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Announcements

® Reminder:2nd homework will is due tomorrow (!!) Fri, Feb 23 by
| 1:59PM (1)

® WeWILL NOT have lecture this coming Tues (Feb 27) = ITHACA
WINTER BREAK (!!) but we WILL have lecture Thurs (Feb 29)



Summary of lecture 10: MLE and
Confidence Intervals (Cl)

Last lecture, we began our discussion of an (the) important class of
estimators: Maximum Likelihood Estimators (MLE)

Today we are going to complete our discussion of MLE (and
estimation)!

We are also (briefly) going to discuss Confidence Intervals



Conceptual Overview

Experiment

Statistics Assumptions




Review (Many)

Experiment - a manipulation or measurement of a system that produces an outcome we can observe

Sample Space - set comprising all possible outcomes associated with an experiment

Sigma Algebra or Sigma Field - a collection of events (subsets) of the sample space of interest
Probability Measure (=Function) - maps a Sigma Algebra of a sample to a subset of the reals
Random Variable - (measurable) function on a sample space

Probability Mass Function / Cumulative Mass Function (pmf / emf) - function that describes the probability
distribution of a discrete random variable

Probability Density Function / Cumulative Density Function (pdf / cdf) - function that describes the probability
distribution of a continuous random variable

Probability Distribution Function / Cumulative Distrbution Function (pdf / cdf) - function that describes the
probability distribution of a discrete OR continuous random variable

Experimental Trial - one instance of an experiment

Sample - repeated observations of a random variable generated by experimental trials

Sampling Distribution (Probability Distribution of the Sample) - the probability function of the random vector of the sample
Statistic - a function on a sample

Estimator - a statistic defined to return a value that represents our best evidence for being the true value of a parameter

Sampling Distribution of a Statistic / Estimator (Probability Distribution of the Statistic / Estimator) - the probability
function of the statistic / estimator



Review: Estimators
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Review: Inference

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



Review: Introduction to maximum
likelihood estimators (MLE)

We will generally consider maximum likelihood estimators (MLE) in this
course

Now, MLE’s are very confusing when initially encountered...

However, the critical point to remember is that an MLE is just an
estimator (a function on a sample!!),

i.e. it takes a sample in, and produces a nhumber as an output that is our
estimate of the true parameter value

These estimators also have sampling distributions just like any other
statistic!

The structure of this particular estimator / statistic is complicated but
just keep this big picture in mind



Review: Introduction to MLE’s

A maximum likelihood estimator (MLE) is an estimator (a statistic!) that has specific
properties and is DERIVED in a specific way (i.e., this is a class of estimators)!

MLE can be derived for (almost) any case where we want to do estimation AND they
are (arguably) the most important class of estimators

Recall that this statistic still takes in a sample and outputs a value that is our
estimator (!!) Note that likelihoods are NOT probability functions, i.e. they need not
conform to the axioms of probability (!!)

Sometimes these estimators have nice forms (equations) that we can write out

For example the maximum likelihood estimator when considering a sample for our
single coin example / number of tails is:

MLE(p Z z;

And for our heights example:

MLE(ji) =z = % Z MLE(6?) = - > (- =)



Review: Likelihood |

To introduce MLE’s we first need the concept of likelihood

Recall that a probability distribution (of a r.v. or for our purposes now, a
statistic) has fixed constants in the formula called parameters

For example, for a normally distributed random variable

1 _ (m—p)?

(& 202
V2mo?

However, we could turn this around and fix the sample and let the
parameters vary (this is a likelihood!)

Pr(X = z|p,0%) = fx(z|p,0%) =

For example, say we have a sample n=1, where x=0.2 then the likelihood
is (if we just set o = 1 for explanatory purposes):
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Review: Likelihood I

Likelihood - a function with the form of a probability function which we
consider to be a function of the parameters () for a fixed the sample [X = x|

The form of a likelihood is therefore the sampling distribution (the
probability distribution!) of the i.i.d sample but there are (at least) three
major differences:

We have parameter values as input and the sample we have observed as a
parameter

The likelihood function does not operate as a probability function (they
can violate the axioms of probability)

For continuous cases, we can interpret the likelihood of a parameter (or
combination of parameters) as the likelihood of the point



Review: Likelihood Il

Again, Likelihood has the form of a probability function which we
consider to be a function of the parameters NOT the sample

Note that likelihoods are NOT probability functions, i.e. they need not
conform to the axioms of probability (!!)

They have the appealing property that for an i.i.d. sample

L(0|x1,zo,...;xn) = L(0|x1)L(0|22)...L(0|x,)

They have other appealing properties, including they are sufficient
statistics, the invariance principal, etc.



Review: Normal model example

® Asan example, for our heights experiment / identity random variable, the
(marginal) probability of a single observation in our sample is xi is:
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Pr(X; = zilp, 0%) = fx,(zilp,0%) =

Qo2

®  The joint probability distribution of the entire sample of n observations is
a multivariate (n-variate) normal distribution

® Note that for an i.i.d. sample, we may use the property of independence
Pr(X=x)=Pr(X; =x1)Pr(Xy = x2)...Pr(X, = x,)

to write pdf of this entire sample as follow:
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° The likelihood is therefore:

L(p,0%|X = x)
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Review: Introduction to MLE’s

A maximum likelihood estimator (MLE) has the following definition:

MLE(f) = 0 = argmazgeo L(0]x)

Recall that this statistic still takes in a sample and outputs a value that is
our estimator (!!) Note that likelihoods are NOT probability functions, i.e.
they need not conform to the axioms of probability (!!)

Sometimes these estimators have nice forms (equations) that we can
write out

For example the maximum likelihood estimator when considering a
sample for our single coin example / number of tails is:

MLE(p Z z;

And for our heights example:

MLE(ji Z z; MLE(6*) = =) (z; —T)°



Getting to the MLE

To use a likelihood function to extract the MLE, we have to find the
maximum of the likelihood function L(6|x) for our observed sample

To do this, we take the derivative of the likelihood function and set it
equal to zero (why?)

Note that in practice, before we take the derivative and set the function
equal to zero, we often transform the likelihood by the natural log (In) to
produce the log-likelihood:

[(0]x) = In[L(0]x)]

We do this because the likelihood and the log-likelihood have the same
maximum and because it is often easier to work with the log-likelihood

Also note that the domain of the natural log function is limited to|0, c0)
but likelihoods are never negative (consider the structure of probability!)



MLE under a normal model |

Recall that the likelihood for a sample of size n generated under a normal
model has the following likelihood
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By remembering the properties of In, we can derive the log-likelihood for
this model
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To obtain the maximum of this function with respect to ;1 we can then
take the partial (!!) derivative with respect to and set this equal to zero,
then solve (this is the MLE!):

0l(0)1X = x)
o ~ 52 Z

MLE(j Z z;




MLE under a normal model lI

e How about the o?? Use the same approach:

n 1 <
I, 0% X =x)) = —nln(o) — §ln(27r) ~ 5.2 (z; — p)*
ol X =x)
o B
MLE(6%) = % D (xi—m)?

® This equation will give us the maximum of the log-likelihood with respect
to this parameter

e  Will this produce the true value of o’ )



A discrete example |

As an example, for our coin flip / number of tails random variable

The probability distribution of one sample is:

Pr(z)p) = p*i(1 —p)=*

The joint probability distribution of an i.i.d sample of size n is is an n-
variate Bernoulli

n

Pr(x|p) = Hp””(l —p)"

ATRICK (!): it turns out that we can get the same MLE of p for this
model by considering x = total number of tails in the entire sample:

Prxio) = ()=
Such that we can consider the following likelihood:

LX) = (7)1 - o

X



A discrete example |l

To find the MLE, we will use the same approach by taking the log-
likelihood:

L(p|X = x) = (Z)p‘”(l -p)"

I(p)X = x) = zn(”

:1:) + zin(p) + (n — x)in(1 — p)

taking the first derivative set to zero, then solve (again x=number tails!)
ApX=x) =z n-uw

op p 1-p
R €T
MLE(p) = —
n

Question: in general, how do we know this is a maximum?
We can check by looking at the second derivative and making sure that it

is always negative (why?):

Pl(pl X =x) Tz z-m
o p* (1-p)?




Last general comments (for now) on
maximum likelihood estimators

(MLE)

® |n general, maximum likelihood estimators (MLE) are at the core of
most standard “parametric’ estimation and hypothesis testing (stay
tuned!) that you will do in basic statistical analysis

® Both likelihood and MLE’s have many useful theoretical and practical
properties (i.e. no surprise they play a central role) although we will
not have time to discuss them in detail in this course (e.g. likelihood
has strong connections to the concept of sufficiency, likelihood
principal, etc., MLE have nice properties as estimators, ways of
obtaining the MLE, etc.)

® Again, for this course, the critical point to keep in mind is that when
you calculate an MLE, you are just calculating a statistic (estimator!)



Brief Introduction: Properties of
estimators |

Remember (!!) for all the complexity in thinking about, deriving, etc.
MLE’s these are still just estimators (!!), i.e. they are statistics that take
a sample as input and output a value that we consider an estimate of
our parameter

MLE in general have nice properties (and we will largely use them in
this class!), but there are many other estimators that we could use

This is because there is no “perfect” estimator and each estimator that
we can define has different properties, some of which are desirable,
some are less desirable

In general, we do try to use estimators that have “good” properties
based on well defined criteria

In this class, we will briefly consider two: unbiasedness and consistency



Properties of estimators |l

We measure the bias of an estimator as follows (where an unbiased
estimator has a bias of zero):

Bias(f) = Ef — 6
We consider an estimator to be consistent if it has the following property
limp 0o Pr(|0 — 0] < €) =1

Note that one can have an estimator that is consistent but not unbiased
(and vice versa!)

As an example of the former, the following MLE is biased but consistent

MLE(0?) = % > (i — 7y

An unbiased estimator of this parameter is the following:
n

A 1
2 Y
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Confidence intervals |

For the estimation framework we have considered thus far, our goal
was to define an estimator that provides a “reasonable guess given
the sample” of the true value of the parameter

This is called “point” estimation since the true parameter has a single
value (i.e. it is a point)

We could also estimate an interval, where our goal is to say
something about the chances that the true parameter (the point)
would fall in the interval

confidence interval (Cl) - an estimate of an interval defined
such that if it were estimated individually for an infinite number of
samples, a specific percentage of the estimated intervals would
contain the true parameter value

Don’t worry if this concept seems confusing (it is!) let’s first
consider an example and then discuss some basics



Confidence intervals Il

® As an example, assume the standard normal r.v. X ~N(0, 1)
correctly describes our sampling distribution if we were to produce
50 independent samples, each of size n=10 and we were to estimate
a Cl for each one, we would expect to get the following:




Confidence intervals Il

A Cl is therefore calculated from a sample (and reflects uncertainty!)

A Cl is an estimate of an interval, as opposed to an estimate of a parameter,
which is a point estimate (more technically, the Cl is an estimate of the
endpoints of the interval)

This estimated interval of a Cl (generally) includes the estimate of the
parameter in the “middle”

In general,a Cl provides a measure of “confidence” in the sense that the
smaller the interval, the more “confidence” we have in our estimate (if this
seems circular, it is meant to be!)

In general, we can make the CI smaller with a larger sample size n and by

decreasing the probability that the interval contains the true parameter value,
i.e.a 95% Cl is smaller than a 99% CI

NOTE THAT A 95% CI estimated from one sample does not contain the true
parameter value with a probability of 0.95 (!!!) - the definition of a Cl says if
we performed an infinite number of samples, and calculated the CI for each,
then 95% of these intervals would contain the true parameter value (strange?)



That’s it for today

® Next lecture, we will begin our discussion of Hypothesis Testing!



