BTRY 4830/6830 - Matrix Basics

Following convention, we'll use bold script for vectors (lower case) and matrices (upper case) and vector/matrix symbol above the letters for board use:

$$
\mathbf{v}=\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \mathbf{M}_{1}=\vec{M}_{1}=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right] \quad \mathbf{M}_{2}=\vec{M}_{2}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]
$$

We will also follow statistics convention where the first subscript will index rows and the second will index columns (note this is usually reversed in mathematics literature).

Matrix sum: $\mathbf{M}_{1}+\mathbf{M}_{1}=\left[\begin{array}{ll}m_{11}+m_{11} & m_{12}+m_{12} \\ m_{21}+m_{21} & m_{22}+m_{22}\end{array}\right]$

Matrix transpose: $\mathbf{M}_{2}^{\mathrm{T}}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$
Scalar times a matrix: $c \mathbf{M}_{1}=\left[\begin{array}{ll}c m_{11} & c m_{12} \\ c m_{21} & c m_{22}\end{array}\right]$

Matrix multiplication:

$$
\begin{gathered}
\mathbf{M}_{1} \mathbf{M}_{1}=\left[\begin{array}{ll}
m_{11} m_{11}+m_{12} m_{21} & m_{11} m_{12}+m_{21} m_{22} \\
m_{21} m_{11}+m_{22} m_{21} & m_{21} m_{12}+m_{22} m_{22}
\end{array}\right] \mathbf{M}_{2} \mathbf{M}_{1}=\left[\begin{array}{ll}
a m_{11}+d m_{21} & a m_{12}+d m_{22} \\
b m_{11}+e m_{21} & b m_{12}+e m_{22} \\
c m_{11}+f m_{11} & c m_{12}+f m_{22}
\end{array}\right] \\
\mathbf{v v}^{\mathrm{T}}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} v_{1} & v_{1} v_{2} \\
v_{2} v_{1} & v_{2} v_{2}
\end{array}\right], \mathbf{v}^{\mathrm{T}} \mathbf{v}=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=v_{1} v_{1}+v_{2} v_{2}
\end{gathered}
$$

If the following holds: $\mathbf{v}_{1}{ }^{\mathrm{T}} \mathbf{v}_{2}=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]\left[\begin{array}{l}v_{3} \\ v_{4}\end{array}\right]=0$ then \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal.

The identity matrix is defined as follows: $\mathbf{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, i.e. diagonal elements are " 1 " and all other elements are " 0 ".

The inverse of a matrix \mathbf{M}^{-1} has a structure such that is satisfies the following relationship (for a "square", $k \times k$ matrix): $\mathbf{M} \mathbf{M}^{-1}=\mathbf{I}$ and $\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}$.

A symmetric matrix has the following structure: $\left[\begin{array}{ccc}v_{11} & a & b \\ a & v_{22} & c \\ b & c & v_{33}\end{array}\right]$.

