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Summary of Optional Lecture 1

• Today we will discuss important concepts in Population Genetics 
helpful for understanding Linkage Disequilibrium 

• And the related concept of Haplotype Testing in GWAS
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• Mapping the position of a causal polymorphism in a GWAS requires there 
to be LD for genotypes that are both physically linked and close to each 
other AND that markers that are either far apart or on different 
chromosomes to be in equilibrium

• Note that disequilibrium includes both linkage disequilibrium AND other 
types of disequilibrium (!!), e.g. gametic phase disequilibrium
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Different chromosomes I
• Polymorphisms on different chromosomes tend to be in 

equilibrium because of independent assortment and random 
mating, i.e. random matching of gametes to form zygotes
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Different chromosomes II
• Polymorphisms on different chromosomes tend to be in 

equilibrium because of independent assortment and random 
mating, i.e. random matching of gametes to form zygotes



Different chromosomes III

• More formally, we represent independent assortment as:

• For random pairing of gametes to produce zygotes:

• Putting this together for random pairing of gametes to 
produce zygotes we get the conditions for equilibrium:

and 13) a gamete will have the same probability of having one of the ‘four’ chromosomes
from chromosome 11 and one of the ‘four’ chromosomes from chromosome 13. Now if we
assume all gametes in the population are produced this way, the frequency of a particular
gamete in the population with alleles Ai and Bk will be
Pr(AiBk) = Pr(Ai)Pr(Bk)

i.e. the frequency of a gamete is the product of the frequency of each allele, and the
same for all other allele combinations in gametes. If we now assume random mating then
the probability of any two specific gametes in the population fusing to produce an o↵spring
is the same and the frequency of a genotype produced by two gametes mating is:

fr(AiBk)fr(AjBl) = fr(Ai)fr(Bk)fr(Aj)fr(Bl) = fr(AiAj)fr(BkBl) = fr(AiAjBkBl)
(9)

Pr(AiBkAjBl) = Pr(AiBk)Pr(AjBl) (10)

Pr(AiBkAjBl) = Pr(AiBk)Pr(AjBl) = Pr(Ai)Pr(Bk)Pr(Aj)Pr(Bl) = Pr(Ai, Aj)Pr(Bk, Bl)
(11)

where again this is for all combinations of i, j, k, l = 1 or 2. Thus, if we considered two
markers, one on each chromosome, the states of the genotypes at these markers will also
be independent. Since independence implies a correlation of zero, we expect markers on
di↵erent chromosomes to be uncorrelated (see class notes for a diagram).

Next let’s consider markers on the same chromosome. For this part, we will take the
opposite strategy and show how markers that are close together are highly correlated (non-
independent) and the further markers are located from each other physically, the greater
the probability of a recombination event, which increases their independence. In sexual,
diploid organisms where there is recombination, sections of a chromosome are swapped
between two chromosomes that end up in gametes (see class notes for a diagram). Since
the more recombination, the more genotypes of two markers are ‘mixed up’, more recombi-
nation tends to lower the correlation between markers. As an illustrative example, consider
an extreme case where A1 and B1 always occur together on a chromosome and where A2

and B2 always occur together, i.e. fr(A1B1) 6= 0, fr(A2B2) 6= 0, and the frequency of
all other genotypes is zero. This is a case of a perfect correlation between XA and XB

genotypes such that |corr(XA, XB)| = 1, intuitively if A1 occurs, this means B1 occurs
and vice versa with A2 and B2. However, if there is a recombination event between these
markers, as well as A1�B1 and A2�B2 chromosomes in the population, we will also have
A1 �B2 and A2 �B1. Now, A1 does not always occur with B1 and as a consequence, the
correlation between markers A and B is now less than one. As more recombination events
occur, the (absolute) correlation continues to decrease until |corr(XA, XB)| = 0. Now,
in genetic systems, more recombination events happen between markers that are further
apart on a chromosome (a consequence of the biological process of recombination). As a
consequence, there is more recombination and therefore lower correlation between markers
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H0 : Cov(Xa, Y ) = 0 ⇧ Cov(Xd, Y ) = 0 (35)

HA : Cov(Xa, Y ) ⇤= 0 ⌅ Cov(Xd, Y ) ⇤= 0 (36)

H0 : �a = 0 ⇧ �d = 0 (37)

HA : �a ⇤= 0 ⌅ �d ⇤= 0 (38)

F�statistic = f(�) (39)

�µ = 0,�a = 4,�d = �1,⇥2
� = 1 (40)

�̂�
a = 0, �̂�

d = 0 (41)

�̂�
a = �a, �̂

�
d = �d (42)

Pr(A1, A1) = Pr(A1)Pr(A1) = p2 (43)

Pr(A1, A2) = Pr(A1)Pr(A2) = 2pq (44)

Pr(A1, A1) = Pr(A2)Pr(A2) = q2 (45)

⇥ (Corr(Xa,A, Xa,B) = 0) ⇧ (Corr(Xa,A, Xd,B) = 0) (46)

⇧(Corr(Xd,A, Xa,B) = 0) ⇧ (Corr(Xd,A, Xd,B) = 0) (47)
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Same chromosome I
• For polymorphisms on the same chromosome, they are linked so 

if they are in disequilibrium, they are in LD

• In general, polymorphisms that are closer together on a 
chromosome are in greater LD than polymorphisms that are 
further apart (exactly what we need for GWAS!)

• This is because of recombination, the biological process by which 
chromosomes exchange sections during meiosis

• Since recombination events occur at random throughout a 
chromosome (approximately!), the further apart two 
polymorphisms are, the greater the probability of a recombination 
event between them

• Since the more recombination events that occur between 
polymorphisms, the closer they get to equilibrium, this means 
markers closer together tend to be in greater LD



Same chromosome II

• In diploids, recombination 
occurs between pairs of 
chromosomes during 
meiosis (the formation of 
gametes)

• Note that this results in 
taking alleles that were 
physically linked on 
different chromosomes 
and physically linking them 
on the same chromosome



• To see how recombination events tend to increase equilibrium, consider an extreme 
example where alleles A1 and B1 always occur together on a chromosome and A2 
and B2 always occur together on a chromosome:

• If there is a recombination event, most chromosomes are A1-B1 and A2-B2 but now 
there is an A1-B2 and A2-B1 chromosome such that:

• Note recombination events disproportionally lower the probabilities of the more 
frequent pairs!

• This means over time, the polymorphisms will tend to increase equilibrium (decrease 
LD)

• Since the more recombination events, the greater the equilibrium, polymorphisms that 
are further apart will tend to be in greater equilibrium, those closer together in 
greater LD 

Same chromosome III

and 13) a gamete will have the same probability of having one of the ‘four’ chromosomes
from chromosome 11 and one of the ‘four’ chromosomes from chromosome 13. Now if we
assume all gametes in the population are produced this way, the frequency of a particular
gamete in the population with alleles Ai and Bk will be
Pr(AiBk) = Pr(Ai)Pr(Bk)

i.e. the frequency of a gamete is the product of the frequency of each allele, and the
same for all other allele combinations in gametes. If we now assume random mating then
the probability of any two specific gametes in the population fusing to produce an o↵spring
is the same and the frequency of a genotype produced by two gametes mating is:

fr(AiBk)fr(AjBl) = fr(Ai)fr(Bk)fr(Aj)fr(Bl) = fr(AiAj)fr(BkBl) = fr(AiAjBkBl)
(9)

Pr(AiBkAjBl) = Pr(AiBk)Pr(AjBl) (10)

Pr(AiBkAjBl) = Pr(AiBk)Pr(AjBl) = Pr(Ai)Pr(Bk)Pr(Aj)Pr(Bl) = Pr(Ai, Aj)Pr(Bk, Bl)
(11)

where again this is for all combinations of i, j, k, l = 1 or 2. Thus, if we considered two
markers, one on each chromosome, the states of the genotypes at these markers will also
be independent. Since independence implies a correlation of zero, we expect markers on
di↵erent chromosomes to be uncorrelated (see class notes for a diagram).

Next let’s consider markers on the same chromosome. For this part, we will take the
opposite strategy and show how markers that are close together are highly correlated (non-
independent) and the further markers are located from each other physically, the greater
the probability of a recombination event, which increases their independence. In sexual,
diploid organisms where there is recombination, sections of a chromosome are swapped
between two chromosomes that end up in gametes (see class notes for a diagram). Since
the more recombination, the more genotypes of two markers are ‘mixed up’, more recombi-
nation tends to lower the correlation between markers. As an illustrative example, consider
an extreme case where A1 and B1 always occur together on a chromosome and where A2

and B2 always occur together, i.e.

Pr(A1B2) = 0, Pr(A2B1) = 0

Pr(A1A2B1B1) = 0, Pr(A1A1B1B2) = 0

Corr(XA1A2,⇤, X⇤,B1B1) = 0

Corr(XAiAj ,⇤, X⇤,BkBl) = 0
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D� = D
min(XA1B1 (A1B1),XA2B2 (A2B2))

if D < 0

D� = D
min(XA1B2 (A1B2),XA2B1 (A2B1))

if D > 0

r =
Cov(XAi

(Ai),XBj
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V ar(XAi
(Ai))

q
V ar(XBj
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r = D⇤
V ar(XAi

(Ai))
q

V ar(XBj
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Pr(A1, A1) = Pr(A1)Pr(A1) = Pr(XA1(A1))Pr(XA1(A1)) = p2

Pr(A1, A2) = Pr(A1)Pr(A2) = Pr(XA1(A1))Pr(XA2(A1)) = 2pq
Pr(A2, A2) = Pr(A2)Pr(A2) = Pr(XA2(A1))Pr(XA2(A1)) = q2

2. If two markers X and X � in a population are in H-W equilibrium, they are uncorre-
lated, i.e. Corr(X,X �) = 0.

Pr(AiBj , AkBl) = Pr(AiBj)Pr(AkBl) = Pr(XAiBj (AiBj))Pr(XAiBj (AiBj))

� Corr(Xa,A, Xa,B) = 0 OR Corr(Xd,A, Xd,B) = 0

Pr(XA1B1(A1B1), XA1B1(A1B1)) ⇥= Pr(XA1B1(A1B1))Pr(XA1B1(A1B1))

Pr(AiBj , AkBl) ⇥= Pr(AiBj)Pr(AkBl) � Corr(Xa,A, Xa,B) ⇥= 0

Pr(AiBj , AkBl) = Pr(AiBj)Pr(AkBl) � Corr(Xa,A, Xa,B) = 0

Corr(Xa,A, Xa,B) ⇥= 0

Corr(Xa,A, Xa,B) ⇥= 1

Corr(Xa,A, Xa,B) = 1 AND Corr(Xd,A, Xd,B) = 1

where the former property is a consequence of the independent segregation of chromosomes
into gametes and the latter is a property of genotypes that are on distinct chromosomes
or genotypes that are ‘far apart’ on a chromosome, such that the probability of a re-
combination event between them each generation is one-half. So, from our discussion
above, independent assortment of chromosomes, random mating, and recombination tends
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• Mapping the position of a causal polymorphism in a GWAS requires there 
to be LD for genotypes that are both physically linked and close to each 
other AND that markers that are either far apart or on different 
chromosomes to be in equilibrium
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• Recall we the one coin flip example (how does the parameter of Bernoulli 
relate to MAF?):

• The following model for two coin flips maps perfectly on to the model of 
genotypes (e.g., represented as number of A1 alleles) under Hardy-
Weinberg equilibrium (e.g., for MAF = 0.5):

• Note that the model need not conform to H-W since consider the 
following model (we could use a multinomial probability distribution):

Side topic: connection coin flip 
models to allele / genotypes

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)

gi = AjAk (11)

2.1� 0.3 + (0)(�0.2) + (1)(1.1) + 0.7 (12)

SSE =
nX

n=1

(yi � ŷi)
2 (13)

HA : �AjAk
6= �AlAm

(14)

Y = �
0
0 +X

0
a�

0
a +X

0
�
0
d + ✏ (15)

�
2 = 1 (16)

✓ (17)

⌦ = {H,T} (18)

X(H) = 0, X(T ) = 1 (19)
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The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not

2

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
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For the specific probability function and random variables we have defined, this produces
the following PX1,X2(x1, x2):

Pr(X1 = 0, X2 = 0) = 0.0, P r(X1 = 0, X2 = 1) = 0.25
Pr(X1 = 1, X2 = 0) = 0.25, P r(X1 = 1, X2 = 1) = 0.25
Pr(X1 = 2, X2 = 0) = 0.25, P r(X1 = 2, X2 = 1) = 0.0

(18)

where Pr(X1 = x1, X2 = x2) = Pr(X1 ⇤X2), etc. We can also write this using our table
notation:

X2 = 0 X2 = 1
X1 = 0 0.0 0.25 0.25
X1 = 1 0.25 0.25 0.5
X1 = 2 0.25 0.0 0.25

0.5 0.5

Note that with this table we have also written out the marginal pdf’s of X1 and X2,
which are just the pdf’s of X1 and X2: PX1(x1) = {Pr(X1 = 0) = 0.25, P r(X1 = 1) =
0.5, P r(X1 = 2) = 0.25} and PX2(x2) = {Pr(X2 = 0) = 0.5, P r(X2 = 1) = 0.5}.

Just as we defined conditional probabilities for subsets of a sample space S for which
we have defined a probability function Pr(S), we can similarly define the conditional prob-
abilities of random variables:

Pr(X1|X2) =
Pr(X1 ⇤X2)

Pr(X2)
(19)

such that we have for example:

Pr(X1 = 0|X2 = 1) =
Pr(X1 = 0 ⇤X2 = 1)

Pr(X2 = 1)
=

0.25

0.5
= 0.5 (20)

Note that we can in fact use random variables as a means to define sample space subsets,
so the concept of conditional probability defined for sample spaces and for joint random
variables are interchangeable.

We can similarly define an (interchangeable) concept of independent random variables.
Note that our current X1 and X2 are not independent, since:

Pr(X1 = 0 ⇤X2 = 1) = 0.25 ⇥= Pr(X1 = 0)Pr(X2 = 1) = 0.25 � 0.5 = 0.125 (21)

and for random variables to be independent, all possible combinations of outcomes must
adhere to the definition of independence. To provide an example of random variables that

7

The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not

2



• Mapping the position of a causal polymorphism in a GWAS requires there 
to be LD for genotypes that are both physically linked and close to each 
other AND that markers that are either far apart or on different 
chromosomes to be in equilibrium

• Note that disequilibrium includes both linkage disequilibrium AND other 
types of disequilibrium (!!), e.g. gametic phase disequilibrium

Chr. 1

A B C

Chr. 2

D

equilibrium, linkage

equilibrium, 
no linkage

LD

Review: Linkage Disequilibrium (LD)



Patterns and representing LD
• We often see LD among a set of contiguous markers, using 

either r-squared or D’, with the “triangle, half-correlation 
matrices” where darker squares indicating higher LD (values 
of these statistics, e.g. LD in a “zoom-in” plot:
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Measuring LD I
• There are many statistics used to represent LD but we will 

present the two most common

• For the first, define the correlation:

• As a measure of LD, we will consider this squared:

• Note that this is always between one and zero!

H0 : Cov(Xa, Y ) = 0 ⇧ Cov(Xd, Y ) = 0 (35)

HA : Cov(Xa, Y ) ⇤= 0 ⌅ Cov(Xd, Y ) ⇤= 0 (36)

H0 : �a = 0 ⇧ �d = 0 (37)

HA : �a ⇤= 0 ⌅ �d ⇤= 0 (38)

F�statistic = f(�) (39)

�µ = 0,�a = 4,�d = �1,⇥2
� = 1 (40)

�̂�
a = 0, �̂�

d = 0 (41)

�̂�
a = �a, �̂

�
d = �d (42)

Pr(A1, A1) = Pr(A1)Pr(A1) = p2 (43)

Pr(A1, A2) = Pr(A1)Pr(A2) = 2pq (44)

Pr(A2, A2) = Pr(A2)Pr(A2) = q2 (45)

⇥ (Corr(Xa,A, Xa,B) = 0) ⇧ (Corr(Xa,A, Xd,B) = 0) (46)

⇧(Corr(Xd,A, Xa,B) = 0) ⇧ (Corr(Xd,A, Xd,B) = 0) (47)

⇥ (Corr(Xa,A, Xa,B) ⇤= 0) ⌅ (Corr(Xa,A, Xd,B) ⇤= 0) (48)

⌅(Corr(Xd,A, Xa,B) ⇤= 0) ⌅ (Corr(Xd,A, Xd,B) ⇤= 0) (49)

Pr(AiBk, AjBl) = Pr(AiAj)Pr(BkBl) (50)

Pr(AiBk, AjBl) = Pr(AiBk)Pr(AjBl) (51)

= Pr(Ai)Pr(Aj)Pr(Bk)Pr(Bl) = Pr(AiAj)Pr(BkBl) (52)

XAi : XAi(A1) = 1, XAi(A2) = 0 (53)

XBj : XBj (B1) = 1, XBi(B2) = 0 (54)

r =
Pr(Ai, Bk)� Pr(Ai)Pr(Bk)�

Pr(Ai)(1� Pr(Ai)
�
Pr(Bk)(1� Pr(Bk)

(55)

r2 =
(Pr(Ai, Bk)� Pr(Ai)Pr(Bk))2

(Pr(Ai)(1� Pr(Ai))(Pr(Bk)(1� Pr(Bk))
(56)

D = Pr(Ai, Bk)� Pr(Ai)Pr(Bk) (57)

D� =
D

min(Pr(A1B2), P r(A2, B1))
ifD > 0 (58)

D� =
D

min(Pr(A1B1), P r(A2, B2))
ifD < 0 (59)
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Phasing

• To get a sense of the phasing problem, consider a case 
where we have two markers that are right next to each 
other on a chromosome and we know we want to put them 
together in a haplotype block

• Say one marker is (A,T) and the other marker is (G,C) and 
we are considering a diploid individual who is a 
heterozygote for both of these markers, which of the 
marker alleles are physically linked in this individual?

• Figuring this out for individuals in a sample is the phasing 
problem and there are many algorithms for accomplishing 
this goal (note that in the future, technology may make this 
a non-issue...)



Measuring LD II

• A “problem” with r-squared is that when the MAF of A or B 
is small, this statistic is small

• For the second measure of LD, we will define a measure D’ 
that is not as dependent on MAF:

• Note that this is always between -1 and 1 (!!)
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Haplotype testing I

• We have just extended our GWAS framework to make 
use of LD in a different manner than we have with our 
basic GWAS testing approach

• In this case, let’s consider using haplotype alleles in our 
testing framework

• Note that a haplotype collapses genetic marker 
information but in some cases, testing using haplotypes 
is more effective than testing one genetic marker at a 
time



Haplotype testing II

• Haplotype - a series of ordered, linked alleles that 
are inherited together

• For the moment, let’s consider a haplotype to define a 
“function” that takes a set of alleles at several loci A, B, 
C, D, etc. and outputs a haplotype allele:

• For example, if these loci are each a SNP with the 
following alleles (A,G), (A,T),(G,C),(G,C) we could 
define the following haplotype alleles:

To provide some intuition about how we might usefully define alleles that are functions of
multiple SNP alleles, let’s first define the concept of a haplotype:

Haplotype ⌘ a series of ordered, linked alleles that are inherited together.
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that are physically linked on a chromosome, i.e. a set of SNP (or marker) alleles that are
inherited together. The total number of haplotypes that could be in a population for m
SNPs is 2m, i.e. this is all combinations of alleles that could be physically linked to each
other on a chromosome. However, because of LD, the number of combinations that actually
occur in a population for a set of m SNPs that are physically quite close to each other on a
chromosome is usually << 2m. To account for all possible haplotype alleles in a population
(or sample) we would still need to define a haplotype allele for each combination. How-
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and h2 = (G, T, ⇤, G) where allele at the third SNP is not considered such that h1 = h⇤1[h⇤3
and h2 = h⇤2 [ h⇤4.

How might we make use of haplotype alleles for GWAS analysis? We can use exactly
the same framework that we have been using up to this point, simply substitute haplotype
alleles for the alleles of genetic markers in our GLM. For example, if we have defined just
two alleles (like a SNP), we can use a regression coding (see lecture 9):

Xa(h1h1) = �1, Xa(h1h2) = 0, Xa(h2h2) = 1 (19)

Xd(h1h1) = �1, Xd(h1h2) = 1, Xd(h2h2) = �1 (20)

and if we have more than two alleles, we can use our ANOVA coding and define a random
variable Xhihj for each haplotype genotype (see lecture 11):

Xhihj = 1, Xhkhl
= 0 (21)
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Haplotype testing III
• Note that how we define haplotype alleles is somewhat arbitrary but in 

general, we define a haplotype for a set of genetic markers (loci) that are 
physically linked that are frequently occur in a population

• How many markers is somewhat arbitrary, e.g. we often define sets that match 
observed patterns of LD

• How many haplotype alleles we define is also somewhat arbitrary, where we 
define haplotype alleles that have appreciable frequenecy in the population

• For example, four the four loci with alleles (A,G), (A,T),(G,C),(G,C) how 
many haplotype alleles could we define?

• However, it could be that only the following two combinations have 
relatively “high” allele frequencies (say >0.05 = arbitrary!) 

• In such a case, we can collapse the many alleles into just a few!
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Haplotype testing IV
• As an example of haplotype allele collapsing, say for our case of four 

loci (A,G), (A,T),(G,C),(G,C), we have lots of LD (!!) such that there 
are only 4 alleles in the population (i.e. all other combinations have 
frequency of zero!):

• Let’s also say that the frequencies of the third and fourth of these in 
the population are < 0.01

• In this case, we can define just two haplotype alleles that collapse 
the other alleles as follows (where * means “any” genetic marker 
allele):

• NOTE: we are therefore loosing information using this approach!!

To provide some intuition about how we might usefully define alleles that are functions of
multiple SNP alleles, let’s first define the concept of a haplotype:

Haplotype ⌘ a series of ordered, linked alleles that are inherited together.
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GWAS with haplotypes I
• Once we have defined haplotype alleles, we can 
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polymorphism is located?)
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GWAS with haplotypes II

• Given that we are losing information by using a 
haplotype testing approach in a GWAS, why might we 
want to use this approach?

• As one example consider the following case of 
haplotypes in a population:

where ij 6= kl, e.g. for three haplotype alleles, we will define six X dummy variables. Re-
member that for this latter case, we handle estimation and hypothesis testing in the same
framework that we have been using for models where we only consider two alleles (e.g.
maximum likelihood estimation and likelihood ratio tests - same equations!). If we reject
the null hypothesis for a case where we are testing a haplotype allele, we are assuming that
the haplotype allele indicates a position in the genome where there is a causal polymor-
phism. As with the case of genetic markers, the causal polymorphism could be near the
location where the haplotype alleles are defined or, if the haplotypes are defined to include
a large enough portion of the chromosome, the causal allele could be an unmeasured poly-
morphism within the haplotype alleles, e.g. the causal alleles could be represented by the
(⇤) in the haplotype example above.

Why might we want to test haplotypes instead of SNPs? There are several possible advan-
tages of using a haplotype testing approach. One of the reasons is that haplotype alleles
may be better ‘tags’ for unmeasured causal alleles than any observed markers. To provide
some intuition why this is the case, let’s consider a contrived example (note that while the
case we will consider would not occur, it is easy to produce realistic cases that produce the
same result using population genetic models). Let’s consider a case of five polymorphic
sites A-E that are physically linked on a chromosome. Assume that we have measured the
markers (SNPs) at A,B,D,E, but that we have not measured the causal polymorphism C
(which has two alleles). Assume that we have eight possible haplotypes in the population
for these polymorphic sites, that we can e�ciently collapse into two haplotype alleles (given
observed markers), where we define the following haplotypes to be instances of haplotype
allele h1:

A1 B1 (C1)⇤ D2 E1

A1 B2 (C1)⇤ D1 E1

A2 B1 (C1)⇤ D1 E1

A1 B1 (C1)⇤ D1 E2

and the following as instances of haplotype allele h2:

A2 B2 (C2)⇤ D1 E2

A2 B1 (C2)⇤ D2 E2

A1 B2 (C2)⇤ D2 E2

A2 B2 (C2)⇤ D2 E1

i.e. if a haplotype has mostly ‘1’ observed alleles, it is h1 and if it has mostly ‘2’ observed
alleles, it is h2. Now, note that h1 and h2 are better indicators of the causal allele than
any of the individual observed markers, i.e. they are perfectly correlated with the causal
polymorphism. A glm analysis using the haplotype alleles would therefore be more power-
ful than a glm analysis using any of the individual observed SNPs (which are not perfectly
correlated with the causal polymorphism).
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Advantages of haplotype testing

• In some cases (system and sample dependent!), the 
haplotype is a better “tag” of the causal polymorphism 
than any of the surrounding markers

• In such a case, the Corr(Xh, X) > Corr (X’, X) and 
therefore has a higher probability of correctly rejecting 
the null hypothesis

• Another “advantage” is by putting together markers, we 
are performing less total tests in our GWAS (in what 
sense is this an advantage!?)



Disadvantages of haplotype testing

• Collapsing to haplotypes may produce a better tag but 
it also may not (!!), i.e. sometimes (in fact often!) 
individual genetic markers are better tags of the causal 
polymorphism

• Another disadvantage is resolution, since we absolutely 
cannot resolve the position of the causal polymorphism 
to a position smaller than the range of the haplotype 
alleles, i.e. large haplotypes can have smaller resolution

• If we had measured the causal polymorphism in our 
data, should we use haplotype testing (i.e. in the future, 
the importance of haplotype testing may decrease)



Should I apply haplotype testing in 
my GWAS?

• Yes! but apply both an individual marker testing approach 
(always!) as well as a haplotype test (optional)

• The reason is that we never know the true answer in our 
GWAS (as with any statistical analysis!) so it doesn’t hurt us 
to explore our dataset with as many techniques as we want 
to apply

• In fact, this will be a continuing theme of the class, i.e. keep 
analyzing GWAS with as many methods as you find useful

• However, since we never know the right answer for certain, 
if we get conflicting results, which one do we interpret as 
“correct”!?



Where do haplotypes come from?

• A deep discussion of the origin of haplotypes (remember: a 
fuzzy definition!) is another subject that is in the realm of 
population genetics and therefore we cannot discuss this in 
detail in this class (again: I encourage you to take a class on 
population genetics!)

• However, we can get an intuition about where haplotypes 
come from by remembering that the origin of new 
haplotype alleles are mutations and that new haplotype 
alleles can be produced by recombination

• In fact, these two processes also underlie the amount of LD 
in the population and therefore what blocks of alleles are 
inherited as a haplotype (and we therefore use them to 
define haplotypes using system specific criteria)



Defining haplotypes

• We could spend multiple lectures on how people define 
haplotypes for given systems and the algorithms used for 
this purpose (so we will just briefly mention the main 
concepts here)

• To define haplotypes, we need to “phase” measured 
genotype markers, decide on the number of genotype 
markers to put together into a haplotype block, and decide 
how many haplotype alleles to consider

• Remember: there are no universal rules for doing this 
(system dependent!)



Deciding on how many genotypes 
to include in a haplotype block

• Again, while there is no set rule, how we decide on 
genotypes to include in a haplotype block depends on LD

• The general rule: if we have a set of markers in high LD with 
each other but low LD with other markers, we use this as a 
guide for defining the haplotype block
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Deciding on how many haplotype 
alleles to consider

• Again, there are no set rules for how many haplotype alleles 
to define, but in general, we define a set where the 
frequency in a population is above some MAF threshold 
(which depends on the system)

• With a MAF cutoff of say 0.05, this generally limits us to 2-5 
haplotype alleles (e.g. in humans!)

• There are however cases where we might want to consider 
rarer haplotypes (what are some of these?)



Haplotype GWAS wrap-up

• Haplotypes are a physical and sampling consequence of how 
genetic systems work (just like LD!)

• Definitions of haplotype blocks and haplotype alleles depend 
on the system and context (fuzzy definition)

• Regardless of how we define them, once we have haplotype 
alleles, we can use them as we would genetic markers in our 
GWAS analysis framework

• While optional, it is never a bad idea to perform a haplotype 
analysis of your GWAS in addition to your single marker 
analysis (ALWAYS do a single marker analysis)



That’s it for today

• See you next time!


