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Announcements

® Homework #3 (!!) will be available tomorrow (Fri, March |) and will be
due Fri, March |5 by | 1:59PM



Summary of lecture | |:Intro to
Hypothesis Testing

® |Last lecture, we began completed our discussion of Estimators
® ...and briefly introduced Confidence Intervals (Cl)

® Today, we are going to introduce Hypothesis Testing (!!)



Conceptual Overview

Experiment

Statistics Assumptions




Review of essential concepts

Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family of probability
distributions indexed by parameters) on the basis of a sample

System, Experiment, Experimental Trial, Sample Space,
Sigma Algebra, Probability Measure, Random Variable,
Probability Distribution (pmf, pdf), Parameterized
Probability Model, Sample, Random Vector, Sampling
Distribution, Statistic, Statistic Sampling Distribution,
Estimator, Estimator Sampling distribution



Review: Estimators
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Review: Introduction to maximum
likelihood estimators (MLE)

We will generally consider maximum likelihood estimators (MLE) in this
course

Now, MLE’s are very confusing when initially encountered...

However, the critical point to remember is that an MLE is just an
estimator (a function on a sample!!),

i.e. it takes a sample in, and produces a nhumber as an output that is our
estimate of the true parameter value

These estimators also have sampling distributions just like any other
statistic!

The structure of this particular estimator / statistic is complicated but
just keep this big picture in mind



Review: Confidence intervals |

For the estimation framework we have considered thus far, our goal
was to define an estimator that provides a “reasonable guess given
the sample” of the true value of the parameter

This is called “point” estimation since the true parameter has a single
value (i.e. it is a point)

We could also estimate an interval, where our goal is to say
something about the chances that the true parameter (the point)
would fall in the interval

confidence interval (Cl) - an estimate of an interval defined
such that if it were estimated individually for an infinite number of
samples, a specific percentage of the estimated intervals would
contain the true parameter value

Don’t worry if this concept seems confusing (it is!) let’s first
consider an example and then discuss some basics



Estimation and Hypothesis Testing

Thus far we have been considering a “type” of inference, estimation,
where we are interested in determining the actual value of a
parameter

We could ask another question, and consider whether the
parameter is NOT a particular value

This is another “type” of inference called hypothesis testing

We will use hypothesis testing extensively in this course



Statistics
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Estimators
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Hypothesis Tests

Hypothesis: T'(x), Ho:0 =c avetic sampling - pr.(7(X)|6) , 0 € ©

Distribution:

1 f

[Xl — L1y eeny Xn —an E X1 —xl,...,Xn:xn])

= I \ / Pr
/Ra:dom Varl:ble\

X X(w),w € N Pr(F)
4 A A
Experiment () F

(Sample Space) (Sigma Algebra)



Hypothesis testing |

To build this framework, we need to start with a definition of
hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null
hypothesis, which states that a parameter takes a specific value, i.e. a
constant

H():@:C

For example, for our height experiment / identity random variable,
we have Pr(X|0) ~ N(u,c?) and we could consider the following
null hypothesis:

H():,u:()



Hypothesis testing I

As example, consider our height experiment (reals as sample space) / identity random
variable X / normal probability model § = [u,aﬂ / sample n=| (of one height
measurement) / identity statistic T(x) = x (takes the height measured height)

Let’s assume that g2 = 1 and say we are interested in testing the following null
hypothesis Hy : 1 = 5.5 such that we have the following probability distribution of the
statistic under the null hypothesis:

X
o

0.2 0.3

Pr(T(x) | HO)

0.1

0.0




Hypothesis testing |

Our goal in hypothesis testing is to use a sample to reach a
conclusion about the null hypothesis

To do this, just as in estimation, we will make use of a statistic (a
function on the sample), where recall we know the sampling
distribution (the probability distribution) of this statistic

More specifically, we will consider the probability distribution of this
statistic, assuming that the null hypothesis is true:

Pr(T'(X = x|0 = ¢))

Note that this means we have a probability distribution of the
statistic given the null hypothesis!!

We will use this distribution to construct a p-value



p-value |

We quantify our intuition as to whether we would have observed
the value of our statistics given the null is true with a p-value

p-value - the probability of obtaining a value of a statistic T(X), or
more extreme, conditional on HO being true

Formally, we can express this as follows:
pval = Pr(|T(x)| > t|Hy : 0 = ¢)

Note that a p-value is a function on a statistic (!!) that takes the
value of a statistic as input and produces a p-value as output in the
range [0, I]:

pval(T(x)) : T(x) — [0,1]



p-value |l

® As an intuitive example, let’s consider a continuous sample space
experiment / identify r.v./ normal family / n=1 sample / identity
statistic, i.e. T(x) = x

® Assume we know o? = 1 (is this realistic?), let’s say we are

interested in testing the null hypothesis Hy : 1 = 0 and let’s say that
we assume that if we are wrong the value of 1 will be greater than
zero (why?)

One-Tailed Normal Distribution, p=0.1 One-Tailed Normal Distribution, p=0.05
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p-value I

® Same example: let’s consider a continuous sample space
experiment / identify r.v./ normal family / n=1 sample / identity
statistic, i.e. T(X) = X / assume we know ¢ = 1/ we test the null
hypothesis Hj : 1 = 0 and let’s assume that if we are wrong the value
of [t could be in either direction (again, why?)

Two-Tailed Normal Distribution, p=0.1 Two-Tailed Normal Distribution, p=0.05
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p-value |V

® More technically a p-value is determined not just by the probability of the
statistic given the null hypothesis is true, but also whether we are
considering a “one-sided” or “two-sided” test

® For a one-sided test (towards positive values), the p-value is:
pval(T(x)) = / Pr(T(x)|0 = c)dT'(x)
T'(x)

max(T (X))

poal(T(x)) = Y Pr(T(x)|§ =c)

T(x)

® For a two-sided test, the p-value is:

—|T(x)—median(T(X)] 00
pval(T(x)) = / Pr(T(x)|0 = c)dT(x)—I—/ Pr(T(x)|0 = c¢)dT'(x)
—0o0 |T(x)|—median(T(X)] -
—|T'(x)—median(T(X)| maz (T (X))
poal(T(x)) = > Pr(T(x)|0 = ¢) + > Pr(T(x)|0 = ¢)

min(T(X)) |T(x)—median(T'(X)]



Hypothesis Testing IV

To build a framework to answer a question about a parameter, we need to
start with a definition of hypothesis

Hypothesis - an assumption about a parameter

More specifically, we are going to start our discussion with a null hypothesis,
which states that a parameter takes a specific value, i.e. a constant

H()ZH:C

Once we have assumed a null hypothesis, we know the probability
distribution of the statistic, assuming the null hypothesis is true:

Pr(T(X = x|0 = ¢))

p-value - the probability of obtaining a value of a statistic T(x), or more
extreme, conditional on HO being true:

pval = Pr(|T(x)| > t|Hy : 0 = ¢)

pval(T(x)) : T'(x) — [0, 1]

Note that a p-value is a function of a statistic (!!)



Non-Intuitive Hypothesis Testing
Concepts |

We do not know what the true model is (=parameter values are) in a real
case!

We assess a null hypothesis that we define!

We assess this null hypothesis by calculating a p-value which assumes that
the null hypothesis is true!

We assess this null hypothesis by calculating a p-value from a single sample!
We make one of two decisions: cannot reject or reject!
We decide on the value p-value that allows us to decide

If we reject, we interpret this as strong evidence against the null
hypothesis being correct but we do not know for sure!

If we cannot reject, we cannot say anything (i.e., we have no evidence
that the null is wrong and we cannot say that the null is right)!



Hypothesis decisions |

We use the p-value to make a decision about the null hypothesis

Specifically, we use the p-value for our sample to decide whether we “accept” (or better stated:
“cannot reject”) the null hypothesis or “reject” the null hypothesis

To do this, we use a value (X such that if the p-value is below this value we “reject”, if it is above
we “cannot reject”

Note that this value of (X corresponds to a critical value (“threshold”) of the test statistic C¢y

For example for a value @ = 0.05 we have the following for our previous examples:

One-Tailed Normal Distribution, p=0.05 Two-Tailed Normal Distribution, p=0.05
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Hypothesis decisions |

Note that there are two possible outcomes of a hypothesis test: we
reject or we cannot reject

We never know for sure whether we are right (!!)

If we cannot reject, this does not mean HO is true (why? What if our
p-value is 0.99?)

The value (¥ is called the type | error, the probability of incorrectly
rejecting HO when it is true

The value 1 — « is the probability of making a correct decision not
to reject HO

Note that we can control the level of type | error because we decide
on the value of (¥



one-sided test

Assume HO is correct (!):
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Results of hypothesis decisions |:
when HO is correct (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true
cannot reject Hy | 1-«, (correct)
reject Hy a, type I error
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Results of hypothesis decisions |:
when HO is correct (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

‘ Hy is true ‘
cannot reject Hy | 1-a, (correct

reject Hy a, type I error
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Results of hypothesis decisions |:
when HO is correct (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hj is true
cannot reject Hy | 1-a, (correct)
reject Hy a, type I error
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one-sided test

Assume HO is wrong (!):

Pr(T(x) | HO)
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Results of hypothesis decisions |l:
when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true Hy is false
cannot reject Hy | 1-«, (correct) B, type 1I error
reject Hy a, type I error | 1 — 3, power (correct)
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Results of hypothesis decisions |l:
when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true Hy is false
cannot reject Hy | 1-«, (correct) 5, type Il error
reject Hy a, type I error ’
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Results of hypothesis decisions |l:
when HO is wrong (!!

® There are only two possible decisions we can make as a result of our
hypothesis test: reject or cannot reject

Hy is true ‘ Hy is false

cannot reject Hy

1-a, (correct) 5. type 11 error

reject Hy

Pr(T(x) | HO)
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0.0

a, type I error §1 — B, power (correct)

2 0 a4 ¢
T(X) ¢, =1.64



Technical definitions

Technically, correct decision given HO is true is (for one-sided, similar
for two-sided):

0= / " Pr(T(x)|0 = ¢)dT(x)
Type | error (HO is true) is (for one-sided):
o= / " PrT(x)[0 = 0)dT(x)
Type Il error given HO is false is (for one-sided):
B = / Pr(T(x)|0)dT (x)
Power is (for one-sided):

- 5= /Pr x)|0)dT (%)



That’s it for today

® Next lecture, we will complete our discussion of hypothesis testing
AND begin our discussion of Genetic Models (!!)



