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Announcements

| will no longer respond to direct emails to me (only Piazza
messages)

CMS appears stable enough (those still having difficulties |
will communicate with you directly on this)

We will be back in the classroom Thurs (Feb 23)
Homework #3 will be assigned Thurs (Feb 23)

We will have office hours next week but TBD because of
winter break (no office hours this week)



Summary of lecture 9: Introduction
to Hypothesis Testing

® |ast lecture, we (almost) completed our (general) discussion
of estimators

® Today, we will (very) briefly discuss confidence intervals and
begin our discussion of hypothesis testing (!!)



Conceptual Overview

Experiment
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Estimators
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Review: Probability models

Parameter - a constant(s) § which indexes a probability model
belonging to a family of models ® such that § € ©

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to the problem of
using a sample to make an educated guess at the value of the
parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the sample outcomes, the experiment, and the
system of interest (!!!)



Review: Inference

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



Review: Samples

Sample - repeated observations of a random variable X, generated by
experimental trials

We already have the formalism to do this and represent a sample of size n,
specifically this is a random vector:

[X — X] — [Xl — I, ,Xn — .CI?n]

As an example, for our two coin flip experiment / number of tails r.v., we
could perform n=2 experimental trials, which would produce a sample =
random vector with two elements

Note that since we have defined (or more accurately induced!) a probability
distribution Pr(X) on our random variable, this means we have induced a
probability distribution on the sample (!!):

Pr(X =x)= Pr(X; =z, Xo =29,..., X;, = x,) = Px(x) or fx(x)



Review: Observed Sample

It is important to keep in mind, that while we have made assumptions such that we
can define the joint probability distribution of (all) possible samples that could be
generated from n experimental trials, in practice we only observe one set of trials,
i.e. one sample

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]

In each of these cases, we would like to use these samples to perform inference
(i.e. say something about our parameter of the assumed probability model)

Using the entire sample is unwieldy, so we do this by defining a statistic



Review: Statistics

® As an example, consider our height experiment (reals as
approximate sample space) / normal probability model (with
true but unknown parameters 6 = |p,0°] /identity random
variable

® |f we calculate the following statistic:

T(X) — %ixz
1=1

what is Pr(7T'(X))?
® Are the distributions of Xi = xi and Pr(7T'(X)) always the same?



Review: Estimators

Estimator - a statistic defined to return a value that represents our
best evidence for being the true value of a parameter

In such a case, our statistic is an estimator of the parameter: T(X) .y
Note that ANY statistic on a sample can in theory be an estimator.

However, we generally define estimators (=statistics) in such a way that it
returns a reasonable or “good” estimator of the true parameter value
under a variety of conditions

How we assess how “good” an estimator depends on our criteria for
assessing “good” and our underlying assumptions



Review: Estimator example |

As an example, let’s construct an estimator

Consider the single coin flip experiment / number of tails random
variable / Bernoulli probability model family (parameter p) / fair coin
model (assumed and unknown to us!!!) / sample of size n=10

We want to estimate p, where a perfectly reasonable estimator is:
1 n
T(XzX)szﬁzE;mi
1=

e.g. this statistic (=mean of the sample) would equal 0.5 for the following
particular sample (will it always?)

x =[1,1,0,1,0,0,0,1,1,0]



Review: Estimator example ||

Let’s continue with our example constructing the probability model

Consider the single coin flip experiment / number of tails random
variable

O={H,T} X:X(H)=0X(T)=1

Bernoulli probability model family (parameter p)
X ~pt(l—p)—

Sample of size n=10

[X — X] — [Xl =1, X9 = T2,..., X190 = fL‘lo]

Sampling distribution (pmf of sample) if i.i.d. ()

(X1 =21, X9 = 29, ..., X10 = 210] ~ p" (1 — p)' ~"1p™(1 — p)'~*2..p™0(1

— P

)1—:1310



Review: Introduction to maximum
likelihood estimators (MLE)

We will generally consider maximum likelihood estimators (MLE) in this
course

Now, MLE’s are very confusing when initially encountered...

However, the critical point to remember is that an MLE is just an
estimator (a function on a sample!!),

i.e. it takes a sample in, and produces a nhumber as an output that is our
estimate of the true parameter value

These estimators also have sampling distributions just like any other
statistic!

The structure of this particular estimator / statistic is complicated but
just keep this big picture in mind



Review: Introduction to MLE’s

A maximum likelihood estimator (MLE) has the following definition:

MLE(f) = 0 = argmazgeo L(0]x)

Recall that this statistic still takes in a sample and outputs a value that is
our estimator (!!) Note that likelihoods are NOT probability functions, i.e.
they need not conform to the axioms of probability (!!)

Sometimes these estimators have nice forms (equations) that we can
write out

For example the maximum likelihood estimator when considering a
sample for our single coin example / number of tails is:

MLE(p Z z;

And for our heights example:

MLE(ji Z z; MLE(6*) = =) (z; —T)°



Brief Introduction: Properties of
estimators |

Remember (!!) for all the complexity in thinking about, deriving, etc.
MLE’s these are still just estimators (!!), i.e. they are statistics that take
a sample as input and output a value that we consider an estimate of
our parameter

MLE in general have nice properties (and we will largely use them in
this class!), but there are many other estimators that we could use

This is because there is no “perfect” estimator and each estimator that
we can define has different properties, some of which are desirable,
some are less desirable

In general, we do try to use estimators that have “good” properties
based on well defined criteria

In this class, we will briefly consider two: unbiasedness and consistency



Properties of estimators |l

We measure the bias of an estimator as follows (where an unbiased
estimator has a bias of zero):

Bias(f) = Ef — 6
We consider an estimator to be consistent if it has the following property
limp 0o Pr(|0 — 0] < €) =1

Note that one can have an estimator that is consistent but not unbiased
(and vice versa!)

As an example of the former, the following MLE is biased but consistent

MLE(0?) = % > (i — 7y

An unbiased estimator of this parameter is the following:
n

A 1
2 Y
J_n_lg(azz T)

1




Confidence intervals |

For the estimation framework we have considered thus far, our goal
was to define an estimator that provides a “reasonable guess given
the sample” of the true value of the parameter

This is called “point” estimation since the true parameter has a single
value (i.e. it is a point)

We could also estimate an interval, where our goal is to say
something about the chances that the true parameter (the point)
would fall in the interval

confidence interval (Cl) - an estimate of an interval defined
such that if it were estimated individually for an infinite number of
samples, a specific percentage of the estimated intervals would
contain the true parameter value

Don’t worry if this concept seems confusing (it is!) let’s first
consider an example and then discuss some basics



Confidence intervals Il

® As an example, assume the standard normal r.v. X ~N(0, 1)
correctly describes our sampling distribution if we were to produce
50 independent samples, each of size n=10 and we were to estimate
a Cl for each one, we would expect to get the following:




Confidence intervals Il

A Cl is therefore calculated from a sample (and reflects uncertainty!)

A Cl is an estimate of an interval, as opposed to an estimate of a parameter,
which is a point estimate (more technically, the Cl is an estimate of the
endpoints of the interval)

This estimated interval of a Cl (generally) includes the estimate of the
parameter in the “middle”

In general,a Cl provides a measure of “confidence” in the sense that the
smaller the interval, the more “confidence” we have in our estimate (if this
seems circular, it is meant to be!)

In general, we can make the CI smaller with a larger sample size n and by

decreasing the probability that the interval contains the true parameter value,
i.e.a 95% Cl is smaller than a 99% CI

NOTE THAT A 95% CI estimated from one sample does not contain the true
parameter value with a probability of 0.95 (!!!) - the definition of a Cl says if
we performed an infinite number of samples, and calculated the CI for each,
then 95% of these intervals would contain the true parameter value (strange?)



Review of essential concepts

Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family of probability
distributions indexed by parameters) on the basis of a sample

System, Experiment, Experimental Trial, Sample Space,
Sigma Algebra, Probability Measure, Random Vector,
Parameterized Probability Model, Sample, Sampling
Distribution, Statistic, Statistic Sampling Distribution,
Estimator, Estimator Sampling distribution



Estimation and Hypothesis Testing

Thus far we have been considering a “type” of inference, estimation,
where we are interested in determining the actual value of a
parameter

We could ask another question, and consider whether the
parameter is NOT a particular value

This is another “type” of inference called hypothesis testing

We will use hypothesis testing extensively in this course



Estimators
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Hypothesis Tests
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Hypothesis testing |

To build this framework, we need to start with a definition of
hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null
hypothesis, which states that a parameter takes a specific value, i.e. a
constant

H():@:C

For example, for our height experiment / identity random variable,
we have Pr(X|0) ~ N(u,c?) and we could consider the following
null hypothesis:

H():,u:()



Hypothesis testing I

As example, consider our height experiment (reals as sample space) / identity random
variable X / normal probability model § = [u,aﬂ / sample n=| (of one height
measurement) / identity statistic T(x) = x (takes the height measured height)

Let’s assume that g2 = 1 and say we are interested in testing the following null
hypothesis Hy : 1 = 5.5 such that we have the following probability distribution of the
statistic under the null hypothesis:

X
o

0.2 0.3

Pr(T(x) | HO)

0.1

0.0




That’s it for today

® Next lecture, we will continue our discussion of hypothesis testing!



