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• I will no longer respond to direct emails to me (only Piazza 
messages)

• CMS appears stable enough (those still having difficulties I 
will communicate with you directly on this)

• We will be back in the classroom Thurs (Feb 23)

• Homework #3 will be assigned Thurs (Feb 23)

• We will have office hours next week but TBD because of 
winter break (no office hours this week)

Announcements



Summary of lecture 9: Introduction 
to Hypothesis Testing

• Last lecture, we (almost) completed our (general) discussion 
of estimators  

• Today, we will (very) briefly discuss confidence intervals and 
begin our discussion of hypothesis testing (!!)
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Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
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(⌦,F , P r)
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Samples
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model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z
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X = x
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f(X(⌦), P r(X)) : {X, P r(X)} ! R

Cov(X1, X2) =

i=max(X1)X

i=min(X1)
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Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

Pr(T (X)) (5)
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• Parameter - a constant(s)     which indexes a probability model 
belonging to a family of models      such that  

• Each value of the parameter (or combination of values if there is more 
than on parameter) defines a different probability model: Pr(X)

• We assume one such parameter value(s) is the true model

• The advantage of this approach is this has reduced the problem of using 
results of experiments to answer a broad question to the problem of 
using a sample to make an educated guess at the value of the 
parameter(s)

• Remember that the foundation of such an approach is still an assumption 
about the properties of the sample outcomes, the experiment, and the 
system of interest (!!!) 

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 5: Probability Models, Inference, Samples, Statistics, and Estimators

Lecture: February 14; Version 1: February 20; Version 2, March 15

1 Introduction

Last lecture, we discussed some fundamental functions of random variables/vectors and
their probability distributions, the interpretation of which does not depend on the specific
probability model under consideration: expectations (means), variances, covariances (cor-
relations). Today we will discuss some specific probability models that will be particularly
useful to us in our study of quantitative genomics. After introducing these models, we will
introduce inference and discuss the first critical concepts for making inferences: samples,
statistics, and their sampling distributions. We will then begin our discussion of estimation
(a particular class of inference), where we will make use of samples to determine the value
of the parameter of the underlying probability model that is responsible for our sample,
which we will use to (indirectly) make statements about the system we are studying.

2 Probability models

We have now discussed that by defining a probability function Pr(S) and a random variable
X(S) on a sample space S, we define a probability distribution for the random variable
Pr(X), and we can use expectations, variances, and covariance, to characterize aspects
of the probability distribution regardless of the specific form of the distribution. While
choosing a specific probability model (a specific probability distribution) is in theory only
restricted according to the axioms of probability, we in general make use of probability mod-
els that are both intuitive and allow for mathematical conveniences. One such convenience
is the ability to (mathematically) simply define a large number of possible probability mod-
els with a compact equation. For the models we will consider, the way this is done is by
making our probability distributions functions of parameters:

Parameter � a constant which indexes a probability model belonging to a family of
models � such that � ⇥ �.
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Review: Probability models



Review: Inference

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family probability 
distributions, indexed by the value of parameter(s) ) on the basis of a 
sample

• There are two major types of inference we will consider in this 
course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to 
formally define: experimental trials, samples, sample probability 
distributions (or sampling distributions), statistics, statistic probability 
distributions (or statistic sampling distributions) 



Review: Samples
• Sample - repeated observations of a random variable X, generated by 

experimental trials

• We already have the formalism to do this and represent a sample of size n, 
specifically this is a random vector:

• As an example, for our two coin flip experiment / number of tails r.v., we 
could perform n=2 experimental trials, which would produce a sample = 
random vector with two elements

• Note that since we have defined (or more accurately induced!) a probability 
distribution Pr(X) on our random variable, this means we have induced a 
probability distribution on the sample (!!):

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
essential in quantitative genomics (the latter will often be our goal but the former is re-
quired for the latter). We will discuss these in general terms in the next two lectures and in
specific terms throughout the semester. Also, note that one of the nice aspects of assuming
that the probability model of our random variable is from a family indexed in a parameter
set �, the problem of inference is reduced to the problem of learning something about the
specific parameter value of our model �. However, before we get to concepts of inference
concerning �, we need to define several fundamental concepts: samples, statistics, and their
sampling distributions.

4 Samples and i.i.d.

Recall that the starting point of our discussion is a system we want to know something
about, and an experiment that produces a sample space S. We then define a probabil-
ity function and a random variable on S, which define a specific probability distribution
Pr(X = x), where by definition, we have defined a specific probability model (by making
assumptions) indexed by �. In general, we would like to know something about the pa-
rameter of our probability model �, which is defined by the system and experiment (and
by extrapolation from our many assumptions, can be used to learn about the system),
but is unknown to us. Inference is the process of determining something about the true
parameter value, and for this we need a sample.

Sample � repeated observations of a random variable X, generated by experiments.

The ideal set of experiments would have an infinite number of observations, but since
such cases are not possible, we will consider a sample of size n. Now, we have already seen
how to represent a sample, this is simply a random vector:

[X = x] = [X1 = x1, ..., Xn = xn] (7)

where unlike the random vectors we have considered before, each of the n random variables
have the same structure, they are simply indicate di⇥erent observations of the random
variable in our sample, e.g. for n = 2 in our coin flip example(s), we do not define X1=‘#
of Tails’ and X2=‘# of Heads’ but rather X1=‘# of Tails’ of the first flip (or pair of flips)
in an experiment and X2=‘# of Tails’ in the second flip (or pair of flips) in the same
experiment. Now, as we have discussed, defining a probability function on the sample
space Pr(S) induces a probability distribution of a random variable defined on the same
sample space Pr(X) and since our random vector is considering multiple realizations of
this random variable, the Pr(X) induces a probability distribution on our sample vector,
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Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (7)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)
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• It is important to keep in mind, that while we have made assumptions such that we 
can define the joint probability distribution of (all) possible samples that could be 
generated from n experimental trials, in practice we only observe one set of trials, 
i.e. one sample

• For example, for our one coin flip experiment / number of tails r.v., we could 
produce a sample of n = 10 experimental trials, which might look like:

• As another example, for our measure heights / identity r.v., we could produce a 
sample of n=10 experimental trails, which might look like:

• In each of these cases, we would like to use these samples to perform inference 
(i.e. say something about our parameter of the assumed probability model)

• Using the entire sample is unwieldy, so we do this by defining a statistic

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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Review: Statistics

• As an example, consider our height experiment (reals as 
approximate sample space) / normal probability model (with 
true but unknown parameters                    / identity random 
variable  

• If we calculate the following statistic:

what is                  ?

• Are the distributions of Xi = xi and                  always the same?

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,�
2) = fX(x|µ,�

2) =
1p

2⇡�2
e
� (x�µ)2

2�2 (5)

This model therefore has two parameters (µ,�
2) such that ✓ is actually a parameter vec-

tor ✓ =
⇥
µ,�

2
⇤
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: ⇥ = (�1,1). The �

2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ⇥ = [0,1). As we have seen previously, our shorthand for a normal distribution is
X ⇠ N(µ,�

2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⌘ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) ✓) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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perform inference, it is not particularly easy to use the entire sample as is, i.e. in the form
of a vector. We therefore usually define a statistic:

Statistic � a function on a sample.

If we define this statistic as T , it has the following structure:

T (x) = T (x1, x2, ..., xn) = t (13)

where t can be a single number or a vector. For example, let’s define a statistic which takes
a sample and returns the mean of the sample:

T (x) =
1

n

n�

i=1

xi (14)

So for the sample in equation (9) this statistic would be T (x) = 0.5 and for equation (10),
it would be T (x) = 0.01 A statistic on a specific realization of a sample is what we use for
inference, as we will see with the next two lectures.

Let’s consider one last important concept. It is also critical to realize that, just as the
probability function on the sample space Pr(S) induces a probability distribution on the
random variable defined on the sample space Pr(X), which in turn induces a probability
distribution of i.i.d sample vector Pr(X = x), since a statistic is a function on the sample,
the probability distribution of the sample induces a probability distribution on the possible
values the statistic could take Pr(T (X)), i.e. the probability distribution of the statistic
when considering all possible samples. We call this a sampling distribution of the statistic
and as we will see, this also plays an important role in inference.

5 Estimators

Recall that we are interested in knowing about a system and to do this, we conduct an
experiment, which we use to define sample space. We define a probability function and a
random variable X on this sample space, where we assume a specific form for the proba-
bility function, which defines a probability distribution on our random variable. We write
this Pr(X) or Pr(X = x), where the large ‘X’ indicates a random variable that can take
di�erent values, and the little ‘x’ represents a specific value that the random vector takes
(which at the moment we have not assigned). We assume that the probability distribution
of the random variable X has a specific form and is in a ‘family’ of probability distribu-
tions that are indexed by parameter(s) �, e.g. X ⇥ N(µ,⇤2), which we write Pr(X|�) or
Pr(X = x|�). While we have assumed the specific form of the distribution (e.g. a ‘normal’)
we do not know the specific values of the parameters. Our goal is to perform inference to
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Review: Estimators

• Estimator - a statistic defined to return a value that represents our 
best evidence for being the true value of a parameter 

• In such a case, our statistic is an estimator of the parameter:

• Note that ANY statistic on a sample can in theory be an estimator.

• However, we generally define estimators (=statistics) in such a way that it 
returns a reasonable or “good” estimator of the true parameter value 
under a variety of conditions 

• How we assess how “good” an estimator depends on our criteria for 
assessing “good” and our underlying assumptions

which we could also write:

[X = x] = [X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0, X6 = 0, X7 = 0, X8 = 1, X9 = 1, X10 = 0]
(16)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (17)

In either of these examples, our statistic takes a specific value ‘t’, which is our actual esti-
mate of the parameter value, which we can write T (x) = �̂.

Before we get to specific examples of estimators, a few comments:

1. Our parameter may be a single value or a vector of values � = [�1, �2, ...], e.g. � =�
µ,⇤2

⇥
and we can define a estimator that is a vector valued function on our sample,

which estimates these multiple parameters T (X = x) = �̂ =
⌅
�̂1, �̂2, ...

⇧
.

2. We cannot define a statistic that always takes the true value of � for every possible
sample (hence estimate), i.e. there is no perfect estimator.

3. There are di�erent ways to define ‘good’ estimators, each of which may have di�erent
properties. We will consider some of these below.

4. It is easy to define ‘bad’ estimators. For example, an estimator that takes every
sample to the same value. In this case, it is a good estimator if the true parameter
value happens to be this value, otherwise, it is a bad estimator.

6 Method of moments estimator

To make the concept of estimators clear, let’s consider a specific example of an estimator.
Let’s first assume that we have coin system, where experiments are coin flips, and our
random variable X has a Bernoulli distribution Pr(X = x|p), such that our goal is to esti-
mate the parameter p, where for this example, let’s say p = 0.5. Our random variable can
therefore take values 0 or 1 (with equal probability), such that we could obtain a sample
of the type in equation (10). In this case, a perfectly reasonable estimator would be the
mean (also called the expectation) of the sample:

T (X = x) = E(X = x) = �̂ = p̂ =
1

n

n⇤

i=1

xi (18)

As we mentioned above, this statistic has a sampling distribution that describes the possi-
ble values of this statistic. In this particular case, it happens to be a binomial distribution
with parameters n and p, although since we ‘re-scale’ the ‘number of Tails’ to be between
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Review: Estimator example I

• As an example, let’s construct an estimator  

• Consider the single coin flip experiment / number of tails random 
variable / Bernoulli probability model family (parameter p) / fair coin 
model (assumed and unknown to us!!!) / sample of size n=10

• We want to estimate p, where a perfectly reasonable estimator is:

• e.g. this statistic (=mean of the sample) would equal 0.5 for the following 
particular sample (will it always?)

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually

5

T (X = x) = �̂ = p̂ =
1

n

n⇥

i=1

xi (3)

� ⇧ � (4)

�̂ (5)

N = {1, 2, 3, ...} (6)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (7)

R = {⇥ 0 ⇤} (8)

�⌅ > x > ⌅ (9)

⇥ (10)

F (11)

Pr(F) (12)

⌃ ⇧ F (13)

f(X(F), P r) : {X, P r(X)} ⇤ R (14)

This A ⇧ F then Ac ⇧ F

A1,A2, ... ⇧ F then
��

i=1Ai ⇧ F

⌃, {H}, {T}, {H,T} (15)

F (16)

X1, ..., Xk : ⇥ ⇤ Rk (17)

[X1 = x1, ..., Xk = xk] (18)

Pr(X1, ..., Xk) (19)

E(⇥) (20)

E (21)

X(⇥) (22)

X(⇥) : ⇥ ⇤ R (23)

X1(⇥) : ⇥ ⇤ R (24)

X2(⇥) : ⇥ ⇤ R (25)
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• Let’s continue with our example constructing the probability model  

• Consider the single coin flip experiment / number of tails random 
variable

• Bernoulli probability model family (parameter p)

• Sample of size n=10

• Sampling distribution (pmf of sample) if i.i.d. (!!) 

To make this concept clearer, let’s consider two probability models for ‘paired coin flip’
example. We will again write these probabilities out as follows:

H2nd T2nd

H1st Pr(H1st \H2nd) Pr(H1st \ T2nd) Pr(H1st)
T1st Pr(T1st \H2nd) Pr(T1st \ T2nd) Pr(t1st)

Pr(H2nd) Pr(T2nd)

For our fair coin probability model, let’s again assign these probabilities as follows:

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

In this model, H1st and H2nd are independent, i.e. Pr(H1st \H2nd) = Pr(H1st)Pr(H2nd)
(in fact, all of the possibilities we could consider in this model are independent). Next let’s
consider the psuedo-fair coin example:

H2nd T2nd

H1st 0.4 0.1 0.5
T1st 0.1 0.4 0.5

0.5 0.5

In this modelH1st andH2nd are not independent, i.e. Pr(H1st\H2nd) 6= Pr(H1st)Pr(H2nd)
and neither are the other possibilities considered. Intuitively, getting a ‘Head’ on the first
flip increases the probability of getting a ‘Head’ on the second (and similarly for ‘Tails’).
In this case, knowledge concerning one of the possibilities alters the probability of the next,
so it makes sense that they are not independent.

One final thought before we leave the concept of independence. It is important to note that
disjoint events cannot be independent. This follows from the third axiom of probability
and the definition of independence. This actually also makes intuitive sense but perhaps
not at first glance (see problem 1 on your first homework, which will be handed out next
week).

Pr(S) ! Pr(X) (11)

S = {H,T} (12)

X(S) : X(H) = 0, X(T ) = 1 (13)

X ⇠ p
X(1� p)1�X (14)

[X = x] = [X1 = x1, X2 = x2, ..., X10 = x10] (15)
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[X1 = x1, X2 = x2, ..., X10 = x10] ⇠ p

x1(1� p)1�x1p
x2(1� p)1�x2 ...p

x10(1� p)1�x10 (16)

T (X = x) = T (x) = X̄ =
1

10

10X

i=1

xi (17)

[Tmin, ..., Tmax] = [0, 0.1, ..., 1] ! [0, 1, ..., 10] (18)

Pr(T (x)) ⇠
✓

n

nT (x)

◆
p
nT (x)(1� p)1�nT (x) (19)

T (x) = ✓̂ = p̂ (20)

Pr(p̂) ⇠
✓

n

nT (x)

◆
p
nT (x)(1� p)1�nT (x) (21)

Ep̂ = p (22)
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))

T (x), P r(T (X))

Pr(T (X)|✓)

⌦ = {H,T}

X(⌦) : X(H) = 0, X(T ) = 1

23

X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

24

Review: Estimator example II



Review: Introduction to maximum 
likelihood estimators (MLE)

• We will generally consider maximum likelihood estimators (MLE) in this 
course

• Now, MLE’s are very confusing when initially encountered...

• However, the critical point to remember is that an MLE is just an 
estimator (a function on a sample!!), 

• i.e. it takes a sample in, and produces a number as an output that is our 
estimate of the true parameter value

• These estimators also have sampling distributions just like any other 
statistic!

• The structure of this particular estimator / statistic is complicated but 
just keep this big picture in mind



Review: Introduction to MLE’s
• A maximum likelihood estimator (MLE) has the following definition:

• Recall that this statistic still takes in a sample and outputs a value that is 
our estimator (!!) Note that likelihoods are NOT probability functions, i.e. 
they need not conform to the axioms of probability (!!)

• Sometimes these estimators have nice forms (equations) that we can 
write out

• For example the maximum likelihood estimator when considering a 
sample for our single coin example / number of tails is:

• And for our heights example: 

is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

nX

i

(xi � x)2 (13)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇠ Bin(n, p) for a sample of
size n. In this case the likelihood is:

L(p|X = x) =

✓
x

n

◆
px(1� p)n�x (14)

and the log-likelihood is:

l(p|X = x) = ln

✓
x

n

◆
+ xln(p) + n� xln(1� p) (15)

such that the first derivative is:

@l(p|X = x)

@p
=

x

p
� n� x

1� p
(16)

and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(17)

which we can check by considering the second derivative:

@2l(p|X = x)

@p2
= � x

p2
+

x� n

(1� p)2
(18)

which is always negative. Note that the MLE and the method of moments estimator are
also the same in this case.

More generally, if we are interested in deriving the MLE(✓̂) for a vector of parameters
✓ = [✓1, ✓2, ...] we can take the derivative the log-likelihood function with respect to all
parameters:

dl(✓|X = x)

d✓
=

0

BB@

@l(✓|X=x)
@✓1

@l(✓|X=x)
@✓2
...

1

CCA
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5. Likelihoods have an appealing property described by the ‘Likelihood principle’, which
basically states that any evidence present in a sample about ✓ depends only on the
likelihood function. This is a deeper theoretical concept than su�ciency (although
they are related).

Now that we have defined a likelihood, we are ready to define a Maximum Likelihood
Estimator:

MLE(✓̂) = ✓̂ = argmax✓2⇥L(✓|x) (4)

where ‘argmax’ simply means the argument or value of ✓ within the set ⇥ that maximizes
the function. That is, the actual value that we get as an estimate, after plugging in the
sample x into this equation, is the value of ✓ where this function has a maximum. We
can illustrate this concept visually by plotting this function with possible parameter val-
ues on the X-axis and the Likelihood function on the Y-axis (see class notes for a diagram).

To determine the MLE means finding the maximum of a function. There are broadly
two ways to do this: a. derive a specific (useful) formula for the MLE, b. in more complex
cases, use an algorithm to determine the MLE. While the former is a reasonable strategy in
some cases (as we will discuss today), as we will see later in the class, sometimes the latter
strategy is the only way to determine the MLE. To derive a specific formula for an MLE, as
you’ll recall from calculus, a way to solve the problem of finding a maximum of a function
is to find where the first derivative of the function takes a value of zero, and then check to
see if the second derivative at this point is negative, to determine whether this point is a
maximum, i.e. instead of a minimum (or saddle point). When using this approach to find
the maximum, it is often easier to deal with the natural log of the likelihood:

l(✓|x) = ln [L(✓|x)] (5)

Since logarithms are ‘monotonic’ they change the shape of the likelihood function but do
not change the location of the maximum, i.e. maximizing the log-likelihood produces the
same result as maximizing the likelihood. Part of the reason log-likelihoods are easier to
deal with is they take advantage of the property ln(ab) = ln(a) + ln(b), such that the
likelihood of an i.i.d. sample:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (6)

when expressed as a log-likelihood is:

l(✓|x1, x2, ..., xn) = l(✓|x1) + l(✓|x2) + ...+ l(✓|xn) (7)

As an example, let’s derive the MLE of the the parameter µ of a normally distributed
random variable X ⇠ N(µ,�2) for an i.i.d sample of size n, i.e. our sample is a random

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)
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Brief Introduction: Properties of 
estimators I

• Remember (!!) for all the complexity in thinking about, deriving, etc. 
MLE’s these are still just estimators (!!), i.e. they are statistics that take 
a sample as input and output a value that we consider an estimate of 
our parameter

• MLE in general have nice properties (and we will largely use them in 
this class!), but there are many other estimators that we could use 

• This is because there is no “perfect” estimator and each estimator that 
we can define has different properties, some of which are desirable, 
some are less desirable

• In general, we do try to use estimators that have “good” properties 
based on well defined criteria

• In this class, we will briefly consider two: unbiasedness and consistency



Properties of estimators II
• We measure the bias of an estimator as follows (where an unbiased 

estimator has a bias of zero):

• We consider an estimator to be consistent if it has the following property

• Note that one can have an estimator that is consistent but not unbiased 
(and vice versa!)

• As an example of the former, the following MLE is biased but consistent

• An unbiased estimator of this parameter is the following:

estimators to behave: unbiased(ness) and consistency.

We define bias of an estimator as follows:

Bias(⇥̂) = E⇥̂ � ⇥ (26)

where the expectation is over the sampling distribution of the estimator for a sample of
size n and ⇥ indicates the true value of ⇥. If the value of the estimator ‘on average’ (or
averaging over all samples of size n) is equal to the true value of the parameter, we call
such an estimator unbiased. It is easy to see why we might like estimators to have this
property, i.e. on average, we expect to get the right answer for ⇥. The MLE(µ̂) for a
normally distributed random variable is an example of an unbiased estimator. That is,
even for a sample of size n = 2, if we took the expectation of all possible values of this
estimator for two samples, this expectation would equal the true value of µ.

We define consistency as follows:

limn�⇥Pr(|⇥̂ � ⇥| < �) = 1 (27)

where � is an arbitrarily small constant. Consistency is less intuitive and requires an
advanced statistics class for a deep understanding but, stating this definition in words, as
the sample size approaches infinite, the probability that estimator is arbitrarily close to the
true value is one. What this implies is that the estimator tends to be good as the sample
size gets very large (and we hope it is pretty good when samples get ‘large’). Again, one
can imagine this is a good property for an estimator, particularly if we are dealing with a
sample that is relatively large. MLE’s (in general) are consistent estimators. Note that a
consistent estimator need not be unbiased. An example is:

MLE(⇤̂2) =
1

n

n�

i

(xi � x)2 (28)

i.e. the MLE of ⇤2 of a normally distributed random variable. This estimator is consistent
but biased. We can produce an unbiased estimator of ⇤2 as follows:

⇤̂2 =
1

n� 1

n�

i

(xi � x)2 (29)

We may want to use this unbiased estimator in cases where the sample size is small, while
the MLE is fine to use when the sample size is large. Why would we ever want to use
unbiased estimators? There are a couple of reasons. First, unbiased estimators may not
exist (or be easy to derive) for certain problems. Second, an unbiased estimator will work
well on average, but the variance in the estimates may be quite large, i.e. if it gets it wrong,
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• For the estimation framework we have considered thus far, our goal 
was to define an estimator that provides a “reasonable guess given 
the sample” of the true value of the parameter

• This is called “point” estimation since the true parameter has a single 
value (i.e. it is a point)

• We could also estimate an interval, where our goal is to say 
something about the chances that the true parameter (the point) 
would fall in the interval

• confidence interval (CI) - an estimate of an interval defined 
such that if it were estimated individually for an infinite number of 
samples, a specific percentage of the estimated intervals would 
contain the true parameter value

• Don’t worry if this concept seems confusing (it is!) let’s first 
consider an example and then discuss some basics

Confidence intervals I



• As an example, assume the standard normal r.v. X ~N(0,1)       
correctly describes our sampling distribution if we were to produce 
50 independent samples, each of size n=10 and we were to estimate 
a CI for each one, we would expect to get the following:

Confidence intervals II

!

Example of an expected result if we were to calculate 50 
90% confidence intervals for 50 samples for the parameter 
“mu”of a normally distributed random variable, where the 

true value of mu=0:

Wednesday, February 17, 2010

consider �1 = �A⇧�0 such that �1 = �, where the latter is the entire possible range of
the parameter of interest (and we will just write � instead of �1 when we consider forms
of equation (1) in many cases).

For this equation, in the numerator, we maximize the likelihood (i.e. select the value
of � that produces the largest value of the likelihood equation), restricting ourselves to
values of the parameter in the set �0, e.g. if H0 is the parameter equals a constant, we
simply substitute this value of the parameter into the likelihood equation. In the denomi-
nator, we maximize the likelihood over the entire range of possible parameter values (just
as we would when calculating the MLE). With a likelihood ratio, we are therefore taking
the ratio of two MLE’s, where the numerator considers a more restricted parameter space
than the denominator.

To provide some intuition, let’s consider a case where we have X ⇥ N(µ,⇤2 = 1), an
i.i.d sample of size n, where we are testing H0 : µ = 0 versus HA : µ ⌅= 0. In this case,
for our parameter of interest µ we have �0 = 0 and �1 = � = (�⇤,⇤) and the like-
lihood function is (remember ⇤2 = 1, the rules for the likelihood of an iid sample, and
eaeb = ea+b):

L(�|X = x) =
1⌃
2⇥

e
P

n

i=1
�(xi�µ)2

2 (4)

such that our LRT statistic is:

LRT = ⇥ =

1�
2�
e
P

n

i=1
�(xi�H0(µ))

2

2

1�
2�
e
P

n

i=1
�(xi�MLE(µ̂))2

2

(5)

where µ = 0 (since H0 : µ = 0) and recall MLE(µ̂) = 1
n

Pn
i xi = x̄, so equation (4) reduces

to:

LRT = exp

 
� 1

2

nX

i=1

(xi � 0)2 +
1

2

nX

i=1

(xi � x̄)2
!

(6)

and because we have the following:

nX

i=1

x2i =
nX

i=1

x2i � 2x̄
nX

i=1

xi + nx̄2 + nx̄2 = nx̄2 +
nX

i=1

(xi � x̄)2 (7)

because �2x̄
Pn

i=1 xi = �2x̄2, by substitution, we then have a final form of the LRT in
this case:

LRT = exp

 
� nx̄2

2

!
(8)

which you may recognize as a form of a Z-test, given H0 : µ = 0 and known variance
⇤2 = 1 (look it up on wikipedia). Now, to perform the hypothesis test, we would calculate
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• A CI is therefore calculated from a sample (and reflects uncertainty!)

• A CI is an estimate of an interval, as opposed to an estimate of a parameter, 
which is a point estimate (more technically, the CI is an estimate of the 
endpoints of the interval)

• This estimated interval of a CI (generally) includes the estimate of the 
parameter in the “middle”

• In general, a CI provides a measure of “confidence” in the sense that the 
smaller the interval, the more “confidence” we have in our estimate (if this 
seems circular, it is meant to be!) 

• In general, we can make the CI smaller with a larger sample size n and by 
decreasing the probability that the interval contains the true parameter value, 
i.e. a 95% CI is smaller than a 99% CI

• NOTE THAT A 95% CI estimated from one sample does not contain the true 
parameter value with a probability of 0.95 (!!!) - the definition of a CI says if 
we performed an infinite number of samples, and calculated the CI for each, 
then 95% of these intervals would contain the true parameter value (strange?)

Confidence intervals III



Review of essential concepts

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family of probability 
distributions indexed by parameters) on the basis of a sample

• System, Experiment,  Experimental Trial, Sample Space, 
Sigma Algebra, Probability Measure, Random Vector, 
Parameterized Probability Model, Sample, Sampling 
Distribution, Statistic, Statistic Sampling Distribution,   
Estimator, Estimator Sampling distribution



Estimation and Hypothesis Testing

• Thus far we have been considering a “type” of inference, estimation, 
where we are interested in determining the actual value of a 
parameter

• We could ask another question, and consider whether the 
parameter is NOT a particular value

• This is another “type” of inference called hypothesis testing

• We will use hypothesis testing extensively in this course



Experiment
(Sample Space) (Sigma Algebra)
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X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)
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Z +1
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�1
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Z
x1
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Z
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�1
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Hypothesis testing I

• To build this framework, we need to start with a definition of 
hypothesis

• Hypothesis - an assumption about a parameter

• More specifically, we are going to start our discussion with a null 
hypothesis, which states that a parameter takes a specific value, i.e. a 
constant

• For example, for our height experiment / identity random variable, 
we have                                and we could consider the following 
null hypothesis:

our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than

2

our statistic such that it is an estimate of the parameter �. We write a parameter estimate
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if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):
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where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
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Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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• As example, consider our height experiment (reals as sample space) / identity random 
variable  X  / normal probability model                    / sample n=1 (of one height 
measurement) / identity statistic T(x) = x (takes the height measured height)

• Let’s assume that                and say we are interested in testing the following null 
hypothesis                     such that we have the following probability distribution of the 
statistic under the null hypothesis:

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,�
2) = fX(x|µ,�

2) =
1p

2⇡�2
e
� (x�µ)2

2�2 (5)

This model therefore has two parameters (µ,�
2) such that ✓ is actually a parameter vec-

tor ✓ =
⇥
µ,�

2
⇤
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: ⇥ = (�1,1). The �

2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ⇥ = [0,1). As we have seen previously, our shorthand for a normal distribution is
X ⇠ N(µ,�

2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⌘ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) ✓) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

��
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ �

c↵

fX(x)dx (5)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
p-value as follows:

pval(T (x)) =

⇥ �

T (x)
Pr(T (x)|µ = 0)dT (x) (6)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

H0 : µ = 5.5 (2)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =

2
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That’s it for today

• Next lecture, we will continue our discussion of hypothesis testing!


