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Summary of Optional Lecture 3

• Today we will discuss applying alternative tests in GWAS!
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Case / Control Phenotypes

• Let’s contrast the situation, let’s contrast data we might model 
with a linear regression model versus case / control data: 



Alternative tests in GWAS I

• Since our basic null / alternative hypothesis construction in 
GWAS covers a large number of possible relationships 
between genotypes and phenotypes, there are a large number 
of tests that we could apply in a GWAS

• e.g. t-tests, ANOVA, Wald’s test, non-parametric permutation 
based tests, Kruskal-Wallis tests, other rank based tests, chi-
square, Fisher’s exact, Cochran-Armitage, etc. (see PLINK for a 
somewhat comprehensive list of tests used in GWAS)

• When can we use different tests?  The only restriction is that 
our data conform to the assumptions of the test (examples?)

• We could therefore apply a diversity of tests for any given 
GWAS



• Should we use different tests in a GWAS (and why)?  Yes we should - the 
reason is different tests have different performance depending on the 
(unknown) conditions of the system and experiment, i.e. some may 
perform better than others

• In general, since we don’t know the true conditions (and therefore which 
will be best suited) we should run a number of tests and compare results

• How to compare results of different GWAS is a fuzzy case (=no non-
conditional rules) but a reasonable approach is to treat each test as a 
distinct GWAS analysis and compare the hits across analyses using the 
following rules:

• If all methods identify the same hits (=genomic locations) then this is 
good evidence that there is a causal polymorphism

• If methods do not agree on the position (e.g. some are significant, some 
are not) we should attempt to determine the reason for the 
discrepancy (this requires that we understand the tests and experience)

Alternative tests in GWAS II



• We do not have time in this course to do a comprehensive 
review of possible tests (keep in mind, every time you learn a 
new test in a statistics class, there is a good chance you could 
apply it in a GWAS!)

• Let’s consider a few examples alternative tests that could be 
applied

• Remember that to apply these alternative tests, you will 
perform N alternative tests for each marker-phenotype 
combinations, where for each case, we are testing the 
following hypotheses with different (implicit) codings of X (!!):
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1 Introduction

In this lecture, we are going to consider alternative methods to our linear and logistic
regression approaches to GWAS analysis, when using the standard approach of testing one
marker at a time. We will also discuss a simple form of a multiple locus analysis, where
we analyze more than one genetic marker at a time in our model (where our goal is to
analyze two markers that tag two distinct causal polymorphisms). To provide a complete
description of all of the genotypic values that could occur among two causal loci we need to
consider the concept of epistasis analysis. Epistasis is by definition a statistical interaction
between two or more loci, so models that incorporate epistasis are also multiple locus
models, by definition. We will discuss the intuition as to what we can get out of such
analyses and the challenges involved when considering epistasis in our genetic models.

2 Alternative Tests for GWAS Analysis

Throughout our discussion of GWAS analysis, we have considered glm as our primary
analysis method. There are good reasons for this (e.g. they are intuitive, they provide
a means for estimating e↵ects, they are versatile enough to incorporate covariates, they
are the foundation for more complex analyses, etc.), but they are certainly not the only
legitimate approach to GWAS analysis. To see this, recall that the actual hypotheses we
are assessing in a GWAS analysis are:

H0 : Cov(Y,X) = 0 (1)

HA : Cov(Y,X) 6= 0 (2)

i.e. we are assessing whether there is a correlation between genotype and phenotype. We
can test this in a glm framework (using parameters �a and �d) but any testing approach
which assesses this null hypothesis is also a perfectly reasonable (and acceptable) approach

1

Alternative tests in GWAS III



Alternative test examples I
• First, let’s consider a case-control phenotype and consider a chi-square 

test (which has deep connections to our logistic regression test under 
certain assumptions but it has slightly different properties!)

• To construct the test statistic, we consider the counts of genotype-
phenotype combinations (left) and calculate the expected numbers in each 
cell (right):

• We then construct the following test statistic:

•  Where the (asymptotic) distribution when the null hypothesis is true is:

While we don’t have time in this course to do an extensive survey of alternative tests
(and the properties of each), let’s consider a few common examples to provide a founda-
tion for learning more. We’ll stick with case-control analysis, since this is often where we
see several techniques employed. For these type of data, we can of course use a logistic
regression. We often also see a chi-square test and a Fisher’s exact test employed.

First, let’s consider a chi-square test (this testing approach actually has strong connec-
tions to logistic regression and they are the same under certain assumptions). Intuitively
a chi-square test considers the number of observations in each ‘cell’ of a table and com-
pares these to what we would expect under the null hypothesis and if there is a significant
deviation from the null, we reject. For a GWAS analysis, our table is:

Case Control
A1A1 n11 n12 n1.

A1A2 n21 n22 n2.

A2A2 n31 n32 n3.

n.1 n.2 n

where nij is the number in each cell, n.i is the number in each row, ni. is the number in
each column, and n is the sample size. Under the null hypothesis, we would not expect
there to be an over-representation in one of these cells, e.g. if we have an over-abundance
of n1 individuals, this means that the genotype A1A1 tends to be associated with being a
case. Under the null hypothesis, we would expect the following numbers in each cell:

Case Control
A1A1 (n.1n1.)/n (n.2n1.)/n n1.

A1A2 (n.1n2.)/n (n.2n2.)/n n2.

A2A2 (n.1n3.)/n (n.2n3.)/n n3.

n.1 n.2 n

which makes intuitive sense, since if Pr(Y,X) = Pr(Y )Pr(X) (i.e. if our phenotype and
genotype are independent) there is no covariance (correlation) between phenotype and
genotype and the numbers in the table above are what we would expect if this applies.

We are going to construct a likelihood ratio test (LRT) for this case, which has the following
form:

LRT = �2ln⇤ = �2
3X

i=1

2X

j=1

nijln

 
ni

n.inj.

!
(3)

Note that this is also referred to as a ‘G statistic;’. As with our previous LRT, this tends
to a chi-square distribution as the sample size tends to infinite, i.e. when the sample size is
large. The degrees of freedom in this case is d.f. = (#columns-1)(#rows-1) = 2, so under
the null hypothesis the LRT is �2

d.f.=2. We can therefore calculate the statistic in equation
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Alternative test examples II
• Second, let’s consider a Fisher’s exact test

• Note the the LRT for the null hypothesis under the chi-square test was 
only asymptotically exact, i.e. it is exact as sample size n approaches infinite 
but it is not exact for smaller sample sizes (although we hope it is close!)

• Could we construct a test that is exact for smaller sample sizes?  Yes, we 
can calculate a Fisher’s test statistic for our sample, where the distribution 
under the null hypothesis is exact for any sample size (I will let you look 
up how to calculate this statistic and the distribution under the null on 
your own):

• Given this test is exact, why would we ever use Chi-square / what is a rule 
for when we should use one versus the other?

(3) and then calculate a p-value based on this distribution. Intuitively, the LRT is large if
there are significant deviations from the expectation under the null hypothesis, i.e. if there
is over-representation in certain cells.

As we have discussed before, we hope that an LRT is pretty close to a chi-square dis-
tributions for sample sizes that are not too large. However, what if we have a very small
sample, where we are concerned that this assumptions is violated? In such a case, there are
alternative tests we can employ. For example, we can use ‘Fisher’s Exact Test’. Intuitively,
Fisher’s test makes use of the same approach as the chi-square test, comparing observed to
expected representation in each cell of a table. However, we calculate the null hypothesis
of Fisher’s test statistic by explicitly considering every possible representation of the cells
that could occur by chance for the sample. A p-value is then determined using this statistic.

Fisher’s exact test can be calculate for a 2x3 table as we have in a GWAS analysis:

Case Control
A1A1 n11 n21

A1A2 n21 n22

A2A2 n31 n32

However, Fisher’s test (and a chi-square test) is also often applied after grouping two of
the genotype classes into one, i.e. we can group:

Case Control
A1A1 n11 n12

A1A2 [A2A2 n21 n22

or we can group:

Case Control
A1A1 [A1A2 n11 n12

A2A2 n21 n22

where again, remember that we consider A1 the minor allele frequency. These are consid-
ered ‘recessive’ and ‘dominance’ tests, respectively (although since dominance and recessive
depends on assignment, we generally just apply both of these groupings to each marker).
We can also do an ‘allele test’, where

Case Control
A1 n11 n12

A2 n21 n22

where we simply add up the number of alleles of each type for each case or control, i.e.
we add two for homozygotes and one each for heterozygotes. The former two cases are
particularly useful for Mendelian phenotypes (but can be applied for quantitative traits as

4



Alternative test examples III

• Third, let’s ways of grouping the cells, where we could apply either a chi-
square or a Fisher’s exact test

• For MAF = A1, we can apply a “recessive” (left) and “dominance” test 
(right):

• We could also apply an “allele test” (note these test names are from 
PLINK):

• When should we expect one of these tests to perform better than the 
others?
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Comparing results of multiple 
analyses of the same GWAS data I

• I’ve run my initial analyses using several tests and produced the 
following (now what!?):



• The best case is that the same markers (SNPs) pass a multiple test 
correction regardless of the testing approach used, i.e. the result is 
robust to testing approach.

• In cases where this does not happen (most) it becomes helpful to 
understand why test results could be different:

• Are tests capturing additive vs. dominance effects?

• Are tests less powerful than others or depend on certain assumptions being 
true?  Are they handling missing data in different ways?

• Are particular covariates altering the results if included/excluded?  Why might 
this be?

• Does it depend on how you partition the data (e.g. batch effects)?

• This can help narrow down the set of tests you feel are the most 
informative.  In general, a good publishing strategy is limiting yourself to 
one or two tests that both give you significant results that you believe!

Comparing results of multiple 
analyses of the same GWAS data II



That’s it for today

• See you next time!


