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Summary of Optional Lecture 2

® Today we will discuss how to incorporate multiple genotypes into the
linear regression model and testing for epistasis (i.e., genetic
interactions = interactions between genotypes)

® We'll also discuss analysis of multiple phenotypes and a particularly
important example: expression Quantitative Trait Loci (=eQTL)



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Introduction to epistasis |

So far, we have applied a GWAS analysis by considering
statistical models between one genetic marker and the
phenotype

This is the standard approach applied in all GWAS analyses
and the one that you should apply as a first step when
analyzing GWAS data (always!)

However, we could start considering more than one marker in
each of the statistical models we consider

One reason we might want to do this is to test for statistical
interactions among genetic markers (or more specifically,
between the causal polymorphisms that they are tagging)



Introduction to epistasis ||

If we wanted to consider two markers at a time, our current statistical
framework extends easily (note that a index AFTER a comma indicates a
different marker):

Y =9 By + Xa1Ba1 + Xa1B8a1 + Xa2Ba2 + Xao2Ba2) + €

However, this equation only has four regression parameters and with two
markers, we have more than four classes of genotypes

To make this explicit, recall that we define the genotypic value of the
phenotype as the expected value of the phenotype Y given a genotype:

Ga, 48,88 =FEY|g=ArAB,DB))

For the case of two markers, we therefore have nine classes of genotypes
and therefore nine possible genotypic values, i.e. we need nine parameters
to model this system (why are there nine?):

B1 B, B1 B, Bo By
A1A1r | Ga,aBB; | GayaBiBy | GAL A BB
A1A2 | Gaya.B:B, | GA45B1Bs | GALA>ByBs
A2As | Gaya.B,B; | GAsasB By | GAyA3ByBs




Introduction to epistasis |l

® As an example, for a sample that we can appropriately model with a linear
regression model, we can plot the phenotypes associated with each of the

nine classes:
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Introduction to epistasis |V

e With nine classes, we also get the possibility of conditional relationships

we have not seen before:

10
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® This is an example of epistasis
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Notes about epistasis |

epistasis - a case where the effect of an allele substitution at one locus Al -> A2
alters the effect of a substituting an allele at another locus B1->B2

This may be equivalently phrased as a change in the expected phenotype (genotypic
value) for a genotype at one locus conditional on the state of a locus at another
marker

Note that there is a symmetry in epistasis such that if the effect of at least one allelic
substitution (from one genotype to another) for one locus depends on the genotype
at the other locus, then at least one allelic substitution of the other locus will be
dependent as well

A consequence of this symmetry is if there is an epistatic relationship between two
loci BOTH will be causal polymorphisms for the phenotype (!!!)

If there is an epistatic effect (=relationship) between loci, we would therefore like to
know this information

Note that we need not consider such relationships for a pair of loci, but such
relationships can exist among three (three-way), four (four-way), etc.

The amount of epistasis among loci for any given phenotype is unknown (but without
question it is ubiquitous!!)



Notes about epistasis ||

Note that the definition of epistasis is entirely statistical (!!)
and says nothing about mechanism (although people have mis-
appropriated the term in this way)

The term epistasis was coined by Fisher in the 1920’s

Epistasis is sometimes called genotype by genotype, G by G,
orGx G

Geneticists often use the term “modifiers” to describe the
dependence of genetic effects at a locus on the state of
another locus - this is just epistasis (!!)

We can also consider the effects of a locus when considering
the entire “genetic background” (i.e. all the state in the rest of
the genome!) - this is also epistasis (!!)



Modeling epistasis |

® To model epistasis, we are going to use our same linear
regression framework (!!)

® The parameterization (using Xa and Xd) that we have
considered so far perfectly models any case where there is
no epistasis

® We will account for the possibility of epistasis by
constructing additional dummy variables and adding
additional parameters (so that we have 9 total)



® Recall the dummy variables we have constructed so far:

Modeling epistasis ||

—1 for A1A1 —1 for A1A1
Xa,l = X 0 for A1A2 Xd71 = < 1 for A1A2
1 for A2A2 —1 for A2A2
—1 for BlBl —1 for BlBl
Xa,Q = < 0 for BlBQ Xd,z = < 1 for BlBQ
1 for BQBQ —1 for BQBQ

® We will use these dummy variables to construct additional
dummy variables in our linear regression (and add additional
parameters) to account for epistasis AlAIBIBI

Y =74 (By + Xa1Ba1 + Xa1Ba1 + Xa2Ba2 + Xa 2842 +
Xa,lXa,QBa,a + Xa,le,Qﬁa,,d - Xd,lXa,Qﬁd,a - Xd,le,QBd,d)



Modeling epistasis ||

Y =4 By + Xa1Ba1 + Xa1Ba1 + Xa2Ba2 + Xa 2842 +
Xa,lXa,QBa,a + Xa,le,2Ba,d =+ Xd,lXa,QBd,a =+ Xd,le,Qﬂd,d)

® TJo provide some intuition concerning what each of these
are capturing, consider the values that each of the
genotypes would take for dummy variable Xa,I:

B1B1 Bi1By BBy
A1 A4 —1 -1 -1
A1 Ao 0 0 0
As Ay 1 1 1




Modeling epistasis IV

Y =4 By + Xa1Ba1 + Xa1Ba1 + Xa2Ba2 + Xa 2842 +
Xa,lXa,QBa,a + Xa,le,2Ba,d =+ Xd,lXa,QBd,a =+ Xd,le,Qﬁd,d)

® TJo provide some intuition concerning what each of these
are capturing, consider the values that each of the
genotypes would take for dummy variable Xd, I:

B1B1 Bi1By DByBo
A1 Ay —1 -1 -1
A1 Ay 1 1 1
As Ao -1 -1 -1




Modeling epistasis V

Y =4 By + Xa1Ba1 + Xa1Ba1 + Xa2Ba2 + Xa 2842 +
Xa,lXa,QBa,a + Xa,le,2Ba,d =+ Xd,lXa,QBd,a =+ Xd,le,Qﬂd,d)

® TJo provide some intuition concerning what each of these
are capturing, consider the values that each of the
genotypes would take for dummy variable Xa,1,Xa,2:

B1By B{By B9B>
A1 A4 1 O -1
A1 A O O O
Axdr [ -1 | O 1




Modeling epistasis VI

Y =4 By + Xa1Ba1 + Xa1Ba1 + Xa2Ba2 + Xa 2842 +
Xa,lXa,Qﬁa,a + Xa,le,2Ba,d =+ Xd,lXa,QBd,a =+ Xd,le,Qﬂd,d)

® TJo provide some intuition concerning what each of these
are capturing, consider the values that each of the

genotypes would take for dummy variable Xa, | Xd,2
(similarly for Xa,2Xd,1):

B1By BBy B2Bs
A1 Ay 1 -1 1
A1As 0 0 0
As Ao -1 1 -1




Modeling epistasis VI

Y =4 By + Xa1Ba1 + Xa1Ba1 + Xa2Ba2 + Xa 2842 +
Xa,lXa,QBa,a + Xa,le,2Ba,d =+ Xd,lXa,QBd,a =+ Xd,le,Qﬂd,d)

® TJo provide some intuition concerning what each of these
are capturing, consider the values that each of the
genotypes would take for dummy variable Xd, |,Xd,2:

B1B1 B1By BsbBs
A1 Ay 1 -1 1
A1 A, -1 1 -1
Ao Ao 1 -1 1




Inference for epistasis |

® To infer epistatic relationships we will use the exact same genetic
framework and statistical framework that we have been
considering

® For the genetic framework, we are still testing markers that we
are assuming are in LD with causal polymorphisms that could
have an epistatic relationship (so we are indirectly inferring that
there is epistasis from the marker genotypes)

® For inference, we going to estimate epistatic parameters using
the same approach as before (!!), i.e. for a linear model:

X = [17 Xa,h Xd,17 Xa,27 Xd,27 Xa,aa Xa,da Xd,aa Xd,d]
T
5 — [5,&7 ﬁa,lv 6d,17 6&,27 6d,27 5&,&7 ﬁa,da 5d,a7 5d,d]
b= (X"X)"'X"y



Inference for epistasis |

® For hypothesis testing, we will just use an LRT calculated the
same way as before (!!)

® For an F-statistic for a linear regression and for logistic estimate
the parameters under the null and alternative model and
substitute these into the likelihood equations that have the same
form as before (with some additional dummy variables and
parameters)

® The only difference is the degrees of freedom for a given test we
consider = number of parameters in the alternative model - the
number of parameters in the null model



Inference for epistasis |l

For example, we could use the entire model to test the same
hypothesis that we have been considering for a single marker:

HO:ﬁa,lzomﬁd,lzo

Hy: fag 70U Ban # 0
We could also test whether either marker has evidence of being a

causal polymorphism:
Hy:Ba1=0NBg1=0NpBa2=0NBg2=0

Hp:Bag #0UBg1 #0UBe2 #0U Bg2 #0

We can also test just for epistasis (note this is equivalent to testing
an interaction effect in an ANOVA!):
Hy:Baa=0NLaa=0NB1q=0NFgq=0

Ha ' Paa 70U Baag 70U Baa #0U Bag # 0
We can also test the entire model (what is the interpretation in this
case!?):
Hy: Ba1 =0NBg1=0NBa2=0NBg2=0NBaa=0NB4qa=0NB3q=0NB14=0

Hy ﬁa,l 7& OUBd,l 7& OUB@Q 7£ OU@d,Z 7£ OUBa,a 7& OUBa,d 7é Ouﬁd,a 7£ OUBd,d 7£ 0



Analysis with more phenotypes

So far, we have considered a GWAS analysis where we have a
single phenotype and many genotypes, the latter collected by
genomics technologies

Genomics technologies can also be used to measure many
phenotypes (e.g., genome-wide gene expression, proteomics,
etc.)

We also often have a situation where we have both many
genotypes and many phenotypes

The framework you have learned in this class still applies (!!),
i.e., the first step in these analyses is still testing pairs of
variables at a time



Many phenotypes and one
experimental condition |

® Consider a case where you have collected genome-wide gene
expression or proteomic data for a tissue of a mouse
experiment where there are only two conditions: “wild type"
and “mutant”:

211 - Rk Y11 -~ Yim T11
Data =

| Znl - Rnk Ynl - Ynm L1l

® To analyze these data, regress each phenotype (e.g.,a gene
expression measurement) on the condition (e.g.,coded 0/ I)
one phenotype variable at a time (just like a GWAS!!)



Many phenotypes and one
experimental condition IV

® From the statistical modeling point of view, we can view a GWAS as a
multiple regression model (i.e., a single Y with many X’s):

211 - Rk Y1- ri1 ... TIN
Data = :

an coe an yn 1'11 e :I/.nN

® While for a case with many phenotypes and a single treatment (e.g.,a
single genotype) the correct model is a multivariate regression (i.e.,
many Y’s with a single X)

211 - Rk Y11 -+ Yim T11
Data = :

Znl -+ Znk Ynl - Ynm T11

® We could also have many phenotypes and many genotypes (e.g.,eQTL)

211 .- 21k Y11 -~ Ym X11 ... TIN
Data = :

Znl Znk ynl ynm 11 InN



Many phenotypes and one
experimental condition |

® There is one important diagnostic difference in the many phenotype
analysis: your QQ plots need not conform to the rules of GWAS
QQ plots (please take note of this!!)

154

104

-log(observed P value)

O - - - ~ - -
0 1 2 3 4 S
~log(expected P value)
® That is, when you have a single treatment (or genotype) where you
are considering the impact on many phenotypes, it is possible the
treatment / genotype impacts many phenotypes (and therefore

produces many significant tests!)



Many phenotypes and one
experimental condition |

Why is this!?

That is, why is it that when analyzing GWAS data (=regressing one
phenotype on many genotypes) the correct statistical model fitting
cannot produce many highly significant tests while an analysis of
many phenotypes on one genotype can produce many significant
test results (and be the appropriate test result)

The reason is in a GWAS, we are assuming the underlying true case
is many causal genotypes each contributing to variation in the one
phenotype, such that if there are many, each of their effects is
relatively small (!!)

In a many phenotypes with one treatment situation, the treatment
(or genotype) many separately impact many of the phenotypes (!!)



Multiple and multivariate models |

® While the right first analysis step when dealing with many
variables is testing pairs of variables at a time (e.g., one
phenotype - one genotype) could we construct statistical
models that consider more genotypes or more phenotypes at
the same time!?

® Yes!

® We could fit multiple regressions with many genotypes (you’ve
done multiple regressions already!)

® VWe could fit multivariate regressions with many Y’s and one
treatment

® We could even fit a multivariate-multiple regression model (!!)



Multiple and multivariate models ||

® The problem with the multivariate regression approach is many
aspects get more complicated and in practice, you often you get
the same information as fitting one Y and X pair at a time

® The problem with multiple regressions with many X’s is the over-
fitting problem, requiring other techniques (e.g., penalized or
regularized regressions) and in practice you often get the same
information as fitting one Y and X pair

® Same for multivariate-multiple regression situations like eQTL
designs (let’s take a quick look at this concept first)

® For multiple regressions, we sometimes like to consider a few
more X’s to capture “interactions” (=epistasis)



Introduction to eQTL

e expression Quantitative Trait Locus (eQTL) - a polymorphic locus where an
experimental exchange of one allele for another produces a change in expression on
average under specified conditions:

Al — A2 = AY|Z

® The allelic states defined by the original mutation event define the causal
polymorphism of the eQTL

® Intuitive example: if rs27290 was a causal allele, changing A -> G would change the
measured expression of ERAP2
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Detecting eQTL from the
analysis of genome-wide data

Since eQTL reflect a case where different allelic combinations
(genotypes) lead to different levels of gene expression, we could in
theory discover an eQTL by testing for an association between measured
genotypes and gene expression levels

Most eQTL are “discovered” using this type of approach

A typical (human) eQTL experiment includes m (= ~10-30K) expression
variables and N (= ~0.l-10mil) genotypes measured in n individuals
sampled from a population

A typical (most!) analysis of such data proceeds by performing
independent statistical tests of (a subset of) genotype-expression pairs,
where tests that are significant after a multiple test correct (e.g.
Bonferroni), are assumed to indicate an eQTL



Genome-wide scan for eQTL:
typical outcome
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Considering cis- vs trans- eQTL |
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Typical outcome: zooming in and
“cis-" v “‘trans-"

ERAP2 hit region, chromosome 5
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® This is a“cis-"eQTL because the significant genotypes are in the same
location as the expressed gene (otherwise, it would be a “trans-"eQTL)

® Most eQTL are “cis-", which makes biological sense



Genome-wide identification of

eQTL
one gene, one SNP
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Advanced Topic: population and
hidden factors

Population structure and hidden factors can cause false positive
associations = correlations that don’t represent true genetic effects

These effects are visible on the p-value heatmap:

population structure hidden factor

We can sometimes remove these artifacts by including appropriate
covariates in our analysis in a mixed model or by using a hidden factor
analysis



That’s it for today

® See you next time!



