Poisson, etc.



Continuous parameterized
examples

®  Consider the measure heights experiment (reals as approximation to the
sample space) / identity random variable

®  For this example we can use the family of normal distributions that are
parameterized by 6 = [,u, 02] (what do these parameters represent!?)
with the following possible values: ©, = (o0, 0), ©,2 = |0, 00)

®  We often write this as X ~ N(u,0?) and the equation has the following

form:
Pr(X = olu,0%) = fx(elp0?) = ——e T &
r(X =xlu,0) = fx(xlp, o) = e 20 o
’ ’ V2mo? . A

®  There are many other continuous examples: uniform, exponential, etc.



Example for random vectors

® Since random vectors are the generalization of r.v.s, we similarly can
define parameterized probability models for random vectors

® Asan example, if we consider an experiment where we measure “height”
and “1Q” and we take the 2-D reals as the approximate sample space
(vector identity function), we could assume the bivariate normal family of
probability models:

1 1 (w1 —p1)? 2p(w1 — ) (w2 — p2) | (w2 — pun)?
p?) ( " )]

2 2
X ’ ) ’ 9 - ex _ _
Plpn ot ) = 5 |t = — -

rho=0.5




Introduction to inference |

Recall that our eventual goal is to use a sample (generated by an
experiment) to provide an answer to a question (about a system)

So far, we have set up the mathematical foundation that we need to
accomplish this goal in a probability / statistics setting (although note
we have not yet provided formalism for a sample!!)

Specifically, we have defined formal components of our framework and
made assumptions that have reduced the scope of the problem

With these components and assumptions in place, we are almost
ready to perform inference, which will accomplish our goal



Introduction to inference ||

Our eventual goal is to use a sample (generated by an experiment) to
provide an answer to a question (about a system)

For our system and experiment, we are going to assume there is a single
“correct” probability function (which in turn defines the probability of our
possible random variable outcomes, the probability of possible random
vectors that represent samples, and the probability of possible values of a
statistic)

For the purposes of inference, we often assume a parameterized family of
probability models determine the possible cases that contain the “true” model
that describes the result of the experiment

This reduces the problem of inference to identifying the “single” value(s) of
the parameter that describes this true model

Inference (informally) is the process of using the output of an experiment to
answer the question



Introduction to inference |l

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



So far
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Where we’re headed:
Samples

X1 =x1,... Xy =x,] | Pr([X1=2x1,..,Xn = x,))

X =x \/ Pr(X)
X
/Ran'domVari:ble\

X X(w),weN Pr(F)
4 A A
Experiment () F

(Sample Space) (Sigma Algebra)



Then: Statistics!

Statistic Sampling Pr (T (X))

Statistic: T'(x)

!

Distribution:

f

X1 =21, 0, Xy = @y i r([Xa —x1,-.-,Xn=xn])
=T \ / Pr(X
/Ra:dom Varl:ble\
X X(w),w € N Pr(F)
A A A
Experiment () F
(Sample Space) (Sigma Algebra)



Experiments to Samples (what
we observe!)

Experiment - a manipulation or measurement of a system that
produces an outcome we can observe

Experiment Outcome - a possible outcome of the experiment

Sample Space - set comprising all possible outcomes of an
experiment

Experimental Trial - one instance of an experiment
Sample - (informal) results of one or more experimental trials
Example (Experiment / Sample Space / Sample):

e Coinflip/ {HT}/ T T HT H

® Two coin flips / {HH, HT, TH, TT}/ HH, HT, HH, TH, HH

® Measure heights in this class / Reals / 5’9”,5’2”, 51”7, 6’0", 5'7”



Samples |

Sample - repeated observations of a random variable X, generated by
experimental trials

We will consider samples that result from n experimental trials (what
would be the ideal n = ideal experiment!?)

Since a set of actual experimental outcomes may not be numbers (e.g.,a
set of H and T’s) we want to map them to numbers...

We already have the formalism to do this and represent a sample of size n,
specifically this is a random vector:

X =x| = X1 =21,..., Xy = xp]

As an example, for our two coin flip experiment / number of tails r.v., we
could perform n=2 experimental trials, which would produce a sample =
random vector with two elements



Example: Observed Sample!

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]



Samples |l

Recall that we have defined experiments (= experimental trials) in a
probability / statistics setting where these involve observing individuals
from a population or the results of a manipulation

We have defined the possible outcome of an experimental trial, i.e. the
sample space ()

We have also defined a random variable X where this can take values
representing the outcomes of our experimental trials, i.e., X = x

Since the random variable X also has an induced probability distribution
associated with it, we can also consider Pr(X), i.e., the probability of each
possible outcome of an experiment or the entire sample!

Since this defines a probability model Pr(X), we have shifted our focus
from the sample space to the random variable



Example of sampling distributions

As an example, consider our height experiment (reals as approximate
sample space) / normal probability model (with true but unknown
parameters § = [u,0?]/ identity random variable

If we assume an i.i.d sample, each sample Xi = xi has a normal distribution
with parameters § — [M, 02] and each is independent of all other Xj = x;j

For example, the sampling distribution for an i.i.d sample of n = 2 is:




Sample Probability Distribution

® Note that since we have defined (or more accurately induced!) a probability
distribution Pr(X) on our random variable, this means we have induced a
probability distribution on the sample (!!):

Pr(X=x)= Pr(X; =1, X2 =29,..., X, = ) = Px(x) or fx(x)

® This is the sample probability distribution or sampling distribution (often called the
joint sampling distribution)

® While samples could take a variety of forms, we generally assume that each
possible observation in the sample has the same form, such that they are
identically distributed:

Pr(Xy=z1) = Pr(Xo=x9) = ... = Pr(X,, = z,)

® We also generally assume that each observation is independent of all other
observations:

Pr(X=x)=Pr(X; =x1)Pr(Xy = x2)...Pr(X, = x,)

® If both of these assumptions hold, than the sample is independent and identically
distributed, which we abbreviate as i.i.d.



That’s it for today

® Next lecture, we will begin our discussion of statistics (and
estimators)!



