# Quantitative Genomics and Genetics <br> BTRY 4830/6830; PBSB.520I. 03 

Lecture 9: Introduction to Hypothesis Testing I

Jason Mezey<br>Feb 2I, 2023 (T) 8:05-9:20

## Announcements

- I will no longer respond to direct emails to me (only Piazza messages)
- CMS appears stable enough (those still having difficulties I will communicate with you directly on this)
- We will be back in the classroom Thurs (Feb 23)
- Homework \#3 will be assigned Thurs (Feb 23)
- We will have office hours next week but TBD because of winter break (no office hours this week)


## Summary of lecture 9: Introduction to Hypothesis Testing

- Last lecture, we (almost) completed our (general) discussion of estimators
- Today, we will (very) briefly discuss confidence intervals and begin our discussion of hypothesis testing (!!)


## Conceptual Overview



## Samples

$$
\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]: \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right)
$$

## Statistics



## Estimators

$$
\begin{aligned}
& \text { Estimator: } T(\mathbf{x})=\hat{\theta} \quad \begin{array}{c}
\text { Estimator Sampling } \\
\text { Distribution: }
\end{array} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta \\
& \begin{array}{c}
\uparrow \\
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]}
\end{array} \\
& \text { Distribution: } \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Experiment } \quad \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

## Review: Probability models

- Parameter - a constant(s) $\theta$ which indexes a probability model belonging to a family of models $\Theta$ such that $\theta \in \Theta$
- Each value of the parameter (or combination of values if there is more than on parameter) defines a different probability model: $\operatorname{Pr}(X)$
- We assume one such parameter value(s) is the true model
- The advantage of this approach is this has reduced the problem of using results of experiments to answer a broad question to the problem of using a sample to make an educated guess at the value of the parameter(s)
- Remember that the foundation of such an approach is still an assumption about the properties of the sample outcomes, the experiment, and the system of interest (!!!)


## Review: Inference

- Inference - the process of reaching a conclusion about the true probability distribution (from an assumed family probability distributions, indexed by the value of parameter(s) ) on the basis of a sample
- There are two major types of inference we will consider in this course: estimation and hypothesis testing
- Before we get to these specific forms of inference, we need to formally define: experimental trials, samples, sample probability distributions (or sampling distributions), statistics, statistic probability distributions (or statistic sampling distributions)


## Review: Samples

- Sample - repeated observations of a random variable $X$, generated by experimental trials
- We already have the formalism to do this and represent a sample of size $n$, specifically this is a random vector:

$$
[\mathbf{X}=\mathbf{x}]=\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

- As an example, for our two coin flip experiment / number of tails r.v., we could perform $n=2$ experimental trials, which would produce a sample $=$ random vector with two elements
- Note that since we have defined (or more accurately induced!) a probability distribution $\operatorname{Pr}(X)$ on our random variable, this means we have induced a probability distribution on the sample (!!):

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=P_{\mathbf{X}}(\mathbf{x}) \text { or } f_{\mathbf{X}}(\mathbf{x})
$$

## Review: Observed Sample

- It is important to keep in mind, that while we have made assumptions such that we can define the joint probability distribution of (all) possible samples that could be generated from $n$ experimental trials, in practice we only observe one set of trials, i.e. one sample
- For example, for our one coin flip experiment / number of tails r.v., we could produce a sample of $\mathrm{n}=10$ experimental trials, which might look like:

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

- As another example, for our measure heights / identity r.v., we could produce a sample of $\mathrm{n}=10$ experimental trails, which might look like:

$$
\mathbf{x}=[-2.3,0.5,3.7,1.2,-2.1,1.5,-0.2,-0.8,-1.3,-0.1]
$$

- In each of these cases, we would like to use these samples to perform inference (i.e. say something about our parameter of the assumed probability model)
- Using the entire sample is unwieldy, so we do this by defining a statistic


## Review: Statistics

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta=\left[\mu, \sigma^{2}\right] /$ identity random variable
- If we calculate the following statistic:

$$
T(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

what is $\operatorname{Pr}(T(\mathbf{X}))$ ?

- Are the distributions of $X_{i}=x_{i}$ and $\operatorname{Pr}(T(\mathbf{X}))$ always the same?


## Review: Estimators

- Estimator - a statistic defined to return a value that represents our best evidence for being the true value of a parameter
- In such a case, our statistic is an estimator of the parameter: $T(\mathbf{x})=\hat{\theta}$
- Note that ANY statistic on a sample can in theory be an estimator.
- However, we generally define estimators (=statistics) in such a way that it returns a reasonable or "good" estimator of the true parameter value under a variety of conditions
- How we assess how "good" an estimator depends on our criteria for assessing "good" and our underlying assumptions


## Review: Estimator example I

- As an example, let's construct an estimator
- Consider the single coin flip experiment / number of tails random variable / Bernoulli probability model family (parameter p) / fair coin model (assumed and unknown to us!!!) / sample of size $n=10$
- We want to estimate p , where a perfectly reasonable estimator is:

$$
T(\mathbf{X}=\mathbf{x})=\hat{\theta}=\hat{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- e.g. this statistic (=mean of the sample) would equal 0.5 for the following particular sample (will it always?)

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

## Review: Estimator example II

- Let's continue with our example constructing the probability model
- Consider the single coin flip experiment / number of tails random variable

$$
\Omega=\{H, T\} \quad X: X(H)=0, X(T)=1
$$

- Bernoulli probability model family (parameter p )

$$
X \sim p^{X}(1-p)^{1-X}
$$

- Sample of size $n=10$

$$
[\mathbf{X}=\mathbf{x}]=\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{10}=x_{10}\right]
$$

- Sampling distribution (pmf of sample) if i.i.d. (!!)

$$
\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{10}=x_{10}\right] \sim p^{x_{1}}(1-p)^{1-x_{1}} p^{x_{2}}(1-p)^{1-x_{2}} \ldots p^{x_{10}}(1-p)^{1-x_{10}}
$$

## Review: Introduction to maximum likelihood estimators (MLE)

- We will generally consider maximum likelihood estimators (MLE) in this course
- Now, MLE's are very confusing when initially encountered...
- However, the critical point to remember is that an MLE is just an estimator (a function on a sample!!),
- i.e. it takes a sample in, and produces a number as an output that is our estimate of the true parameter value
- These estimators also have sampling distributions just like any other statistic!
- The structure of this particular estimator / statistic is complicated but just keep this big picture in mind


## Review: Introduction to MLE's

- A maximum likelihood estimator (MLE) has the following definition:

$$
M L E(\hat{\theta})=\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} L(\theta \mid \mathbf{x})
$$

- Recall that this statistic still takes in a sample and outputs a value that is our estimator (!!) Note that likelihoods are NOT probability functions, i.e. they need not conform to the axioms of probability (!!)
- Sometimes these estimators have nice forms (equations) that we can write out
- For example the maximum likelihood estimator when considering a sample for our single coin example / number of tails is:

$$
M L E(\hat{p})=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- And for our heights example:

$$
M L E(\hat{\mu})=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \operatorname{MLE}\left(\hat{\sigma}^{2}\right)=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

## Brief Introduction: Properties of estimators I

- Remember (!!) for all the complexity in thinking about, deriving, etc. MLE's these are still just estimators (!!), i.e. they are statistics that take a sample as input and output a value that we consider an estimate of our parameter
- MLE in general have nice properties (and we will largely use them in this class!), but there are many other estimators that we could use
- This is because there is no "perfect" estimator and each estimator that we can define has different properties, some of which are desirable, some are less desirable
- In general, we do try to use estimators that have "good" properties based on well defined criteria
- In this class, we will briefly consider two: unbiasedness and consistency


## Properties of estimators II

- We measure the bias of an estimator as follows (where an unbiased estimator has a bias of zero):

$$
\operatorname{Bias}(\hat{\theta})=\mathrm{E} \hat{\theta}-\theta
$$

- We consider an estimator to be consistent if it has the following property

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(|\hat{\theta}-\theta|<\epsilon)=1
$$

- Note that one can have an estimator that is consistent but not unbiased (and vice versa!)
- As an example of the former, the following MLE is biased but consistent

$$
M L E\left(\hat{\sigma^{2}}\right)=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- An unbiased estimator of this parameter is the following:

$$
\hat{\sigma^{2}}=\frac{1}{n-1} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

## Confidence intervals I

- For the estimation framework we have considered thus far, our goal was to define an estimator that provides a "reasonable guess given the sample" of the true value of the parameter
- This is called "point" estimation since the true parameter has a single value (i.e. it is a point)
- We could also estimate an interval, where our goal is to say something about the chances that the true parameter (the point) would fall in the interval
- confidence interval (CI) - an estimate of an interval defined such that if it were estimated individually for an infinite number of samples, a specific percentage of the estimated intervals would contain the true parameter value
- Don't worry if this concept seems confusing (it is!) let's first consider an example and then discuss some basics


## Confidence intervals II

- As an example, assume the standard normal r.v. $X \sim N(0, I)$ correctly describes our sampling distribution if we were to produce 50 independent samples, each of size $\mathrm{n}=10$ and we were to estimate a Cl for each one, we would expect to get the following:



## Confidence intervals III

- ACl is therefore calculated from a sample (and reflects uncertainty!)
- A Cl is an estimate of an interval, as opposed to an estimate of a parameter, which is a point estimate (more technically, the Cl is an estimate of the endpoints of the interval)
- This estimated interval of a Cl (generally) includes the estimate of the parameter in the "middle"
- In general, a Cl provides a measure of "confidence" in the sense that the smaller the interval, the more "confidence" we have in our estimate (if this seems circular, it is meant to be!)
- In general, we can make the Cl smaller with a larger sample size $n$ and by decreasing the probability that the interval contains the true parameter value, i.e. a $95 \% \mathrm{Cl}$ is smaller than a $99 \% \mathrm{Cl}$
- NOTE THAT A 95\% Cl estimated from one sample does not contain the true parameter value with a probability of 0.95 (!!!) - the definition of a Cl says if we performed an infinite number of samples, and calculated the Cl for each, then $95 \%$ of these intervals would contain the true parameter value (strange?)


## Review of essential concepts

- Inference - the process of reaching a conclusion about the true probability distribution (from an assumed family of probability distributions indexed by parameters) on the basis of a sample
- System, Experiment, Experimental Trial, Sample Space, Sigma Algebra, Probability Measure, Random Vector, Parameterized Probability Model, Sample, Sampling Distribution, Statistic, Statistic Sampling Distribution, Estimator, Estimator Sampling distribution


## Estimation and Hypothesis Testing

- Thus far we have been considering a "type" of inference, estimation, where we are interested in determining the actual value of a parameter
- We could ask another question, and consider whether the parameter is NOT a particular value
- This is another "type" of inference called hypothesis testing
- We will use hypothesis testing extensively in this course


## Estimators

$$
\begin{aligned}
& \text { Estimator: } T(\mathbf{x})=\hat{\theta} \quad \begin{array}{l}
\text { Estimator (Statistic) } \\
\text { Sampling Distribution: }
\end{array} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta \\
& {\left[\begin{array}{l:l}
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]} & \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right)
\end{array}\right.} \\
& X=x \quad \text { ノ } \operatorname{Pr}(X) \\
& \xrightarrow[\substack{\text { Random Variable } \\
X(\omega), \omega \in \Omega}]{X} \\
& \uparrow \quad \uparrow \quad \uparrow \\
& \text { Experiment —— } \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

## Hypothesis Tests

Hypothesis: $T(\mathbf{x}), H_{0}: \theta=c$

$$
\begin{aligned}
& \begin{array}{c}
\uparrow \\
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]}
\end{array} \\
& X=x \quad \not \quad \operatorname{Pr}(X) \\
& \xrightarrow[\substack{\text { Random Variable } \\
X(\omega), \omega \in \Omega}]{X} \\
& \uparrow \quad \uparrow \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Random Variable } \\
& \text { Experiment —— } \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

$\begin{aligned} & \text { Statistic Sampling } \\ & \text { Distribution: }\end{aligned} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta$

## Hypothesis testing I

- To build this framework, we need to start with a definition of hypothesis
- Hypothesis - an assumption about a parameter
- More specifically, we are going to start our discussion with a null hypothesis, which states that a parameter takes a specific value, i.e. a constant

$$
H_{0}: \theta=c
$$

- For example, for our height experiment / identity random variable, we have $\operatorname{Pr}(X \mid \theta) \sim N\left(\mu, \sigma^{2}\right)$ and we could consider the following null hypothesis:

$$
H_{0}: \mu=0
$$

## Hypothesis testing II

- As example, consider our height experiment (reals as sample space) / identity random variable $X /$ normal probability model $\theta=\left[\mu, \sigma^{2}\right] /$ sample $n=I$ (of one height measurement) / identity statistic $T(x)=x$ (takes the height measured height)
- Let's assume that $\sigma^{2}=1$ and say we are interested in testing the following null hypothesis $H_{0}: \mu=5.5$ such that we have the following probability distribution of the statistic under the null hypothesis:



## That's it for today

- Next lecture, we will continue our discussion of hypothesis testing!

