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Announcements

Homework #2 due | 1:59pm tomorrow (Fri., Feb 17) (!)

Next lecture (Tues., Feb 21) will be entirely by zoom FOR
ALL STUDENTS (details to follow by Piazza message)

There will be NO office hours next week (!!)

There will be an office hours before homework #3 is due
(this will likely be assigned Feb 23)



Summary of lecture 8: Maximum
Likelihood Estimators

Last lecture, we discussed statistics and how we use these for
one type of inference: estimation

Today, we will discuss the most important class of estimators:
maximum likelihood estimators (MLE)

Time permitting, we will also (briefly) discuss confidence
intervals



Conceptual Overview
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Review

Experiment - a manipulation or measurement of a system that produces an outcome we
can observe

Sample Space ({)) - set comprising all possible outcomes associated with an experiment

Sigma Algebra or Sigma Field (/) - a collection of events (subsets) of the sample
space of interest

Probability Measure (=Function) - maps a Sigma Algebra of a sample to a subset of
the reals

Random Variable - (measurable) function on a sample space

Probability Mass Function / Cumulative Mass Function (pmf / emf) -
function that describes the probability distribution of a discrete random variable

Probability Density Function / Cumulative Density Function (pdf / cdf) -
function that describes the probability distribution of a continuous random variable

Probability Distribution Function / Cumulative Distrbution Function
(pdf / cdf) - function that describes the probability distribution of a discrete OR
continuous random variable



Review: Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Review: Probability models

Parameter - a constant(s) § which indexes a probability model
belonging to a family of models ® such that § € ©

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to the problem of
using a sample to make an educated guess at the value of the
parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the sample outcomes, the experiment, and the
system of interest (!!!)



Review: Inference

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



Review: Samples

Sample - repeated observations of a random variable X, generated by
experimental trials

We will consider samples that result from n experimental trials (what
would be the ideal n = ideal experiment!?)

Since a set of actual experimental outcomes may not be numbers (e.g.,a
set of H and T’s) we want to map them to numbers...

We already have the formalism to do this and represent a sample of size n,
specifically this is a random vector:

X =x| = X1 =21,..., Xy = xp]

As an example, for our two coin flip experiment / number of tails r.v., we
could perform n=2 experimental trials, which would produce a sample =
random vector with two elements



Review: Sample Probability
Distribution

® Note that since we have defined (or more accurately induced!) a probability
distribution Pr(X) on our random variable, this means we have induced a
probability distribution on the sample (!!):

Pr(X=x)= Pr(X; =1, X2 =29,..., X, = ) = Px(x) or fx(x)

® This is the sample probability distribution or sampling distribution (often called the
joint sampling distribution)

® While samples could take a variety of forms, we generally assume that each
possible observation in the sample has the same form, such that they are
identically distributed:

Pr(Xy=z1) = Pr(Xo=x9) = ... = Pr(X,, = z,)

® We also generally assume that each observation is independent of all other
observations:

Pr(X=x)=Pr(X; =x1)Pr(Xy = x2)...Pr(X, = x,)

® If both of these assumptions hold, than the sample is independent and identically
distributed, which we abbreviate as i.i.d.



Review: Example of sampling
distributions

As an example, consider our height experiment (reals as approximate
sample space) / normal probability model (with true but unknown
parameters § = [u,0?]/ identity random variable

If we assume an i.i.d sample, each sample Xi = xi has a normal distribution
with parameters § — [My 02] and each is independent of all other Xj = x;j

For example, the sampling distribution for an i.i.d sample of n = 2 is:




Review: Observed Sample

It is important to keep in mind, that while we have made assumptions such that we
can define the joint probability distribution of (all) possible samples that could be
generated from n experimental trials, in practice we only observe one set of trials,
i.e. one sample

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]

In each of these cases, we would like to use these samples to perform inference
(i.e. say something about our parameter of the assumed probability model)

Using the entire sample is unwieldy, so we do this by defining a statistic



Review: Statistics |

Statistic - a function on a sample

Note that a statistic T is a function that takes a vector (a sample) as an
input and returns a value (or vector):

T(x)=T(x1,22,....,Tn) =t

For example, one possible statistic is the mean of a sample:

T(x) = % zn: .,
1=1

It is critical to realize that, just as a probability model on X induces a
probability distribution on a sample, since a statistic is a function on the
sample, this induces a probability model on the statistic: the statistic
probability distribution or the sampling distribution of the statistic (!!)



Review: Statistics I

® As an example, consider our height experiment (reals as
approximate sample space) / normal probability model (with
true but unknown parameters 6 = |p,0°] /identity random
variable

® |f we calculate the following statistic:

T(X) — %ixz
1=1

what is Pr(7T'(X))?
® Are the distributions of Xi = xi and Pr(7T'(X)) always the same?



Review: Estimators |

Estimator - a statistic defined to return a value that represents our
best evidence for being the true value of a parameter

In such a case, our statistic is an estimator of the parameter: T(X) .y
Note that ANY statistic on a sample can in theory be an estimator.

However, we generally define estimators (=statistics) in such a way that it
returns a reasonable or “good” estimator of the true parameter value
under a variety of conditions

How we assess how “good” an estimator depends on our criteria for
assessing “good” and our underlying assumptions



Review: Estimators ||

Since our underlying probability model induces a probability distribution
on a statistic, and an estimator is just a statistic, there is an underlying
probability distribution on an estimator:

N

Pr(T(X =x)) = Pr(0)

Our estimator takes in a vector as input (the sample) and may be defined
to output a single value or a vector of estimates:

T(X =x)=0= [e},e}, ]

We cannot define a statistic that always outputs the true value of the
parameter for every possible sample (hence no perfect estimator!)

There are different ways to define “good” estimators and lots of ways to
define “bad” estimators (examples?)



Estimator example |

As an example, let’s construct an estimator

Consider the single coin flip experiment / number of tails random
variable / Bernoulli probability model family (parameter p) / fair coin
model (assumed and unknown to us!!!) / sample of size n=10

We want to estimate p, where a perfectly reasonable estimator is:
1 n
T(XzX)szﬁzE;mi
1=

e.g. this statistic (=mean of the sample) would equal 0.5 for the following
particular sample (will it always?)

x =[1,1,0,1,0,0,0,1,1,0]



Estimator example ||

Let’s continue with our example constructing the probability model

Consider the single coin flip experiment / number of tails random
variable

O={H,T} X:X(H)=0X(T)=1

Bernoulli probability model family (parameter p)
X ~pt(l—p)—

Sample of size n=10

[X — X] — [Xl =1, X9 = T2,..., X190 = fL‘lo]

Sampling distribution (pmf of sample) if i.i.d. ()

(X1 =21, X9 = 29, ..., X10 = 210] ~ p" (1 — p)' ~"1p™(1 — p)'~*2..p™0(1

—D

)1—:1310



Estimator example |l

Define a statistic T(X)

0

Note the values the statistic can take (!!), e.g. with true p=0.5
PMF of T(X) | p=0.5

1 10
T(X=x)=TK) =X =) Xi
1=1

Q_‘
-

Rdx)
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Side note: we can write the sampling distribution (pmf) of the statistic as
n
Pr(T (X)) ~ nT (X) 1 — n—nT(X)
) ~ (e )X -
Remember for our sample, the value of our statistic for our observed sample (!!)
would equal 0.5 (will it always?)

x =[1,1,0,1,0,0,0,1,1,0]



Statistics

Statistic: T'(x) g Satitic sampling— py.(7(X))
[Xl — L1y eeny Xn —an E X1 —xl,...,Xn:xn])

/Ra:dom Varl:ble\

X X(w),w € N Pr(F)
A A A
Experiment () F

(Sample Space) (Sigma Algebra)



Estimators
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Introduction to maximum
likelihood estimators (MLE)

We will generally consider maximum likelihood estimators (MLE) in this
course

Now, MLE’s are very confusing when initially encountered...

However, the critical point to remember is that an MLE is just an
estimator (a function on a sample!!),

i.e. it takes a sample in, and produces a nhumber as an output that is our
estimate of the true parameter value

These estimators also have sampling distributions just like any other
statistic!

The structure of this particular estimator / statistic is complicated but
just keep this big picture in mind



Likelihood |

To introduce MLE’s we first need the concept of likelihood

Recall that a probability distribution (of a r.v. or for our purposes now, a
statistic) has fixed constants in the formula called parameters

For example, for a normally distributed random variable

1 _ (z—p)?

é 202
V2mo?

However, we could turn this around and fix the sample and let the
parameters vary (this is a likelihood!)

Pr(X = z|p,0%) = fx(z|p,0%) =

For example, say we have a sample n=1, where x=0.2 then the likelihood
is (if we just set o = 1 for explanatory purposes):

1
V2T

L(ulx = 0.2) = ——¢ (2=




Likelihood Il

Likelihood - a function with the form of a probability function which we
consider to be a function of the parameters () for a fixed the sample [X = x|

The form of a likelihood is therefore the sampling distribution (the
probability distribution!) of the i.i.d sample but there are (at least) three
major differences:

We have parameter values as input and the sample we have observed as a
parameter

The likelihood function does not operate as a probability function (they
can violate the axioms of probability)

For continuous cases, we can interpret the likelihood of a parameter (or
combination of parameters) as the likelihood of the point



Likelihood Il

Again, Likelihood has the form of a probability function which we
consider to be a function of the parameters NOT the sample

Note that likelihoods are NOT probability functions, i.e. they need not
conform to the axioms of probability (!!)

They have the appealing property that for an i.i.d. sample

L(0|x1,zo,...;xn) = L(0|x1)L(0|22)...L(0|x,)

They have other appealing properties, including they are sufficient
statistics, the invariance principal, etc.



Normal model example |

® Asan example, for our heights experiment / identity random variable, the
(marginal) probability of a single observation in our sample is xi is:

1 . (z;—m)*
e 202

Pr(X; = zilp, 0%) = fx,(zilp,0%) =

Qo2

®  The joint probability distribution of the entire sample of n observations is
a multivariate (n-variate) normal distribution

® Note that for an i.i.d. sample, we may use the property of independence
Pr(X=x)=Pr(X; =x1)Pr(Xy = x2)...Pr(X, = x,)

to write pdf of this entire sample as follow:

n 2
1 —(z;—1)
P(X = x|p,0?%) = e 202
(X = x|, 0?) i|:|1 —

° The likelihood is therefore:

L(p,0%|X = x)

I
=
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Normal model example |l

® Let’s consider a sample of size n=10 generated under a standard normal, i.e.
Xi~ N(p=0,0"=1)

[1] -1.9013985 1.0968952 0.4398448 0.7402079 1.5576818 -0.7619734 0.6158720 0.2738087 0.2182059 1.7288007

®  So what does the likelihood for this sample “look” like? It is actually a 3-D
plot where the x and y axes are ,u and 02 and the z-axis is the likelihood:

_(wz ,u)

(M? 2|X_X -

1

®  Since this makes it tough to see what is going on, let’s set just look at the
marginal likelihood for o = 1when using the sample above:

Normal likelihood: n=10, sigma=1

lIkelihood
6e-08  8e-08
1

4e-08

2e-08

0e+00




Introduction to MLE’s

A maximum likelihood estimator (MLE) has the following definition:

MLE(f) = 0 = argmazgeo L(0]x)

Recall that this statistic still takes in a sample and outputs a value that is
our estimator (!!) Note that likelihoods are NOT probability functions, i.e.
they need not conform to the axioms of probability (!!)

Sometimes these estimators have nice forms (equations) that we can
write out

For example the maximum likelihood estimator when considering a
sample for our single coin example / number of tails is:

MLE(p Z z;

And for our heights example:

MLE(ji Z i MLE(6*) = =) (z; —T)°



Getting to the MLE

To use a likelihood function to extract the MLE, we have to find the
maximum of the likelihood function L(6|x) for our observed sample

To do this, we take the derivative of the likelihood function and set it
equal to zero (why?)

Note that in practice, before we take the derivative and set the function
equal to zero, we often transform the likelihood by the natural log (In) to
produce the log-likelihood:

[(0]x) = In[L(0]x)]

We do this because the likelihood and the log-likelihood have the same
maximum and because it is often easier to work with the log-likelihood

Also note that the domain of the natural log function is limited to|0, c0)
but likelihoods are never negative (consider the structure of probability!)



MLE under a normal model |

Recall that the likelihood for a sample of size n generated under a normal
model has the following likelihood

2
—(z;—p)
202

n
1
L(p, 0| X =x) = €
( | ) 71;[1\/2W02

By remembering the properties of In, we can derive the log-likelihood for
this model

(\}
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(
1
(1, 02X = x)) = —nin(o) — gln(%r) — 5 (@i =) s tn(at) = Ina) + tn()
' (

H. e%e’ = e

To obtain the maximum of this function with respect to ;1 we can then
take the partial (!!) derivative with respect to and set this equal to zero,
then solve (this is the MLE!):

0l(0)1X = x)
o ~ 52 Z

MLE(j Z z;




MLE under a normal model lI

e How about the o?? Use the same approach:

n 1 <
I, 0% X =x)) = —nln(o) — §ln(27r) ~ 5.2 (z; — p)*
ol X =x)
o B
MLE(6%) = % D (xi—m)?

® This equation will give us the maximum of the log-likelihood with respect
to this parameter

e  Will this produce the true value of o’ )



A discrete example |

As an example, for our coin flip / number of tails random variable

The probability distribution of one sample is:

Pr(z)p) = p*i(1 —p)=*

The joint probability distribution of an i.i.d sample of size n is is an n-
variate Bernoulli

n

Pr(x|p) = Hp””(l —p)"

ATRICK (!): it turns out that we can get the same MLE of p for this
model by considering x = total number of tails in the entire sample:

Prxio) = ()=
Such that we can consider the following likelihood:

LX) = (7)1 - o

X



A discrete example |l

To find the MLE, we will use the same approach by taking the log-
likelihood:

L(p|X = x) = (Z)p‘”(l -p)"

I(p)X = x) = zn(”

:1:) + zin(p) + (n — x)in(1 — p)

taking the first derivative set to zero, then solve (again x=number tails!)
ApX=x) =z n-uw

op p 1-p
R €T
MLE(p) = —
n

Question: in general, how do we know this is a maximum?
We can check by looking at the second derivative and making sure that it

is always negative (why?):

Pl(pl X =x) Tz z-m
o p* (1-p)?




Last general comments (for now) on
maximum likelihood estimators

(MLE)

® |n general, maximum likelihood estimators (MLE) are at the core of
most standard “parametric’ estimation and hypothesis testing (stay
tuned!) that you will do in basic statistical analysis

® Both likelihood and MLE’s have many useful theoretical and practical
properties (i.e. no surprise they play a central role) although we will
not have time to discuss them in detail in this course (e.g. likelihood
has strong connections to the concept of sufficiency, likelihood
principal, etc., MLE have nice properties as estimators, ways of
obtaining the MLE, etc.)

® Again, for this course, the critical point to keep in mind is that when
you calculate an MLE, you are just calculating a statistic (estimator!)



That’s it for today

® Next lecture, we will (briefly) discuss confidence intervals and
begin our discussion of hypothesis testing!



