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Summary of Optional Lecture 2

• Today we will discuss how to incorporate multiple genotypes into the 
linear regression model and testing for epistasis (i.e., genetic 
interactions = interactions between genotypes) 

• We’ll also discuss analysis of multiple phenotypes and a particularly 
important example: expression Quantitative Trait Loci (=eQTL)
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• So far, we have applied a GWAS analysis by considering 
statistical models between one genetic marker and the 
phenotype 

• This is the standard approach applied in all GWAS analyses 
and the one that you should apply as a first step when 
analyzing GWAS data (always!)

• However, we could start considering more than one marker in 
each of the statistical models we consider

• One reason we might want to do this is to test for statistical 
interactions among genetic markers (or more specifically, 
between the causal polymorphisms that they are tagging)

Introduction to epistasis I



• If we wanted to consider two markers at a time, our current statistical 
framework extends easily (note that a index AFTER a comma indicates a 
different marker):

• However, this equation only has four regression parameters and with two 
markers, we have more than four classes of genotypes

• To make this explicit, recall that we define the genotypic value of the 
phenotype as the expected value of the phenotype Y given a genotype:

• For the case of two markers, we therefore have nine classes of genotypes 
and therefore nine possible genotypic values, i.e. we need nine parameters 
to model this system (why are there nine?):

Introduction to epistasis II

well), the latter is e↵ectively testing an additive model. In general, applying Fisher’s exact
test is useful for small sample sizes and it generally makes sense to apply the 2x3 table
version.

3 Epistasis

From last lecture, it should be clear that it including additional markers in our glm is
straightforward. For example, for two markers, we can build the following model:

Y = �
�1(�µ +Xa,1�a,1 +Xd,1�d,1 +Xa,2�a,2 +Xd,2�d,2) + ✏ (4)

where a number subscript to the right of a or d indicates a marker (a subscript to the
left refers to an individual). For a sexual, diploid organism (like humans), we have three
possible genotypes g at a marker when there are two alleles (A1A1, A1A2, A2A2). This is
because the ordering A1A2 versus A1A2 does not matter as far as e↵ects on the phenotype
(at least in the cases we are considering in this course). This means there are three possible
genotypic values GAkAlBkBl = E(Y |g = AkAlBkBl) and as we have discussed in a previous
lecture, we need three parameters (�µ,�a,�µ) to completely model these three genotypic
values (= expected values of the phenotype given a genotype). When we are considering
the genotypes for two markers (where each marker may be associated with a distinct
causal polymorphism), we are now dealing with nine genotypes and therefore nine possible
genotypic values:

B1B1 B1B2 B2B2

A1A1 GA1A1B1B1 GA1A1B1B2 GA1A1B2B2

A1A2 GA1A2B1B1 GA1A2B1B2 GA1A2B2B2

A2A2 GA2A2B1B1 GA2A2B1B2 GA2A2B2B2

We therefore need nine parameters to completely describe the genotypic values in this
case. However, the model in equation (1) has only five parameters, so it is not a complete
description of the system.

What we can perfectly describe with the parameterization in equation (1) are cases where
the genotypic values associated with one locus (marker) conditional on a genotype at the
other locus (e.g. GA1A1 |BkBl, GA1A2 |BkBl, GA2A2 |BkBl), have the same pattern no matter
which BkBl is considered, although the set of values may be shifted up or down (see class
for an example). In this case, the di↵erence between any two genotypes and the e↵ect of
substituting an allele at one locus is independent of the genotype at the other locus. Any
situation where this is not the case is an example of epistasis, which we define as follows:

epistasis ⌘ a case where the e↵ect of an allele substitution at one locus A1 ! A2 al-
ters the e↵ect of substituting an allele at another locus B1 ! B2
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• As an example, for a sample that we can appropriately model with a linear 
regression model, we can plot the phenotypes associated with each of the 
nine classes:

• In this case, both marginal loci are additive

Introduction to epistasis III



• With nine classes, we also get the possibility of conditional relationships 
we have not seen before:

• This is an example of epistasis

Introduction to epistasis IV



• epistasis - a case where the effect of an allele substitution at one locus A1 -> A2 
alters the effect of a substituting an allele at another locus B1->B2

• This may be equivalently phrased as a change in the expected phenotype (genotypic 
value) for a genotype at one locus conditional on the state of a locus at another 
marker

• Note that there is a symmetry in epistasis such that if the effect of at least one allelic 
substitution (from one genotype to another) for one locus depends on the genotype 
at the other locus, then at least one allelic substitution of the other locus will be 
dependent as well

• A consequence of this symmetry is if there is an epistatic relationship between two 
loci BOTH will be causal polymorphisms for the phenotype (!!!)

• If there is an epistatic effect (=relationship) between loci, we would therefore like to 
know this information

• Note that we need not consider such relationships for a pair of loci, but such 
relationships can exist among three (three-way), four (four-way), etc.

• The amount of epistasis among loci for any given phenotype is unknown (but without 
question it is ubiquitous!!) 

Notes about epistasis 1



• Note that the definition of epistasis is entirely statistical (!!) 
and says nothing about mechanism (although people have mis-
appropriated the term in this way)

• The term epistasis was coined by Fisher in the 1920’s

• Epistasis is sometimes called genotype by genotype, G by G, 
or G x G

• Geneticists often use the term “modifiers” to describe the 
dependence of genetic effects at a locus on the state of 
another locus - this is just epistasis (!!)

• We can also consider the effects of a locus when considering 
the entire “genetic background” (i.e. all the state in the rest of 
the genome!) - this is also epistasis (!!)

Notes about epistasis II



• To model epistasis, we are going to use our same linear 
regression framework (!!)

• The parameterization (using Xa and Xd) that we have 
considered so far perfectly models any case where there is 
no epistasis

• We will account for the possibility of epistasis by 
constructing additional dummy variables and adding 
additional parameters (so that we have 9 total)

Modeling epistasis I



• Recall the dummy variables we have constructed so far:

• We will use these dummy variables to construct additional 
dummy variables in our linear regression (and add additional 
parameters) to account for epistasis A1A1B1B1

Modeling epistasis II

and the necessary additional parameters:

Y = �
�1(�µ +Xa,1�a,1 +Xd,1�d,1 +Xa,2�a,2 +Xd,2�d,2 +

Xa,1Xa,2�a,a +Xa,1Xd,2�a,d +Xd,1Xa,2�d,a +Xd,1Xd,2�d,d) (5)

where the parameters �a,a, �a,d, �d,a, and �d,d are the additive by additive, additive by
dominance, dominance by additive, and dominance by dominance epistatic parameters.

To provide a little more intuition concerning what each of the parameters in equation
(2) are capturing, let’s consider what the values of the dummy variables will be for each of
the nine possible genotypes. For the variable Xa,1 (which we have seen before) the coding
for the nine genotypes is:

B1B1 B1B2 B2B2

A1A1 �1 -1 -1
A1A2 0 0 0
A2A2 1 1 1

i.e. intuitively, the parameter �a,1 is capturing the linear relationship of substituting allele
A1 for A2. For Xd,1, we have

B1B1 B1B2 B2B2

A1A1 �1 -1 -1
A1A2 1 1 1
A2A2 -1 -1 -1

i.e. �d,1 is capturing dominance e↵ects for marker A. For the additive by additive variable:

B1B1 B1B2 B2B2

A1A1 �1 0 1
A1A2 0 0 0
A2A2 1 0 -1

where �a,a is basically comparing di↵erences between the pooled A1A1B1B1 and A2A2B2B2

homozygote genotypes versus the pooled A1A1B2B2 and A2A2B1B1. For the additive by
dominance variable:

B1B1 B1B2 B2B2

A1A1 1 -1 1
A1A2 0 0 0
A2A2 -1 1 -1

which is a little trickier to interpret but basically �a,d is capturing the di↵erence in the
dominance pattern in the A marker background. Finally, for the dominance by dominance
case:
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can test for associations without accounting for epistatic e↵ects (much as we can test for
associations without including a dominance term), 2. including more parameters can be
lead to overfitting problems, 3. testing for epistasis adds many additional tests (a compu-
tational burden, a multiple testing burden, and a decision burden concerning which tests
to include if not all), 4. tests of epistasis tend to be less powerful than tests of association
with just an additive parameter (because they depend on having multiple observations in
more categories than an additive parameter test). Note that this last reason is why we
do not know much about the true amounts of epistasis in genetic systems, i.e. our sample
sizes are too small to make many definitive statements. Reasons to include epistatic e↵ects
in GWAS analysis are: 1. we can account for additional variation which can in theory
increase power compared to our association tests where we do not consider these e↵ects,
2. there can be cases where causal polymorphisms do not have (or have a subtle) additive
and dominance e↵ect (=they only have an epistatic e↵ect) and such cases are therefore
only detectable when performing an epistasis analysis, 3. sometimes we are interested in
epistatic e↵ects themselves, e.g. we are interested in predicting how the e↵ect of an allelic
substitution changes depending on the genotype at another locus.

4 Parameterizing Epistasis in the GLM

Given that there are potential benefits to performing an epistasis analysis, let’s consider
how we set up our glm to account for epistatic e↵ects and we can then consider how to
perform inference with such a model. For the two-locus case, we have nine possible distinct
genotypic values, so we will need nine dummy variable / parameter pairs to completely
model the system. Our model described in equation (4) accounts for five of these pairs, so
we now need to define four more. To do this, we will make use of the dummy variables
that we have already defined:

Xa,1 =

8
<

:

�1 for A1A1

0 for A1A2

1 for A2A2

Xd,1 =

8
<

:

�1 for A1A1

1 for A1A2

�1 for A2A2

Xa,2 =

8
<

:

�1 for B1B1

0 for B1B2

1 for B2B2

Xd,2 =

8
<

:

�1 for B1B1

1 for B1B2

�1 for B2B2

We will now use these dummy variables to construct new dummy variables by multiplica-
tion, e.g. we will define Xa,1Xa,2, which for genotype A1A1B1B1 is Xa,1Xa,2 = (�1)(�1) =
1.

Let’s write out our complete pairwise epistasis model using these new dummy variables

7



• To provide some intuition concerning what each of these 
are capturing, consider the values that each of the 
genotypes would take for dummy variable Xa,1:

and the necessary additional parameters:
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• To provide some intuition concerning what each of these 
are capturing, consider the values that each of the 
genotypes would take for dummy variable Xd,1:

and the necessary additional parameters:
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A1A1 1 -1 1
A1A2 0 0 0
A2A2 -1 1 -1

which is a little trickier to interpret but basically �a,d is capturing the di↵erence in the
dominance pattern in the A marker background. Finally, for the dominance by dominance
case:
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(2) are capturing, let’s consider what the values of the dummy variables will be for each of
the nine possible genotypes. For the variable Xa,1 (which we have seen before) the coding
for the nine genotypes is:
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A1A1 �1 -1 -1
A1A2 0 0 0
A2A2 1 1 1

i.e. intuitively, the parameter �a,1 is capturing the linear relationship of substituting allele
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Modeling epistasis V

l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)

x =

2

6664

1 x1,a x1,d

1 x2,a x2,d
...

...
. . .

1 xn,a xn,d

3

7775

1 0 -1
0 0 0
-1 0 1
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• To provide some intuition concerning what each of these 
are capturing, consider the values that each of the 
genotypes would take for dummy variable Xa,1Xd,2 
(similarly for Xa,2Xd,1):

and the necessary additional parameters:
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A1A1 1 -1 1
A1A2 0 0 0
A2A2 -1 1 -1

which is a little trickier to interpret but basically �a,d is capturing the di↵erence in the
dominance pattern in the A marker background. Finally, for the dominance by dominance
case:
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dominance variable:

B1B1 B1B2 B2B2

A1A1 1 -1 1
A1A2 0 0 0
A2A2 -1 1 -1

which is a little trickier to interpret but basically �a,d is capturing the di↵erence in the
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B1B1 B1B2 B2B2

A1A1 1 -1 1
A1A2 -1 1 -1
A2A2 1 -1 1

such that �d,d is capturing the di↵erence between the pooled homozygote genotypes versus
the pooled heterozygote genotypes.

The parameterization of equation (2) is useful for a number of reasons. First, if the true
value of any of the epistatic parameters is non-zero, this is a case of epistasis. If they
are all zero (and only if they are all zero), this is a case of no epistasis. Second, we can
estimate the parameters using the same methods as we have before. For example, for a
linear regression model, our new X matrix is:

X = [1,Xa,1,Xd,1,Xa,2,Xd,2,Xa,a,Xa,d,Xd,a,Xd,d] (6)

i.e. this is a matrix with n rows and nine columns where the first column is all 1’s, and
our � vector is:

� = [�µ,�a,1,�d,1,�a,2,�d,2,�a,a,�a,d,�d,a,�d,d]
T (7)

With these, we can estimate the values of � using the following MLE(�̂) (which is also
the least-squares estimate):

�̂ = (XTX)�1XTy (8)

which is the same as we have seen before and this formalism similarly extends to the logistic
regression framework we have discussed. Third, we can now construct hypotheses tests for
a number of possible cases. For example, say we are interested in testing just whether
there is evidence that locus A is linked to a causal polymorphism. In this case, we use the
model in equation (2) and test the hypothesis:

H0 : �a,1 = 0 \ �d,1 = 0 (9)

HA : �a,1 6= 0 [ �d,1 6= 0 (10)

using an F[2,n�3] distribution to test the null hypothesis. As another example, we could test
whether either locus A or B had an additive or dominance association with the phenotype
(again assuming linkage to a causal polymorphism):

H0 : �a,1 = 0 \ �d,1 = 0 \ �a,2 = 0 \ �d,2 = 0 (11)

HA : �a,1 6= 0 [ �d,1 6= 0 [ �a,2 6= 0 [ �d,2 6= 0 (12)

using an F[4,n�5] or we could just test whether these loci had epistatic relationships:

H0 : �a,a = 0 \ �a,d = 0 \ �d,a = 0 \ �d,d = 0 (13)

9
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• To infer epistatic relationships we will use the exact same genetic 
framework and statistical framework that we have been 
considering

• For the genetic framework, we are still testing markers that we 
are assuming are in LD with causal polymorphisms that could 
have an epistatic relationship (so we are indirectly inferring that 
there is epistasis from the marker genotypes)

• For inference, we going to estimate epistatic parameters using 
the same approach as before (!!), i.e. for a linear model:

Inference for epistasis 1

B1B1 B1B2 B2B2
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• For hypothesis testing, we will just use an LRT calculated the 
same way as before (!!)

• For an F-statistic for a linear regression and for logistic estimate 
the parameters under the null and alternative model and 
substitute these into the likelihood equations that have the same 
form as before (with some additional dummy variables and 
parameters)

• The only difference is the degrees of freedom for a given test we 
consider = number of parameters in the alternative model - the 
number of parameters in the null model

Inference for epistasis II



• For example, we could use the entire model to test the same 
hypothesis that we have been considering for a single marker:

• We could also test whether either marker has evidence of being a 
causal polymorphism:

• We can also test just for epistasis (note this is equivalent to testing 
an interaction effect in an ANOVA!):

• We can also test the entire model (what is the interpretation in this 
case!?):

HA : �a,a 6= 0 [ �a,d 6= 0 [ �d,a 6= 0 [ �d,d 6= 0 (14)

using an F[4,n�5]. As a final example, we could also test whether either of these loci had
any association at all with the phenotype:

H0 : �a,1 = 0\�d,1 = 0\�a,2 = 0\�d,2 = 0\�a,a = 0\�a,d = 0\�d,a = 0\�d,d = 0 (15)

HA : �a,1 6= 0[�d,1 6= 0[�a,2 6= 0[�d,2 6= 0[�a,a 6= 0[�a,d 6= 0[�d,a 6= 0[�d,d 6= 0 (16)

using an F[8,n�9]. Note that in any of these cases, rejecting the null hypothesis would
indicate linkage to at least one causal polymorphism (although in all second and fourth
case, we would not be sure that both A and B were linked to a causal polymorphism or
which one of them was linked if both were not).

As a final comment, note that we can also model and perform inference for three-way
epistasis, four-way epistasis, using the same dummy variable codings and additional pa-
rameters. For example, we can construct a dummy variable for additive by additive by
dominance three-way epistatic term as Xa,1Xa,2Xd,3 and define a parameter �a,a,d for this
e↵ect.

5 Model Selection for Epistasis Analysis

There are currently few examples where people have performed epistasis analysis for
GWAS. At most, practitioners tend to consider pairwise epistasis (either by considering all
possible pairs of markers or a subset of pairs selected by some criteria). The problem with
performing epistatic analysis is that this ends up producing a large number of tests and
since the power of these tests is even lower than for (non-epistatic) association tests, they
seldom produce many interesting results. There are of course exceptions, where practition-
ers have identified individual cases of pairwise epistasis or tested for higher order epistatic
e↵ects.

In general, we can think of an epistasis model as a multiple locus model. The problem with
this approach is the extremely large number of possible parameters that one could incorpo-
rate, i.e. this produces an extreme model selection problem. Many of the algorithms that
show promise for multiple locus analysis do not necessarily perform well when epistasis
is included. We will however provide notes (but no lecture) considering a few broad ap-
proaches to the problem of model selection where we would like to identify a set of markers
(and/or epistatic codings) to put into a model, where each inclusion in the model pro-
vides information about causal polymorphisms. There are some heuristic approaches that
have been suggested, which we will not discuss (the subject is largely disjoint and not well
explored - the last few unassigned chapters in your book provide some examples). Over-
all, epistasis gets us into the broad area of statistical model selection that has some of its
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A1A1 1 -1 1
A1A2 -1 1 -1
A2A2 1 -1 1
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GWAS. At most, practitioners tend to consider pairwise epistasis (either by considering all
possible pairs of markers or a subset of pairs selected by some criteria). The problem with
performing epistatic analysis is that this ends up producing a large number of tests and
since the power of these tests is even lower than for (non-epistatic) association tests, they
seldom produce many interesting results. There are of course exceptions, where practition-
ers have identified individual cases of pairwise epistasis or tested for higher order epistatic
e↵ects.

In general, we can think of an epistasis model as a multiple locus model. The problem with
this approach is the extremely large number of possible parameters that one could incorpo-
rate, i.e. this produces an extreme model selection problem. Many of the algorithms that
show promise for multiple locus analysis do not necessarily perform well when epistasis
is included. We will however provide notes (but no lecture) considering a few broad ap-
proaches to the problem of model selection where we would like to identify a set of markers
(and/or epistatic codings) to put into a model, where each inclusion in the model pro-
vides information about causal polymorphisms. There are some heuristic approaches that
have been suggested, which we will not discuss (the subject is largely disjoint and not well
explored - the last few unassigned chapters in your book provide some examples). Over-
all, epistasis gets us into the broad area of statistical model selection that has some of its
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B1B1 B1B2 B2B2

A1A1 1 -1 1
A1A2 -1 1 -1
A2A2 1 -1 1

such that �d,d is capturing the di↵erence between the pooled homozygote genotypes versus
the pooled heterozygote genotypes.

The parameterization of equation (2) is useful for a number of reasons. First, if the true
value of any of the epistatic parameters is non-zero, this is a case of epistasis. If they
are all zero (and only if they are all zero), this is a case of no epistasis. Second, we can
estimate the parameters using the same methods as we have before. For example, for a
linear regression model, our new X matrix is:

X = [1,Xa,1,Xd,1,Xa,2,Xd,2,Xa,a,Xa,d,Xd,a,Xd,d] (6)

i.e. this is a matrix with n rows and nine columns where the first column is all 1’s, and
our � vector is:

� = [�µ,�a,1,�d,1,�a,2,�d,2,�a,a,�a,d,�d,a,�d,d]
T (7)

With these, we can estimate the values of � using the following MLE(�̂) (which is also
the least-squares estimate):

�̂ = (XTX)�1XTy (8)

which is the same as we have seen before and this formalism similarly extends to the logistic
regression framework we have discussed. Third, we can now construct hypotheses tests for
a number of possible cases. For example, say we are interested in testing just whether
there is evidence that locus A is linked to a causal polymorphism. In this case, we use the
model in equation (2) and test the hypothesis:

H0 : �a,1 = 0 \ �d,1 = 0 (9)

HA : �a,1 6= 0 [ �d,1 6= 0 (10)

using an F[2,n�3] distribution to test the null hypothesis. As another example, we could test
whether either locus A or B had an additive or dominance association with the phenotype
(again assuming linkage to a causal polymorphism):

H0 : �a,1 = 0 \ �d,1 = 0 \ �a,2 = 0 \ �d,2 = 0 (11)

HA : �a,1 6= 0 [ �d,1 6= 0 [ �a,2 6= 0 [ �d,2 6= 0 (12)

using an F[4,n�5] or we could just test whether these loci had epistatic relationships:

H0 : �a,a = 0 \ �a,d = 0 \ �d,a = 0 \ �d,d = 0 (13)
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Inference for epistasis III



• So far, we have considered a GWAS analysis where we have a 
single phenotype and many genotypes, the latter collected by 
genomics technologies

• Genomics technologies can also be used to measure many 
phenotypes (e.g., genome-wide gene expression, proteomics, 
etc.)

• We also often have a situation where we have both many 
genotypes and many phenotypes

• The framework you have learned in this class still applies (!!), 
i.e., the first step in these analyses is still testing pairs of 
variables at a time

Analysis with more phenotypes



• Consider a case where you have collected genome-wide gene 
expression or proteomic data for a tissue of a mouse 
experiment where there are only two conditions: “wild type" 
and “mutant”:

• To analyze these data, regress each phenotype (e.g., a gene 
expression measurement) on the condition (e.g., coded 0 / 1) 
one phenotype variable at a time (just like a GWAS!!)

Many phenotypes and one 
experimental condition I

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

17



• From the statistical modeling point of view, we can view a GWAS as a 
multiple regression model (i.e., a single Y with many X’s):

• While for a case with many phenotypes and a single treatment (e.g., a 
single genotype) the correct model is a multivariate regression (i.e., 
many Y’s with a single X)

• We could also have many phenotypes and many genotypes (e.g., eQTL)  

Many phenotypes and one 
experimental condition IV
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To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
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⇤

⌥⇧
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...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:
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• There is one important diagnostic difference in the many phenotype 
analysis: your QQ plots need not conform to the rules of GWAS 
QQ plots (please take note of this!!)

• That is, when you have a single treatment (or genotype) where you 
are considering the impact on many phenotypes, it is possible the 
treatment / genotype impacts many phenotypes (and therefore 
produces many significant tests!)

Many phenotypes and one 
experimental condition II



• Why is this?  

• That is, why is it that when analyzing GWAS data (=regressing one 
phenotype on many genotypes) the correct statistical model fitting 
cannot produce many highly significant tests while an analysis of 
many phenotypes on one genotype can produce many significant 
test results (and be the appropriate test result)

• The reason is in a GWAS, we are assuming the underlying true case 
is many causal genotypes each contributing to variation in the one 
phenotype, such that if there are many, each of their effects is 
relatively small (!!)

• In a many phenotypes with one treatment situation, the treatment 
(or genotype) many separately impact many of the phenotypes (!!)

Many phenotypes and one 
experimental condition III



• While the right first analysis step when dealing with many 
variables is testing pairs of variables at a time (e.g., one 
phenotype - one genotype) could we construct statistical 
models that consider more genotypes or more phenotypes at 
the same time?

• Yes!  

• We could fit multiple regressions with many genotypes (you’ve 
done multiple regressions already!)

• We could fit multivariate regressions with many Y’s and one 
treatment

• We could even fit a multivariate-multiple regression model (!!)

Multiple and multivariate models I



• The problem with the multivariate regression approach is many 
aspects get more complicated and in practice, you often you get 
the same information as fitting one Y and X pair at a time

• The problem with multiple regressions with many X’s is the over-
fitting problem, requiring other techniques (e.g., penalized or 
regularized regressions) and in practice you often get the same 
information as fitting one Y and X pair

• Same for multivariate-multiple regression situations like eQTL 
designs (let’s take a quick look at this concept first)

• For multiple regressions, we sometimes like to consider a few 
more X’s to capture “interactions” (=epistasis)

Multiple and multivariate models II



• expression Quantitative Trait Locus (eQTL) - a polymorphic locus where an 
experimental exchange of one allele for another produces a change in expression on 
average under specified conditions:

• The allelic states defined by the original mutation event define the causal 
polymorphism of the eQTL

• Intuitive example: if rs27290 was a causal allele, changing A -> G would change the 
measured expression of ERAP2 

Introduction to eQTL
xQTL identification

Genotype-phenotype association
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Detecting eQTL from the 
analysis of genome-wide data

• Since eQTL reflect a case where different allelic combinations 
(genotypes) lead to different levels of gene expression, we could in 
theory discover an eQTL by testing for an association between measured 
genotypes and gene expression levels

• Most eQTL are “discovered” using this type of approach 

• A typical (human) eQTL experiment includes m (= ~10-30K) expression 
variables and N (= ~0.1-10mil) genotypes measured in n individuals 
sampled from a population

• A typical (most!) analysis of such data proceeds by performing 
independent statistical tests of (a subset of) genotype-expression pairs, 
where tests that are significant after a multiple test correct (e.g. 
Bonferroni), are assumed to indicate an eQTL  



Genome-wide scan for eQTL: 
typical outcome 

xQTL identification

Genotype-phenotype association
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Considering cis- vs trans- eQTL 1



• This is a “cis-”eQTL because the significant genotypes are in the same 
location as the expressed gene (otherwise, it would be a “trans-”eQTL)

• Most eQTL are “cis-”, which makes biological sense  

Typical outcome: zooming in and 
“cis-” v “trans-”



Genome-wide identification of 
eQTLGenome- and transcriptome-wide eQTL identification

one gene, all SNPs

one gene, multiple SNPs

one gene, one SNP

all genes, all SNPs

.

one gene, all SNPs

one gene, multiple SNPs

one gene, one SNP

all genes, all SNPs

.



Advanced Topic: population and 
hidden factorsAssessing model fit and hidden factor e�ects

Population structure and hidden factors can cause false positive
associations - correlations that don’t represent true genetic e�ects.

These e�ects are visible on the p-value heatmap:

population structure hidden factor

Usually we can remove these artifacts by including appropriate
covariates in our analysis

• Population structure and hidden factors can cause false positive 
associations = correlations that don’t represent true genetic effects

• We can sometimes remove these artifacts by including appropriate 
covariates in our analysis in a mixed model or by using a hidden factor 
analysis



That’s it for today

• See you next time!


