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• Reminder: 2nd homework will is due tomorrow (!!) Fri, Feb 23 by 
11:59PM (!!) 

• We WILL NOT have lecture this coming Tues (Feb 27) = ITHACA 
WINTER BREAK (!!) but we WILL have lecture Thurs (Feb 29)

Announcements



Summary of lecture 10: MLE and 
Confidence Intervals (CI)

• Last lecture, we began our discussion of an (the) important class of 
estimators: Maximum Likelihood Estimators (MLE)

• Today we are going to complete our discussion of MLE (and 
estimation)!

• We are also (briefly) going to discuss Confidence Intervals
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Review (Many)
• Experiment - a manipulation or measurement of a system that produces an outcome we can observe 

• Sample Space - set comprising all possible outcomes associated with an experiment

• Sigma Algebra or Sigma Field - a collection of events (subsets) of the sample space of interest

• Probability Measure (=Function) - maps a Sigma Algebra of a sample to a subset of the reals

• Random Variable - (measurable) function on a sample space

• Probability Mass Function / Cumulative Mass Function (pmf / cmf) - function that describes the probability 
distribution of a discrete random variable 

• Probability Density Function / Cumulative Density Function   (pdf / cdf) - function that describes the probability 
distribution of a continuous random variable

• Probability Distribution Function / Cumulative Distrbution Function   (pdf / cdf) - function that describes the 
probability distribution of a discrete OR continuous random variable

• Experimental Trial - one instance of an experiment

• Sample - repeated observations of a random variable generated by experimental trials

• Sampling Distribution (Probability Distribution of the Sample) - the probability function of the random vector of the sample

• Statistic - a function on a sample

• Estimator - a statistic defined to return a value that represents our best evidence for being the true value of a parameter

• Sampling Distribution of a Statistic / Estimator (Probability Distribution of the Statistic / Estimator) - the probability 
function of the statistic / estimator
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Review: Estimators
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Review: Inference

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family probability 
distributions, indexed by the value of parameter(s) ) on the basis of a 
sample

• There are two major types of inference we will consider in this 
course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to 
formally define: experimental trials, samples, sample probability 
distributions (or sampling distributions), statistics, statistic probability 
distributions (or statistic sampling distributions) 



Review: Introduction to maximum 
likelihood estimators (MLE)

• We will generally consider maximum likelihood estimators (MLE) in this 
course

• Now, MLE’s are very confusing when initially encountered...

• However, the critical point to remember is that an MLE is just an 
estimator (a function on a sample!!), 

• i.e. it takes a sample in, and produces a number as an output that is our 
estimate of the true parameter value

• These estimators also have sampling distributions just like any other 
statistic!

• The structure of this particular estimator / statistic is complicated but 
just keep this big picture in mind



Review: Introduction to MLE’s
• A maximum likelihood estimator (MLE) is an estimator (a statistic!) that has specific 

properties and is DERIVED in a specific way (i.e., this is a class of estimators)!

• MLE can be derived for (almost) any case where we want to do estimation AND they 
are (arguably) the most important class of estimators

• Recall that this statistic still takes in a sample and outputs a value that is our 
estimator (!!) Note that likelihoods are NOT probability functions, i.e. they need not 
conform to the axioms of probability (!!)

• Sometimes these estimators have nice forms (equations) that we can write out

• For example the maximum likelihood estimator when considering a sample for our 
single coin example / number of tails is:

• And for our heights example: 

is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

nX

i

(xi � x)2 (13)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇠ Bin(n, p) for a sample of
size n. In this case the likelihood is:

L(p|X = x) =

✓
x

n

◆
px(1� p)n�x (14)

and the log-likelihood is:

l(p|X = x) = ln

✓
x

n

◆
+ xln(p) + n� xln(1� p) (15)

such that the first derivative is:

@l(p|X = x)

@p
=

x

p
� n� x

1� p
(16)

and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(17)

which we can check by considering the second derivative:

@2l(p|X = x)

@p2
= � x

p2
+

x� n

(1� p)2
(18)

which is always negative. Note that the MLE and the method of moments estimator are
also the same in this case.

More generally, if we are interested in deriving the MLE(✓̂) for a vector of parameters
✓ = [✓1, ✓2, ...] we can take the derivative the log-likelihood function with respect to all
parameters:
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Review: Likelihood I

• To introduce MLE’s we first need the concept of likelihood

• Recall that a probability distribution (of a r.v. or for our purposes now, a 
statistic) has fixed constants in the formula called parameters

• For example, for a normally distributed random variable

• However, we could turn this around and fix the sample and let the 
parameters vary (this is a likelihood!)

• For example, say we have a sample n=1, where x=0.2 then the likelihood 
is (if we just set            for explanatory purposes):

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,⇧2) = fX(x|µ,⇧2) =
1⌃
2⇤⇧2

e�
(x�µ)2

2�2 (5)

fX(x|µ1, µ2,⇧
2
1,⇧

2
2, ⌅) =

1

2⇤⇧1⇧2
⌃
1� ⌅

exp

⇧
� 1

2(1� ⌅2)

⇤
(x1 � µ1)2

2⇧2
1

� 2⌅(x1 � µ1)(x2 � µ2)

⇧1⇧2
+

(x2 � µ1)2

2⇧2
2

⌅⌃

(6)
This model therefore has two parameters (µ,⇧2) such that � is actually a parameter vector
� = �µ,⇥2 =

�
µ,⇧2

⇥
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: �µ = (�⌅,⌅). The ⇧2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values �⇥2 = [0,⌅). As we have seen previously, our shorthand for a normal distribution
is X ⇤ N(µ,⇧2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⇥ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) �) on the basis of a sample.

3

X1 = 0.2. Since the random variable is normal, the likelihood function is:

L(µ|x = 0.2) =
1p
2⇡

e�(0.2�µ)2 (1)

(see your class notes for the graph of this function).

A few comments about likelihoods:

1. Note that although likelihood functions have the same structure as probability func-
tions, they are not probability functions (see your homework for an example).
This is again a confusing concept at first glance, but it turns out that we can’t con-
sider the probability distribution of parameter values in a frequentist framework (we
can in a Bayesian as we will see) so we cannot consider a probability distribution
over parameters. What’s more, when fixing the sample, the function need not con-
form to the axioms of probability and is therefore not a probability function. Given
these points, this is why we call these functions likelihoods instead of probabilities or
probability distributions.

2. If [(X) = x] = [X1 = x1, ..., Xn = xn] is an i.i.d sample, then the likelihood has the
following property:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (2)

As we will see, this is a very convenient property.

3. An appealing property of likelihoods is that they conform to the invariance principle,
which can be expressed as follows:

L(✓(1)|x)
L(✓(2)|x)

=
L(✓(1)|y)
L(✓(2)|y)

(3)

for two di↵erent parameter values ✓(1), ✓(2) and a new random variable Y that is
a function or our original random variable Y = f(X). Intuitively, this means that
even if we were to transform our random variable, the relationship between the like-
lihoods for parameter values remains unchanged and hence, our information about
the parameter remains unchanged under transformations.

4. Likelihoods are su�cient statistics, which intuitively means that if two samples pro-
duce the same value for a su�cient statistic, examining the specific form (numbers)
of the samples provides not additional useful information concerning the actual value
of the parameter, i.e. all the information in the sample about the parameter(s) ✓ is
captured in the likelihood.
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2 (13)

HA : �AjAk
6= �AlAm

(14)

Y = �
0
0 +X

0
a�

0
a +X

0
�
0
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• Likelihood - a function with the form of a probability function which we 
consider to be a function of the parameters    for a fixed the sample 

• The form of a likelihood is therefore the sampling distribution (the 
probability distribution!) of the i.i.d sample but there are (at least) three 
major differences:

• We have parameter values as input and the sample we have observed as a 
parameter

• The likelihood function does not operate as a probability function (they 
can violate the axioms of probability)

• For continuous cases, we can interpret the likelihood of a parameter (or 
combination of parameters) as the likelihood of the point

values our sample (the random vector) could take. Since we have defined a probability dis-
tribution on our random variable X, this also induces a (joint) probability distribution over
all the possible samples that we could produce, which we write as Pr(X) = Pr(X1, ..., Xn)
or Pr(X = x) = Pr(X1 = x1, ..., Xn = xn). We will generally assume that our sample
contains elements that are independent and identically distributed (iid). In such a case,
each of the individual observations in our sample has a probability distribution that is the
same as our random variable Pr(Xi = xi|✓).

To perform inference with a sample, we define a statistic, which is a function on our
sample T (X) or T (X = x) such that it is an estimate of the parameter ✓. We write an
parameter estimate as ✓̂, and since our statistic T is an estimator, we write T (X) = ✓̂
or T (X = x) = ✓̂. Note that since our sample has a probability distribution (a sampling
distribution), which reflects the possible values our sample could take, our statistic and
hence our estimator, has a probability distribution Pr(T (X = x)) = Pr(✓̂), which need
not be the same probability distribution of our original random variable X. Our goal is to
make define our estimator in such a way that probability distribution of our estimator is
such that we have a reasonable probability of getting the right parameter value or ‘close
to’ the right parameter value.

For the bulk of this class, we will be concerned with Maximum Likelihood Estimators
(MLE). MLE’s have a number of very appealing properties (both theoretical and practi-
cal) and as a consequence, they are used extensively. While the structure of MLE’s can be
confusing at first glance, keep in mind that these estimators work like any other statistic:
you have a sample [X = x] that you input to a function T (X = x) and the output (a value
or vector) ✓̂ is the estimate of the parameter.

To define a MLE, we first need to define the concept of a likelihood:

Likelihood ⌘ a probability function which we consider to be a function of the param-
eter(s) ✓ for a fixed sample [X = x].

This seems odd at first glance, but let’s consider this in more detail. In general, when
we consider a probability distribution, we consider the parameters to be fixed and the
probability distribution defines the probability of di↵erent samples (or sample intervals).
In the case of a likelihood, we have flipped this around and are considering a single, fixed
sample and then we consider the function of di↵erent possible values of ✓.

The notation we use for a liklihood is L✓(x) = L(✓|x), where it is implicit that the sample
x is fixed. As a quick example, let’s consider a random variable X ⇠ N(µ,�2), where
we will assume we know that �2 = 1. Consider a sample of size n = 1, say for example

2

Review: Likelihood II

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n
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i=1

xi (8)

MLE(µ̂) = x̄ =
1
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Review: Likelihood III

• Again, Likelihood has the form of a probability function which we 
consider to be a function of the parameters NOT the sample

• Note that likelihoods are NOT probability functions, i.e. they need not 
conform to the axioms of probability (!!)

• They have the appealing property that for an i.i.d. sample

• They have other appealing properties, including they are sufficient 
statistics, the invariance principal, etc.

X1 = 0.2. Since the random variable is normal, the likelihood function is:

L(µ|x = 0.2) =
1p
2⇡

e�(0.2�µ)2 (1)

(see your class notes for the graph of this function).

A few comments about likelihoods:

1. Note that although likelihood functions have the same structure as probability func-
tions, they are not probability functions (see your homework for an example).
This is again a confusing concept at first glance, but it turns out that we can’t con-
sider the probability distribution of parameter values in a frequentist framework (we
can in a Bayesian as we will see) so we cannot consider a probability distribution
over parameters. What’s more, when fixing the sample, the function need not con-
form to the axioms of probability and is therefore not a probability function. Given
these points, this is why we call these functions likelihoods instead of probabilities or
probability distributions.

2. If [(X) = x] = [X1 = x1, ..., Xn = xn] is an i.i.d sample, then the likelihood has the
following property:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (2)

As we will see, this is a very convenient property.

3. An appealing property of likelihoods is that they conform to the invariance principle,
which can be expressed as follows:

L(✓(1)|x)
L(✓(2)|x)

=
L(✓(1)|y)
L(✓(2)|y)

(3)

for two di↵erent parameter values ✓(1), ✓(2) and a new random variable Y that is
a function or our original random variable Y = f(X). Intuitively, this means that
even if we were to transform our random variable, the relationship between the like-
lihoods for parameter values remains unchanged and hence, our information about
the parameter remains unchanged under transformations.

4. Likelihoods are su�cient statistics, which intuitively means that if two samples pro-
duce the same value for a su�cient statistic, examining the specific form (numbers)
of the samples provides not additional useful information concerning the actual value
of the parameter, i.e. all the information in the sample about the parameter(s) ✓ is
captured in the likelihood.
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Review: Normal model example
• As an example, for our heights experiment / identity random variable, the 

(marginal) probability of a single observation in our sample is xi is:

• The joint probability distribution of the entire sample of n observations is 
a multivariate (n-variate) normal distribution

• Note that for an i.i.d. sample, we may use the property of independence 

to write pdf of this entire sample as follow: 

• The likelihood is therefore: 

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

L(µ,�2|X = x) =
nY

i=1

1p
2⇡�2

e
�(xi�µ)2

2�2 (8)

where
Qn

i=1 x1 ⇤ x2 ⇤ ... ⇤ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,�2|X = x)) = �nln(�)� n

2
ln(2⇡)� 1

2�2

nX

i

(xi � µ)2 (9)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

@l(✓|X = x)

@µ
=

1

�2

nX

i

(xi � µ) = 0 (10)

where we use @ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

nX

i

xi (11)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

nX

i

xi = x) = x (12)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
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consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,⌅2) = fX(x|µ,⌅2) =
1⌅
2⇥⌅2

e�
(x�µ)2

2�2 (5)

Pr(Xi = xi|µ,⌅2) = fXi(xi|µ,⌅2) =
1⌅
2⇥⌅2

e�
(xi�µ)2

2�2 (6)

fX(x|µ1, µ2,⌅
2
1,⌅

2
2, ⇤) =

1

2⇥⌅1⌅2
⌅
1� ⇤

exp

⇧
� 1

2(1� ⇤2)

⇤
(x1 � µ1)2

2⌅2
1

� 2⇤(x1 � µ1)(x2 � µ2)

⌅1⌅2
+

(x2 � µ1)2

2⌅2
2

⌅⌃

(7)
This model therefore has two parameters (µ,⌅2) such that � is actually a parameter vector
� = �µ,�2 =

�
µ,⌅2

⇥
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: �µ = (�⇤,⇤). The ⌅2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ��2 = [0,⇤). As we have seen previously, our shorthand for a normal distribution
is X ⇥ N(µ,⌅2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.
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vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

P (X = x|µ,⇤2) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (8)

L(µ,⇤2|X = x) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (9)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (10)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

⌅l(�|X = x)

⌅µ
=

1

⇤2

n⇥

i

(xi � µ) = 0 (11)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (12)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇥

i

xi = x) = x (13)
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Review: Introduction to MLE’s
• A maximum likelihood estimator (MLE) has the following definition:

• Recall that this statistic still takes in a sample and outputs a value that is 
our estimator (!!) Note that likelihoods are NOT probability functions, i.e. 
they need not conform to the axioms of probability (!!)

• Sometimes these estimators have nice forms (equations) that we can 
write out

• For example the maximum likelihood estimator when considering a 
sample for our single coin example / number of tails is:

• And for our heights example: 

is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

nX

i

(xi � x)2 (13)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇠ Bin(n, p) for a sample of
size n. In this case the likelihood is:

L(p|X = x) =

✓
x

n

◆
px(1� p)n�x (14)

and the log-likelihood is:

l(p|X = x) = ln

✓
x

n

◆
+ xln(p) + n� xln(1� p) (15)

such that the first derivative is:

@l(p|X = x)

@p
=

x

p
� n� x

1� p
(16)

and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(17)

which we can check by considering the second derivative:

@2l(p|X = x)

@p2
= � x

p2
+

x� n

(1� p)2
(18)

which is always negative. Note that the MLE and the method of moments estimator are
also the same in this case.

More generally, if we are interested in deriving the MLE(✓̂) for a vector of parameters
✓ = [✓1, ✓2, ...] we can take the derivative the log-likelihood function with respect to all
parameters:

dl(✓|X = x)

d✓
=

0

BB@

@l(✓|X=x)
@✓1

@l(✓|X=x)
@✓2
...

1

CCA
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5. Likelihoods have an appealing property described by the ‘Likelihood principle’, which
basically states that any evidence present in a sample about ✓ depends only on the
likelihood function. This is a deeper theoretical concept than su�ciency (although
they are related).

Now that we have defined a likelihood, we are ready to define a Maximum Likelihood
Estimator:

MLE(✓̂) = ✓̂ = argmax✓2⇥L(✓|x) (4)

where ‘argmax’ simply means the argument or value of ✓ within the set ⇥ that maximizes
the function. That is, the actual value that we get as an estimate, after plugging in the
sample x into this equation, is the value of ✓ where this function has a maximum. We
can illustrate this concept visually by plotting this function with possible parameter val-
ues on the X-axis and the Likelihood function on the Y-axis (see class notes for a diagram).

To determine the MLE means finding the maximum of a function. There are broadly
two ways to do this: a. derive a specific (useful) formula for the MLE, b. in more complex
cases, use an algorithm to determine the MLE. While the former is a reasonable strategy in
some cases (as we will discuss today), as we will see later in the class, sometimes the latter
strategy is the only way to determine the MLE. To derive a specific formula for an MLE, as
you’ll recall from calculus, a way to solve the problem of finding a maximum of a function
is to find where the first derivative of the function takes a value of zero, and then check to
see if the second derivative at this point is negative, to determine whether this point is a
maximum, i.e. instead of a minimum (or saddle point). When using this approach to find
the maximum, it is often easier to deal with the natural log of the likelihood:

l(✓|x) = ln [L(✓|x)] (5)

Since logarithms are ‘monotonic’ they change the shape of the likelihood function but do
not change the location of the maximum, i.e. maximizing the log-likelihood produces the
same result as maximizing the likelihood. Part of the reason log-likelihoods are easier to
deal with is they take advantage of the property ln(ab) = ln(a) + ln(b), such that the
likelihood of an i.i.d. sample:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (6)

when expressed as a log-likelihood is:

l(✓|x1, x2, ..., xn) = l(✓|x1) + l(✓|x2) + ...+ l(✓|xn) (7)

As an example, let’s derive the MLE of the the parameter µ of a normally distributed
random variable X ⇠ N(µ,�2) for an i.i.d sample of size n, i.e. our sample is a random

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)
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Getting to the MLE

• To use a likelihood function to extract the MLE, we have to find the 
maximum of the likelihood function            for our observed sample

• To do this, we take the derivative of the likelihood function and set it 
equal to zero (why?) 

• Note that in practice, before we take the derivative and set the function 
equal to zero, we often transform the likelihood by the natural log (ln) to 
produce the log-likelihood:

• We do this because the likelihood and the log-likelihood have the same 
maximum and because it is often easier to work with the log-likelihood

• Also note that the domain of the natural log function is limited to                  
but likelihoods are never negative (consider the structure of probability!) 

5. Likelihoods have an appealing property described by the ‘Likelihood principle’, which
basically states that any evidence present in a sample about � depends only on the
likelihood function. This is a deeper theoretical concept than su⇥ciency (although
they are related).

Now that we have defined a likelihood, we are ready to define a Maximum Likelihood
Estimator:

MLE(�̂) = �̂ = argmax���L(�|x) (4)

where ‘argmax’ simply means the argument or value of � within the set � that maximizes
the function. That is, the actual value that we get as an estimate, after plugging in the
sample x into this equation, is the value of � where this function has a maximum. We
can illustrate this concept visually by plotting this function with possible parameter val-
ues on the X-axis and the Likelihood function on the Y-axis (see class notes for a diagram).

To determine the MLE means finding the maximum of a function. There are broadly
two ways to do this: a. derive a specific (useful) formula for the MLE, b. in more complex
cases, use an algorithm to determine the MLE. While the former is a reasonable strategy in
some cases (as we will discuss today), as we will see later in the class, sometimes the latter
strategy is the only way to determine the MLE. To derive a specific formula for an MLE, as
you’ll recall from calculus, a way to solve the problem of finding a maximum of a function
is to find where the first derivative of the function takes a value of zero, and then check to
see if the second derivative at this point is negative, to determine whether this point is a
maximum, i.e. instead of a minimum (or saddle point). When using this approach to find
the maximum, it is often easier to deal with the natural log of the likelihood:

l(�|x) = ln [L(�|x)] (5)

Since logarithms are ‘monotonic’ they change the shape of the likelihood function but do
not change the location of the maximum, i.e. maximizing the log-likelihood produces the
same result as maximizing the likelihood. Part of the reason log-likelihoods are easier to
deal with is they take advantage of the property ln(ab) = ln(a) + ln(b), such that the
likelihood of an i.i.d. sample:

L(�|x1, x2, ..., xn) = L(�|x1)L(�|x2)...L(�|xn) (6)

when expressed as a log-likelihood is:

l(�|x1, x2, ..., xn) = l(�|x1) + l(�|x2) + ...+ l(�|xn) (7)

As an example, let’s derive the MLE of the the parameter µ of a normally distributed
random variable X � N(µ,⇥2) for an i.i.d sample of size n, i.e. our sample is a random
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X2(⌦) : ⌦ ! R (26)

⌦ (27)

Pr(F) (28)

X = x (29)

Pr(X) (30)

X = x , Pr(X)
S (31)

l(✓|x) = ln[L(✓|x)] (32)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (33)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ ⌦, P r(A) > 0

2. Pr(⌦) = 1

3. For A1,A2, ... 2 ⌦, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A)

8

[0,⇧) (3)

MLE(p̂) =
1

n

n⇥

i=1

xi (4)

T (X = x) = X̄ = µ̂ ⇥ N(µ,⇤2/n) (5)

T (X = x) = �̂ = p̂ =
1

n

n⇥

i=1

xi (6)

� ⌃ � (7)

�̂ (8)

N = {1, 2, 3, ...} (9)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (10)

R = {⇤ 0 ⌅} (11)

�⇧ > x > ⇧ (12)

⇥ (13)

F (14)

Pr(F) (15)

⌥ ⌃ F (16)

f(X(F), P r) : {X, P r(X)} ⌅ R (17)

This A ⌃ F then Ac ⌃ F

A1,A2, ... ⌃ F then
��

i=1Ai ⌃ F

⌥, {H}, {T}, {H,T} (18)

F (19)

X1, ..., Xk : ⇥ ⌅ Rk (20)

[X1 = x1, ..., Xk = xk] (21)

Pr(X1, ..., Xk) (22)

E(⇥) (23)

E (24)
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MLE under a normal model 1
• Recall that the likelihood for a sample of size n generated under a normal 

model has the following likelihood

• By remembering the properties of ln, we can derive the log-likelihood for 
this model

• To obtain the maximum of this function with respect to    we can then 
take the partial (!!) derivative with respect to    and set this equal to zero, 
then solve (this is the MLE!):

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

L(µ,�2|X = x) =
nY

i=1

1p
2⇡�2

e
�(xi�µ)2

2�2 (8)

where
Qn

i=1 x1 ⇤ x2 ⇤ ... ⇤ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,�2|X = x)) = �nln(�)� n

2
ln(2⇡)� 1

2�2

nX

i

(xi � µ)2 (9)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

@l(✓|X = x)

@µ
=

1

�2

nX

i

(xi � µ) = 0 (10)

where we use @ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

nX

i

xi (11)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

nX

i

xi = x) = x (12)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this

5

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:
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we use d to take the derivative with respect to all variables at the same time. To find the
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µ =
1
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xi (13)

Note that this is the mean of the sample so we have:
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1
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xi = x) = x (14)
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vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

P (X = x|µ,⇤2) =
n⇤

i=1

1⌅
2⇥⇤2

e
�(xi�µ)2

2�2 (8)

Xi ⇤ N(µ = 0,⇤2 = 1) (9)

L(µ,⇤2|X = x) =
n⇤

i=1

1⌅
2⇥⇤2

e
�(xi�µ)2

2�2 (10)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (11)
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where
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the following properties of natural log (ln) and exponential (e) functions:
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a = �a

2. ln(a2) = 2a
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4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2
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(xi � µ)2 (11)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

⌅l(�|X = x)

⌅µ
=

1

⇤2

n⇥

i

(xi � µ) = 0 (12)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (13)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇥

i

xi = x) = x (14)

5

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

P (X = x|µ,⇤2) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (8)

⇤2 = 1 (9)

L(µ,⇤2|X = x) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (10)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (11)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

⌅l(�|X = x)

⌅µ
=

1

⇤2

n⇥

i

(xi � µ) = 0 (12)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (13)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇥

i

xi = x) = x (14)

5

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

P (X = x|µ,⇤2) =
n⇤

i=1

1⌅
2⇥⇤2

e
�(xi�µ)2

2�2 (8)

Xi ⇤ N(µ = 0,⇤2 = 1) (9)

L(µ,⇤2|X = x) =
n⇤

i=1

1⌅
2⇥⇤2

e
�(xi�µ)2

2�2 (10)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �ln(a)

2. ln(a2) = 2ln(a)

3. ln(ab) = ln(a) + ln(b)

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (11)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

⌅l(�|X = x)

⌅µ
=

1

⇤2

n⇥

i

(xi � µ) = 0 (12)

⌅l(�|X = x)

⌅⇤2
= 0 (13)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (14)
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MLE under a normal model II

• How about the      ?  Use the same approach:

• This equation will give us the maximum of the log-likelihood with respect 
to this parameter

• Will this produce the true value of      (!?)

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

P (X = x|µ,⇤2) =
n⇤

i=1

1⌅
2⇥⇤2

e
�(xi�µ)2

2�2 (8)

Xi ⇤ N(µ = 0,⇤2 = 1) (9)

L(µ,⇤2|X = x) =
n⇤

i=1

1⌅
2⇥⇤2

e
�(xi�µ)2

2�2 (10)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (11)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

⌅l(�|X = x)

⌅µ
=

1

⇤2

n⇥

i

(xi � µ) = 0 (12)

⌅l(�|X = x)

⌅⇤2
= 0 (13)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (14)

5

MLE(µ̂) =
1

n

n⇤

i

xi (15)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇤

i

xi = x) = x (16)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

n⇤

i

(xi � x)2 (17)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇥ Bin(n, p) for a sample of
size n. In this case the likelihood is:

L(p|X = x) =

�
x

n

⇥
px(1� p)n�x (18)

and the log-likelihood is:

l(p|X = x) = ln

�
x

n

⇥
+ xln(p) + n� xln(1� p) (19)

such that the first derivative is:

⇥l(p|X = x)

⇥p
=

x

p
� n� x

1� p
(20)

and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(21)

which we can check by considering the second derivative:

⇥2l(p|X = x)

⇥p2
= � x

p2
+

x� n

(1� p)2
(22)

6

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
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2⇥⇤2

e
�(xi�µ)2

2�2 (8)

⇤2 = 1 (9)

L(µ,⇤2|X = x) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (10)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (11)
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where we use ⌅ to indicate cases where we are taking the derivative of a function of several
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we use d to take the derivative with respect to all variables at the same time. To find the
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where
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equal to zero:
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=
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where we use ⌅ to indicate cases where we are taking the derivative of a function of several
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we use d to take the derivative with respect to all variables at the same time. To find the
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Note that this is the mean of the sample so we have:
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A discrete example I
• As an example, for our coin flip / number of tails random variable

• The probability distribution of one sample is:

• The joint probability distribution of an i.i.d sample of size n is is an n-
variate Bernoulli

• A TRICK (!!): it turns out that we can get the same MLE of p for this 
model by considering x = total number of tails in the entire sample:

• Such that we can consider the following likelihood:

MLE(µ̂) =
1

n

n⇤

i

xi (15)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇤

i

xi = x) = x (16)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

n⇤

i

(xi � x)2 (17)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇥ Bin(n, p) for a sample of
size n. In this case the likelihood is:

Pr(xi|p) = pxi(1� p)1�xi (18)

Pr(x|p) =
n⌅

i=1

pxi(1� p)1�xi (19)

Pr(x|p) =
�
x

n

⇥
px(1� p)n�x (20)

L(p|X = x) =

�
x

n

⇥
px(1� p)n�x (21)

and the log-likelihood is:
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Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:
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size n. In this case the likelihood is:

Pr(xi|p) = pxi(1� p)1�xi (18)

Pr(x|p) =
n⌅

i=1

pxi(1� p)1�xi (19)

Pr(x|p) =
�
x

n

⇥
px(1� p)n�x (20)

L(p|X = x) =

�
x

n

⇥
px(1� p)n�x (21)

and the log-likelihood is:

l(p|X = x) = ln

�
x

n

⇥
+ xln(p) + n� xln(1� p) (22)

such that the first derivative is:

⇥l(p|X = x)

⇥p
=

x

p
� n� x

1� p
(23)

6

MLE(µ̂) =
1

n

n⇤

i

xi (15)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇤

i

xi = x) = x (16)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

n⇤

i

(xi � x)2 (17)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇥ Bin(n, p) for a sample of
size n. In this case the likelihood is:

Pr(xi|p) = pxi(1� p)1�xi (18)

Pr(x|p) =
n⌅

i=1

pxi(1� p)1�xi (19)

Pr(x|p) =
�
n

x

⇥
px(1� p)n�x (20)

L(p|X = x) =

�
n

x

⇥
px(1� p)n�x (21)

and the log-likelihood is:

l(p|X = x) = ln

�
n

x

⇥
+ xln(p) + n� xln(1� p) (22)

such that the first derivative is:

⇥l(p|X = x)

⇥p
=

x

p
� n� x

1� p
(23)

6

MLE(µ̂) =
1

n

n⇤

i

xi (15)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇤

i

xi = x) = x (16)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

n⇤

i

(xi � x)2 (17)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇥ Bin(n, p) for a sample of
size n. In this case the likelihood is:

Pr(xi|p) = pxi(1� p)1�xi (18)

Pr(x|p) =
n⌅

i=1

pxi(1� p)1�xi (19)

Pr(x|p) =
�
n

x

⇥
px(1� p)n�x (20)

L(p|X = x) =

�
n

x

⇥
px(1� p)n�x (21)

and the log-likelihood is:

l(p|X = x) = ln

�
n

x

⇥
+ xln(p) + n� xln(1� p) (22)

such that the first derivative is:

⇥l(p|X = x)

⇥p
=

x

p
� n� x

1� p
(23)

6



A discrete example II

• To find the MLE, we will use the same approach by taking the log-
likelihood: 

• taking the first derivative set to zero, then solve (again x=number tails!)

• Question: in general, how do we know this is a maximum?

• We can check by looking at the second derivative and making sure that it 
is always negative (why?): 
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and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(24)

which we can check by considering the second derivative:

⇥2l(p|X = x)

⇥p2
= � x

p2
+

x� n

(1� p)2
(25)

which is always negative. Note that the MLE and the method of moments estimator are
also the same in this case.

More generally, if we are interested in deriving the MLE(�̂) for a vector of parameters
� = [�1, �2, ...] we can take the derivative the log-likelihood function with respect to all
parameters:

dl(�|X = x)

d�
=

�

⇧⇧⇤

⇥l(�|X=x)
⇥�1

⇥l(�|X=x)
⇥�2
...

⇥

⌃⌃⌅

which is the ‘gradient’ function, also called the ‘score’ function in statistics, set all the
elements of this vector equal to zero, and solve for the parameters. There can be multiple
solutions to this function, which can mean there are multiple maxima (or minima or saddle
points). To determine which are maxima, we can then check the structure of the second
derivative:

d2l(�|X = x)

d�2
=

�

⇧⇧⇧⇤

⇥2l(�|X=x)
⇥�21

⇥2l(�|X=x)
⇥�1⇥�2

· · ·
⇥2l(�|X=x)

⇥�2⇥�1
⇥2l(�|X=x)

⇥�22
· · ·

...
...

. . .

⇥

⌃⌃⌃⌅

where this matrix is called the ‘Hessian’ (and the negative of this matrix is called ‘Fisher’s
Information’ in statistics) and check whether the Hessian is ‘negative definite’ to determine
if a given point is a maximum. We can then compare value of the log-likelihood at the
parameter values where it obtains a maximum. The parameter values for which the log-
likelihood is a ‘global’ maximum (if it exists) is the MLE of the parameters.

3 Properties of estimators

As we discussed earlier, there is no perfect estimator, i.e. an estimator which returns the
true parameter value for every possible sample. As a consequence, we may be interested in
using several di�erent estimators for the same problem, where these estimators may have
di�erent desirable properties. There are many ways of defining desirable properties. Here
we will only consider two that come up quite a bit to give a sense of how we might like
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Now, to be assured that this is actually the MLE, we need to check that the second
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[X1 = x1, X2 = x2, ..., X10 = x10] ⇠ p
x1(1� p)1�x1p

x2(1� p)1�x2 ...p
x10(1� p)1�x10 (16)

T (X = x) = T (x) = X̄ =
1

10

10X

i=1

xi (17)

[Tmin, ..., Tmax] = [0, 0.1, ..., 1] ! [0, 1, ..., 10] (18)

Pr(T (x)) ⇠
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n

nT (x)
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p
nT (x)(1� p)n�nT (x) (19)
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✓
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x

◆
+ xln(p) + (n� x)ln(1� p) (24)
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Last general comments (for now) on 
maximum likelihood estimators 

(MLE)

• In general, maximum likelihood estimators (MLE) are at the core of 
most standard “parametric” estimation and hypothesis testing (stay 
tuned!) that you will do in basic statistical analysis

• Both likelihood and MLE’s have many useful theoretical and practical 
properties (i.e. no surprise they play a central role) although we will 
not have time to discuss them in detail in this course (e.g. likelihood 
has strong connections to the concept of sufficiency, likelihood 
principal, etc., MLE have nice properties as estimators, ways of 
obtaining the MLE, etc.)

• Again, for this course, the critical point to keep in mind is that when 
you calculate an MLE, you are just calculating a statistic (estimator!)



Brief Introduction: Properties of 
estimators I

• Remember (!!) for all the complexity in thinking about, deriving, etc. 
MLE’s these are still just estimators (!!), i.e. they are statistics that take 
a sample as input and output a value that we consider an estimate of 
our parameter

• MLE in general have nice properties (and we will largely use them in 
this class!), but there are many other estimators that we could use 

• This is because there is no “perfect” estimator and each estimator that 
we can define has different properties, some of which are desirable, 
some are less desirable

• In general, we do try to use estimators that have “good” properties 
based on well defined criteria

• In this class, we will briefly consider two: unbiasedness and consistency



Properties of estimators II
• We measure the bias of an estimator as follows (where an unbiased 

estimator has a bias of zero):

• We consider an estimator to be consistent if it has the following property

• Note that one can have an estimator that is consistent but not unbiased 
(and vice versa!)

• As an example of the former, the following MLE is biased but consistent

• An unbiased estimator of this parameter is the following:

estimators to behave: unbiased(ness) and consistency.

We define bias of an estimator as follows:

Bias(⇥̂) = E⇥̂ � ⇥ (26)

where the expectation is over the sampling distribution of the estimator for a sample of
size n and ⇥ indicates the true value of ⇥. If the value of the estimator ‘on average’ (or
averaging over all samples of size n) is equal to the true value of the parameter, we call
such an estimator unbiased. It is easy to see why we might like estimators to have this
property, i.e. on average, we expect to get the right answer for ⇥. The MLE(µ̂) for a
normally distributed random variable is an example of an unbiased estimator. That is,
even for a sample of size n = 2, if we took the expectation of all possible values of this
estimator for two samples, this expectation would equal the true value of µ.

We define consistency as follows:

limn�⇥Pr(|⇥̂ � ⇥| < �) = 1 (27)

where � is an arbitrarily small constant. Consistency is less intuitive and requires an
advanced statistics class for a deep understanding but, stating this definition in words, as
the sample size approaches infinite, the probability that estimator is arbitrarily close to the
true value is one. What this implies is that the estimator tends to be good as the sample
size gets very large (and we hope it is pretty good when samples get ‘large’). Again, one
can imagine this is a good property for an estimator, particularly if we are dealing with a
sample that is relatively large. MLE’s (in general) are consistent estimators. Note that a
consistent estimator need not be unbiased. An example is:

MLE(⇤̂2) =
1

n

n�

i

(xi � x)2 (28)

i.e. the MLE of ⇤2 of a normally distributed random variable. This estimator is consistent
but biased. We can produce an unbiased estimator of ⇤2 as follows:

⇤̂2 =
1

n� 1

n�

i

(xi � x)2 (29)

We may want to use this unbiased estimator in cases where the sample size is small, while
the MLE is fine to use when the sample size is large. Why would we ever want to use
unbiased estimators? There are a couple of reasons. First, unbiased estimators may not
exist (or be easy to derive) for certain problems. Second, an unbiased estimator will work
well on average, but the variance in the estimates may be quite large, i.e. if it gets it wrong,
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• For the estimation framework we have considered thus far, our goal 
was to define an estimator that provides a “reasonable guess given 
the sample” of the true value of the parameter

• This is called “point” estimation since the true parameter has a single 
value (i.e. it is a point)

• We could also estimate an interval, where our goal is to say 
something about the chances that the true parameter (the point) 
would fall in the interval

• confidence interval (CI) - an estimate of an interval defined 
such that if it were estimated individually for an infinite number of 
samples, a specific percentage of the estimated intervals would 
contain the true parameter value

• Don’t worry if this concept seems confusing (it is!) let’s first 
consider an example and then discuss some basics

Confidence intervals I



• As an example, assume the standard normal r.v. X ~N(0,1)       
correctly describes our sampling distribution if we were to produce 
50 independent samples, each of size n=10 and we were to estimate 
a CI for each one, we would expect to get the following:

Confidence intervals II

!

Example of an expected result if we were to calculate 50 
90% confidence intervals for 50 samples for the parameter 
“mu”of a normally distributed random variable, where the 

true value of mu=0:
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consider �1 = �A⇧�0 such that �1 = �, where the latter is the entire possible range of
the parameter of interest (and we will just write � instead of �1 when we consider forms
of equation (1) in many cases).

For this equation, in the numerator, we maximize the likelihood (i.e. select the value
of � that produces the largest value of the likelihood equation), restricting ourselves to
values of the parameter in the set �0, e.g. if H0 is the parameter equals a constant, we
simply substitute this value of the parameter into the likelihood equation. In the denomi-
nator, we maximize the likelihood over the entire range of possible parameter values (just
as we would when calculating the MLE). With a likelihood ratio, we are therefore taking
the ratio of two MLE’s, where the numerator considers a more restricted parameter space
than the denominator.

To provide some intuition, let’s consider a case where we have X ⇥ N(µ,⇤2 = 1), an
i.i.d sample of size n, where we are testing H0 : µ = 0 versus HA : µ ⌅= 0. In this case,
for our parameter of interest µ we have �0 = 0 and �1 = � = (�⇤,⇤) and the like-
lihood function is (remember ⇤2 = 1, the rules for the likelihood of an iid sample, and
eaeb = ea+b):

L(�|X = x) =
1⌃
2⇥

e
P

n

i=1
�(xi�µ)2

2 (4)

such that our LRT statistic is:

LRT = ⇥ =

1�
2�
e
P

n

i=1
�(xi�H0(µ))

2

2

1�
2�
e
P

n

i=1
�(xi�MLE(µ̂))2

2

(5)

where µ = 0 (since H0 : µ = 0) and recall MLE(µ̂) = 1
n

Pn
i xi = x̄, so equation (4) reduces

to:

LRT = exp

 
� 1

2

nX

i=1

(xi � 0)2 +
1

2

nX

i=1

(xi � x̄)2
!

(6)

and because we have the following:

nX

i=1

x2i =
nX

i=1

x2i � 2x̄
nX

i=1

xi + nx̄2 + nx̄2 = nx̄2 +
nX

i=1

(xi � x̄)2 (7)

because �2x̄
Pn

i=1 xi = �2x̄2, by substitution, we then have a final form of the LRT in
this case:

LRT = exp

 
� nx̄2

2

!
(8)

which you may recognize as a form of a Z-test, given H0 : µ = 0 and known variance
⇤2 = 1 (look it up on wikipedia). Now, to perform the hypothesis test, we would calculate
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• A CI is therefore calculated from a sample (and reflects uncertainty!)

• A CI is an estimate of an interval, as opposed to an estimate of a parameter, 
which is a point estimate (more technically, the CI is an estimate of the 
endpoints of the interval)

• This estimated interval of a CI (generally) includes the estimate of the 
parameter in the “middle”

• In general, a CI provides a measure of “confidence” in the sense that the 
smaller the interval, the more “confidence” we have in our estimate (if this 
seems circular, it is meant to be!) 

• In general, we can make the CI smaller with a larger sample size n and by 
decreasing the probability that the interval contains the true parameter value, 
i.e. a 95% CI is smaller than a 99% CI

• NOTE THAT A 95% CI estimated from one sample does not contain the true 
parameter value with a probability of 0.95 (!!!) - the definition of a CI says if 
we performed an infinite number of samples, and calculated the CI for each, 
then 95% of these intervals would contain the true parameter value (strange?)

Confidence intervals III



That’s it for today

• Next lecture, we will begin our discussion of Hypothesis Testing!


