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Summary of lecture 12: Intro to 
Genetic Models

• Last lecture, introduced Hypothesis Testing (!!)

• Today we will finish our discussion of Hypothesis Testing

• And begin our introduction to Genetic Models (!!)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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f(X(⌦), P r(X) : {X, P r(X)} ! R (210)
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Pr(⌦) ! Pr(X)
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Pr(T (X))
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Hypothesis Tests
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Review: Hypothesis testing I

• To build this framework, we need to start with a definition of 
hypothesis

• Hypothesis - an assumption about a parameter

• More specifically, we are going to start our discussion with a null 
hypothesis, which states that a parameter takes a specific value, i.e. a 
constant

• For example, for our height experiment / identity random variable, 
we have                                and we could consider the following 
null hypothesis:

our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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Review: Hypothesis testing II

• Our goal in hypothesis testing is to use a sample to reach a 
conclusion about the null hypothesis

• To do this, just as in estimation, we will make use of a statistic (a 
function on the sample), where recall we know the sampling 
distribution (the probability distribution) of this statistic

• More specifically, we will consider the probability distribution of this 
statistic, assuming that the null hypothesis is true:

• Note that this means we have a probability distribution of the 
statistic given the null hypothesis!!

• We will use this distribution to construct a p-value

Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇤ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⇥ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �⇧ < x1 < ⇧). Note that for our example, fX(x) ⇤ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ �

x1

fX(x)dx (3)

pval(T (x)) : T (x) ⌅ [0, 1] (4)

3



Review: p-value 1

• We quantify our intuition as to whether we would have observed 
the value of our statistics given the null is true with a p-value

• p-value - the probability of obtaining a value of a statistic T(x), or 
more extreme, conditional on H0 being true

• Formally, we can express this as follows:

• Note that a p-value is a function on a statistic (!!) that takes the 
value of a statistic as input and produces a p-value as output in the 
range [0, 1]:
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zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⌘ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �1 < x1 < 1). Note that for our example, fX(x) ⇠ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx (2)

pval(T (x)) : T (x) ! [0, 1] (3)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx = 1� FX(x) = 1�
⇥ x1

�1
fX(x)dx (4)
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Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇤ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⇥ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), pval = Pr(|T (x)| � t|H0 : � = c) where x1
reflects the various values our sample could take (i.e. �⇧ < x1 < ⇧). Note that for our
example, fX(x) ⇤ N(0, 1) where for this particular case:

pval(T (x)) =

⇥ �

x1

fX(x)dx (3)

pval(T (x)) : T (x) ⌅ [0, 1] (4)
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Review: p-value II

• As an intuitive example, let’s consider a continuous sample space 
experiment / identify r.v. / normal family / n=1 sample / identity 
statistic, i.e. T(x) = x

• Assume we know              (is this realistic?), let’s say we are 
interested in testing the null hypothesis                 and let’s say that 
we assume that if we are wrong the value of     will be greater than 
zero (why?)

Pr
(T

(x
) 

| H
0)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

��
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ �

c↵

fX(x)dx (5)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
p-value as follows:

pval(T (x)) =

⇥ �

T (x)
Pr(T (x)|µ = 0)dT (x) (6)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than

2

Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e↵ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|✓ = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

Pn
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

Pn
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇠ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⌘ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) > x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �1 < x1 < 1). Note that for our example, fX(x) ⇠ N(0, 1) where for
this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx (3)

pval(T (x)) : T (x) ! [0, 1] (4)

3



Review: p-value III

• Same example: let’s consider a continuous sample space 
experiment / identify r.v. / normal family / n=1 sample / identity 
statistic, i.e. T(X) = X / assume we know             / we test the null 
hypothesis                 and let’s assume that if we are wrong the value 
of     could be in either direction (again, why?)
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where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

��
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ �

c↵

fX(x)dx (5)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
p-value as follows:

pval(T (x)) =

⇥ �

T (x)
Pr(T (x)|µ = 0)dT (x) (6)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e↵ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|✓ = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

Pn
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

Pn
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇠ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⌘ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) > x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �1 < x1 < 1). Note that for our example, fX(x) ⇠ N(0, 1) where for
this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx (3)

pval(T (x)) : T (x) ! [0, 1] (4)
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Review: p-value IV
• More technically a p-value is determined not just by the probability of the 

statistic given the null hypothesis is true, but also whether we are 
considering a “one-sided” or “two-sided” test

• For a one-sided test (towards positive values), the p-value is:

• For a two-sided test, the p-value is:
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Review: Hypothesis Testing IV
• To build a framework to answer a question about a parameter, we need to 

start with a definition of hypothesis

• Hypothesis - an assumption about a parameter

• More specifically, we are going to start our discussion with a null hypothesis, 
which states that a parameter takes a specific value, i.e. a constant

• Once we have assumed a null hypothesis, we know the probability 
distribution of the statistic, assuming the null hypothesis is true:

• p-value - the probability of obtaining a value of a statistic T(x), or more 
extreme, conditional on H0 being true:

• Note that a p-value is a function of a statistic (!!)

our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇤ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⇥ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �⇧ < x1 < ⇧). Note that for our example, fX(x) ⇤ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ �

x1

fX(x)dx (3)

pval(T (x)) : T (x) ⌅ [0, 1] (4)
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consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
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Review: Non-Intuitive Hypothesis 
Testing Concepts I

• We do not know what the true model is (=parameter values are) in a real 
case!

• We assess a null hypothesis that we define!

• We assess this null hypothesis by calculating a p-value which assumes that 
the null hypothesis is true!

• We assess this null hypothesis by calculating a p-value from a single sample!

• We make one of two decisions: cannot reject or reject!

• We decide on the value p-value that allows us to decide

• If we reject, we interpret this as strong evidence against the null 
hypothesis being correct but we do not know for sure!

• If we cannot reject, we cannot say anything (i.e., we have no evidence 
that the null is wrong and we cannot say that the null is right)! 



• We use the p-value to make a decision about the null hypothesis

• Specifically, we use the p-value for our sample to decide whether we “accept” (or better stated: 
“cannot reject”) the null hypothesis or “reject” the null hypothesis

• To do this, we use a value       such that if the p-value is below this value we “reject”, if it is above 
we “cannot reject” 

• Note that this value of      corresponds to a critical value (“threshold”) of the test statistic  

• For example for a value                we have the following for our previous examples:

Review: Hypothesis decisions I
Pr

(T
(x

) 
| H

0)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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p-value as follows:

pval(T (x)) =

Z 1

T (x)
Pr(T (x)|µ = 0)dT (x) (7)

Such cases do occur, but although we are often in situations we might not have an ex-
pectation in either direction, where for our example we might not know whether the true
value of µ is going to be positive or negative. In such cases, it is more optimal to define a
two-sided test, where we define our p-value as follows:

pval(T (x) =

Z �T (x)

�1
Pr(T (x)|µ = 0)dT (x) +

Z 1

T (x)
Pr(T (x)|µ = 0)dT (x) (8)

where we could produce an analogous equation for a statistic with a di↵erent range (by
defining the integration over the range of the statistic) or for a statistic with a discrete
distribution (by using a summation instead of an integral).

For a two-sided test, in our example, our critical value is defined such that we reject if
x1 > c↵ or x1 6 �c↵ (or |x1| > c↵):

↵ =

Z �c↵

�1
fX(x)dx+

Z 1

c↵

fX(x)dx (9)

Note that the value of c↵ in our example is going to have to be larger (smaller) than in a
two-sided test than in a one-sided test to preserve the same amount of probability ↵. As a
side-note, while we define p-values (and ‘rejection regions’) in terms of extreme parts of the
probability distributions of our statistic, there is actually nothing to stop us from defining
any region of 0.05, within which, we reject if our statistic falls in that region. However,
as we shall see, we often set up our hypothesis tests in such a way that considering the
extremes (or ‘tails’) of the sampling distribution of our statistic is optimal.

One last major concept for p-values. Remember that we can consider a p-value to be
a (somewhat complicated) function on a statistic: pval = f(T (X = x)). Now, just as
defining a probability model on a sample space Pr(S) induces a probability distribution
on a random variable Pr(X), which in turn induces a probability distribution on a sample
Pr(X = x) = Pr(X � 1 = x1, ..., Xn = xn), which in turn induces a probability distri-
bution on a statistic Pr(T (X = x)), this in turn induces a probability distribution on a
p-value: Pr(pval). Now it turns out that while all the other probability distributions can
be specific to a given example with associated assumptions, the probability of a p-value is
always the same. Specifically, a p-value has a uniform distribution over the interval [0, 1,
which we may write Pr(pval) ⇠ U [0, 1]. While we haven’t seen the uniform distribution
yet, this particular distribution is pretty intuitive, i.e. each interval of the same size over
zero to one has the same probability. Why would be define p-values in such a way? This
actually makes sense, since intuitively, regardless of the test we perform, we would like the
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(see diagram on board for an example). Also, note in this particular case:
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Shifted paragraph down.
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is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
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• Note that there are two possible outcomes of a hypothesis test: we 
reject or we cannot reject

• We never know for sure whether we are right (!!)

• If we cannot reject, this does not mean H0 is true (why?  What if our 
p-value is 0.99?)

• The value      is called the type I error, the probability of incorrectly 
rejecting H0 when it is true

• The value            is the probability of making a correct decision not 
to reject H0

• Note that we can control the level of type I error because we decide 
on the value of 

Review: Hypothesis decisions II

same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < ↵ is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. ↵ is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� ↵ is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of ↵, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di↵erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with �

2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider ↵ = 0.05 (which means c↵ = 1.65) we can calculate the probability 1 � � of
rejecting H0:

1� � =

Z 1

c↵

fX(x|µ = 1,�2 = 1)dx (10)

(see class for a diagram). We can also calculate the probability � that we will incorrectly,
not reject H0:

� =

Z c↵

�1
fX(x|µ = 1,�2 = 1)dx (11)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� � is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than

2

T(x)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx = 1� FX(x) = 1�
⇥ x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

�1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ 1

c↵

fX(x)dx (6)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
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where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

Review of hypothesis decisions I: 
when H0 is correct (!!)
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Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)
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(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:
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where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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T(x)
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Sample 1I:

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.
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assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
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pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:
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where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =
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c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵
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Lecture 7: Hypothesis Testing I

Lecture: February 21; Version 1: February 19; Version 2: March 15

1 Introduction

Last lecture, we discussed estimation (also called ‘point’ estimation) where the goal was to
make a reasonable guess (=estimate) concerning the true (unknown) value of a parameter
from a sample. Today, we are going to begin discussion of the other major ‘type’ of
inference which is hypothesis testing. Our goal here is not to say what the actual value of
the parameter is, but rather, to say with some confidence what this parameter value is not.
As we will see, hypothesis testing has a natural fit with the goals of quantitative genomics.
µ = 3

2 Hypothesis Testing

As a review, recall our broader set-up, where we are interested in knowing about a system.
To do this, we conduct an experiment, which produces a sample, where we define a sample
space S the elements of which include all possible sample outcomes. We assume a specific
probability model, by defining a probability function Pr(S), and a random variable X(S)
on this sample space, where defining the probability function Pr(S) induces a probabil-
ity distribution on our random variable Pr(X) or Pr(X = x). We assume that our true
probability distribution is in a ‘family’ of probability distributions that are indexed by
parameter(s) �, e.g. X � N(µ,⇥2), which we write Pr(X|�) or Pr(X = x|�), where we do
not know the specific values of the parameters. Previously, our goal was to estimate the
value of this unknown parameter value using a sample, which are i.i.d observations of our
random variable X written X = [X1, ..., Xn] or (X = x) = [X1 = x1, ..., Xn = xn]. Our
assumed probability distribution on our random variable X, induces a (joint) probability
distribution over all the possible samples that we could produce: Pr(X) = Pr(X1, ..., Xn)
or Pr(X = x) = Pr(X1 = x1, ..., Xn = xn) and when our sample is i.i.d, each of the
individual observations in our sample has a probability distribution that is the same as
our random variable Pr(Xi = xi|�). The process of estimation requires that we define a
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• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

Review of hypothesis decisions II: 
when H0 is wrong (!!)

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)

1
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Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:
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cannot reject H0 1-↵, (correct) �, type II error
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1

Pr
(T

(x
) 

| H
0)

Review of hypothesis decisions II: 
when H0 is wrong (!!)

• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject
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Shifted paragraph down.
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assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
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quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =
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where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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• Technically, correct decision given H0 is true is (for one-sided, similar 
for two-sided):

• Type I error (H0 is true) is (for one-sided):

• Type II error given H0 is false is (for one-sided):

• Power is (for one-sided):

Technical definitions

(see class for a diagram). We can also calculate the probability ⇥ that we will incorrectly,
not reject H0:

⇥ =

� c↵

�1
fX(x|µ = 1,⌅2 = 1)dx (13)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� ⇥ is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
test statistic with a continuous distribution, a one sided test, and (unbeknownst to us) the
true parameter has value ⇤ = w, the power is:

1� � =

� c↵

�1
Pr(T (x)|⇤ = c)dT (x) (14)

� =

� 1

c↵

Pr(T (x)|⇤ = c)dT (x) (15)

⇥ =

� c↵

�1
Pr(T (x)|⇤)dT (x) (16)

1� ⇥ =

� 1

c↵

Pr(T (x)|⇤)dT (x) (17)

and for a two sided test:

1� ⇥ =

� �c↵

�1
Pr(T (x)|⇤ = w)dT (x) +

� 1

c↵

Pr(T (x)|⇤ = w)dT (x) (18)

A few comments:

1. ⇥ is the type II error of the test, i.e. the probability of making the incorrect decision
do not reject H0, given that H0 is false.

2. Unlike the case of �, the type I error (and 1-�), which we know exactly (and set),
we will never know the true value of 1� ⇥, the power (or ⇥, the type II error), since
these depend on the true value of the parameters, which are unknown to us.

3. However, we can use strategies to set up our hypothesis tests in ways where we can
control power and type II error compared to other alternative ways of setting up
hypothesis tests (as we will see below and discuss next lecture).

With these concepts in hand, we can write out the following cases, which depend on the
two outcomes of a hypothesis test (we reject H0 or do not reject H0) and that depend on
the two possible cases: H0 is true or H0 is false:

H0 is true H0 is false
cannot reject H0 1-�, (correct) ⇥, type II error

reject H0 �, type I error 1� ⇥, power (correct)
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A few comments:

1. ⇥ is the type II error of the test, i.e. the probability of making the incorrect decision
do not reject H0, given that H0 is false.

2. Unlike the case of �, the type I error (and 1-�), which we know exactly (and set),
we will never know the true value of 1� ⇥, the power (or ⇥, the type II error), since
these depend on the true value of the parameters, which are unknown to us.

3. However, we can use strategies to set up our hypothesis tests in ways where we can
control power and type II error compared to other alternative ways of setting up
hypothesis tests (as we will see below and discuss next lecture).

With these concepts in hand, we can write out the following cases, which depend on the
two outcomes of a hypothesis test (we reject H0 or do not reject H0) and that depend on
the two possible cases: H0 is true or H0 is false:

H0 is true H0 is false
cannot reject H0 1-�, (correct) ⇥, type II error

reject H0 �, type I error 1� ⇥, power (correct)
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• REMEMBER (!!): there are two possible outcomes of a hypothesis 
test: we reject or we cannot reject

• We never know for sure whether we are right (!!)

• If we cannot reject, this does not mean H0 is true (why?)

• Note that we can control the level of type I error because we decide 
on the value of 

Important concepts I

same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < ↵ is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. ↵ is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� ↵ is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of ↵, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di↵erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with �

2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider ↵ = 0.05 (which means c↵ = 1.65) we can calculate the probability 1 � � of
rejecting H0:

1� � =

Z 1

c↵

fX(x|µ = 1,�2 = 1)dx (10)

(see class for a diagram). We can also calculate the probability � that we will incorrectly,
not reject H0:

� =

Z c↵

�1
fX(x|µ = 1,�2 = 1)dx (11)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� � is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
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• Unlike type I error     , which we can set, we cannot control power 
directly (since it depends on the actual parameter value)

• However, since power          depends on how far the true value of 
parameter is from the H0, we can make decisions to increase power 
depending on how we set up our experiment and test:

• Greater sample size = greater power

• Greater the value of     that we set = greater power             
(trade-off!)

• One-sided or two-sided test (which is more powerful?)

• How we define our statistic (a more technical concept...)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

Z 1

x1

fX(x)dx = 1� FX(x) = 1�
Z x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �

2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c↵, the critical value:

↵ =

Z 1

c↵

fX(x)dx (6)

where for ↵ = 0.05, we have c↵ = 1.65 in our example (see class for a diagram). To use ↵

(and c↵), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c↵ in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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(see class for a diagram). We can also calculate the probability ⇥ that we will incorrectly,
not reject H0:

⇥ =
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�1
fX(x|µ = 1,⌅2 = 1)dx (13)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� ⇥ is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
test statistic with a continuous distribution, a one sided test, and (unbeknownst to us) the
true parameter has value ⇤ = w, the power is:
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�1
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and for a two sided test:

1� ⇥ =

� �c↵

�1
Pr(T (x)|⇤ = w)dT (x) +

� 1

c↵

Pr(T (x)|⇤ = w)dT (x) (18)

A few comments:

1. ⇥ is the type II error of the test, i.e. the probability of making the incorrect decision
do not reject H0, given that H0 is false.

2. Unlike the case of �, the type I error (and 1-�), which we know exactly (and set),
we will never know the true value of 1� ⇥, the power (or ⇥, the type II error), since
these depend on the true value of the parameters, which are unknown to us.

3. However, we can use strategies to set up our hypothesis tests in ways where we can
control power and type II error compared to other alternative ways of setting up
hypothesis tests (as we will see below and discuss next lecture).

With these concepts in hand, we can write out the following cases, which depend on the
two outcomes of a hypothesis test (we reject H0 or do not reject H0) and that depend on
the two possible cases: H0 is true or H0 is false:

H0 is true H0 is false
cannot reject H0 1-�, (correct) ⇥, type II error

reject H0 �, type I error 1� ⇥, power (correct)
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• We need one more concept to complete our formal introduction to 
hypothesis testing: the alternative hypothesis (HA)

• This defines the set (interval) of values that we are concerned with, 
i.e. where we suspect our true parameter value will fall if our H0 is 
incorrect, i.e. for our example above:

• A complete hypothesis testing setup includes both H0 and HA

• HA makes the concept of one- and two-tailed explicit

• REMINDER (!!): If you reject H0 you cannot say HA is true (!!)

Final general concept

Now, power is something that we in general discuss quite a bit because we often set up H0

as a ‘straw man’ and we are interested in the probability that we will get the right answer
if H0 is indeed false. A few comments on the dependencies of power:

1. Power depends on the true value of the parameter, i.e. how far it is from our H0 (see
class for diagram).

2. We can control power by setting � to di�erent values, e.g. the larger we set �, the
greater the power of the test. However, the trade-o� with setting � higher is that we
are giving ourselves a greater chance of making a type I error.

3. Power depends on whether we use a one-sided or two-sided test. For example, a
one-sided test may be more powerful than a two-sided test if we are sure that, if
H0 : µ = 0 is wrong, the true value of µ is (much) greater than zero. However, a
two-sided test may be more powerful if it is unclear what the true value of µ will be
if H0 : µ = 0 is false.

4. When we set up hypothesis tests optimally, power increases with increasing sample
size n.

As an example of this last point, let’s contrast our example where n = 1 with a case
where n is much larger. Let’s take the case where H0 : µ = 0, HA : µ > 0 and let’s
say that the true value of µ = 1. When n = 1, for our statistic T (x) =

�n
i xi we have

Pr(T (x)) � N(µ,⇥2 = 1). More generally for this statistic, (for n unrestricted) the

sampling distribution is Pr(T (x)) � N(µ, ⇥
2

n = 1
n). Thus, the variance of the sampling

distribution of our statistic gets smaller as our sample size increases. In the case where the
true value of µ = 1, this means that more of the true sampling distribution of our statistic
will be closer to one. This in turn means more of this distribution will be to the right of our
critical value c� as the sample size gets larger and, as a consequence, the power increases
as the sample size increases (see class for diagram).

3 Alternative Hypotheses

We now just need one more concept to complete our formal introduction to hypothesis
testing. The alternative hypothesis HA defines the set (interval) of values that we are
concerned with, which we suspect our parameter will fall in if H0 is not correct (=false).
For example, for our example case where we assume X � N(µ,⇥2), and where we are going
to do a one-sided test of H0 : µ = 0, we set up HA as follows:

HA : µ > 0 (1)

and we can similarly define HA for a two-sided test:

HA : µ ⇥= 0 (2)
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concerned with, which we suspect our parameter will fall in if H0 is not correct (=false).
For example, for our example case where we assume X � N(µ,⇥2), and where we are going
to do a one-sided test of H0 : µ = 0, we set up HA as follows:

HA : µ > 0 (1)

and we can similarly define HA for a two-sided test:

HA : µ ⇥= 0 (2)
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• Note that since we have induced a probability model on our r.v. -> 
sample -> statistic, and a p-value is a function on a statistic, we also 
have a probability distribution on our p-values

• This is the possible p-values we could obtain over an infinite number 
of different samples (sets of experimental trials)!

• This distribution is always (!!) the uniform distribution on [0,1] when 
the null hypothesis is true (!!) regardless of the statistic or 
hypothesis test:

be specific to a given example with associated assumptions, the probability of a p-value is
always the same. Specifically, a p-value has a uniform distribution over the interval [0, 1,
which we may write Pr(pval) ⇥ U [0, 1]. While we haven’t seen the uniform distribution
yet, this particular distribution is pretty intuitive, i.e. each interval of the same size over
zero to one has the same probability. Why would be define p-values in such a way? This
actually makes sense, since intuitively, regardless of the test we perform, we would like the
same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < � is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. � is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� � is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of �, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di�erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with ⌅2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider � = 0.05 (which means c� = 1.65) we can calculate the probability 1 � ⇥ of
rejecting H0:

1� ⇥ =

� �

c↵

fX(x|µ = 1,⌅2 = 1)dx (12)
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Understanding p-values...

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family of probability 
distributions indexed by parameters) on the basis of a sample

• System, Experiment,  Experimental Trial, Sample Space, 
Sigma Algebra, Probability Measure, Random Variable, 
Parameterized Probability Model, Sample, Random 
Vector, Sampling Distribution, Statistic, Statistic 
Sampling Distribution, Estimator, Estimator Sampling 
distribution, Null Hypothesis, Sampling Distribution 
Conditional on the Null, p-value, One-or-Two-Tailed,                                          
Type I Error, Critical Value, Reject / Do Not Reject          
1 - Type I, Type II Error, Power, Alternative Hypothesis



• Since there are an unlimited number of ways to define statistics, 
there are an unlimited number of ways to define hypothesis tests

• However, some are more “optimal” than others in terms of having 
good power, having nice mathematical properties, etc.

• The most widely used framework (which we will largely be 
concerned with in this class) are Likelihood Ratio Tests (LRT)

• Similar to MLE’s (and they include MLE’s to calculate the statistic!) 
they have a confusing structure at first glance, however, just 
remember these are simply a statistic (sample in, number out) that 
we use like any other statistic, i.e. with the number out, we can 
calculate a p-value etc.

Likelihood ratio tests I



• Likelihood Ratio Tests use a statistic with the following structure:

•               is the likelihood function

•                                     is the parameter that maximizes the 
likelihood given the sample restricted to the set of parameters 
defined by H0, which we symbolize by 

•                                     is the parameter that maximizes the 
likelihood given the sample restricted to the set of parameters 
defined by HA                or more usually the values 

• We will assume the following for the alternative set of hypotheses, 
for example:

Likelihood ratio tests II

Note the latter is often desirable since it considers all the other possible values that the
parameter could take but we can define HA for any interval we want, including a point,
and we do this in some special cases. These alternative hypotheses define how we construct
our p-values (and critical values) as shown above.

A few final comments that connects HA to the points we have discussed:

1. A complete set-up of a hypothesis test includes both the definition of H0 and HA,
where both are involved in the definition of the p-value.

2. We can make the concepts of one-tailed and two-tailed hypotheses explicit by defining
the alternative hypothesis (HA).

3. If we can reject H0, this does not mean that HA is true, because we can never be
absolutely certain that H0 is false.

4. The power of the test 1�� is often phrased in terms of the probability of making the
correct decision given that H0 is false and HA is true. In our formalism, the power
is the probability that a particular value of HA is true.

From this point on, whenever we discuss a null hypothesis H0, we will also pair it with (at
least) one alternative hypothesis HA.

4 Likelihood Ratio Tests

There are an unlimited number of ways to define hypothesis tests. However, some ap-
proaches are more ‘optimal’ than others in terms of having good power, etc. In this class,
we will focus on the most widely used framework for constructing hypothesis tests: Likeli-
hood Ratio Tests (LRT). Even in your basic statistics class, you have run across these in
some form, e.g. a t-test is a LRT. In general, LRT are used in the form of the likelihood
ratio or a transformed likelihood ration (see below). To begin, let’s consider an example
LRT that is the likelihood ratio ⇥, defined (in general) as follows:

⇥ =
L(⇥̂0|X = x)

L(⇥̂1|X = x)
(3)

where L(⇥|X = x) is the likelihood function,⇥̂0 = argmax���0L(⇥|X = x) is the parameter
value that maximizes the likelihood of the sample restricted to set of parameter values
described by the null hypothesis �0, and ⇥̂1 = argmax���1L(⇥|X = x) is similarly defined,
restricted to the set of parameters either �1 = �A the entire range of possible values of the
parameter under HA or �1 = �A⌅�0, i.e. the entire range of values under the null and
alternative hypotheses. Note that for most of the cases we will consider, we will assume
HA : ⇥ ⇥ �c

0, the complement to the set �0 (e.g. if H0 : µ = c then HA : µ ⇤= c) and we will
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• Again, consider our simplified normal r.v. with sample n 

• The likelihood is:

• and the LRT statistic for                    is:

• where we have:

Likelihood ratio tests III
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• Remember, to calculate a p-value, we need to know the sampling distribution 
under the null (NOTE likelihood ratio tests are two-sided tests!)

• If we consider the following transformation:

• It turns out that, under conditions that often apply, as the sample size                  
the sampling distribution of this statistic under the null approaches (in the specific 
case on the last slide, the d.f. = k = 1!!):

Likelihood ratio tests IV

the LRT for our sample and we would calculate the p-value, which is calculated from the
sampling distribution of the LRT conditional on H0 being true Pr(LRT |H0 : µ = 0), which
in this case is Pr(LRT |H0 : µ = 0) ⇥ N(0, 1). For our particular example, it is easy to
draw the distribution (see class for diagram) and define c�

We often see a di⇤erent ‘transformed’ version of the LRT defined as follows:

LRT = �2ln⇥ = �2ln

�
L(�̂0|X = x)

L(�̂1|X = x)

⇥
(9)

While the structure of this test statistic can look confusing, keep in mind that it still works
just like any other test statistic, i.e. it is simply a function of a sample LRT = T (X = x),
where we get a value of the LRT, which we use to calculate a p-value and make a
decision about rejecting or not rejecting our H0. It turns out that this is a particu-
larly convenient form of the LRT, since under certain conditions (e.g. smoothness of
the likelihood function), as n approaches infinite (n ⇤ ⌅) the probability distribution
Pr(LRT |H0 : � = c) ⇤ ⇥2

d.f.=1, i.e. a chi squared distribution with one ‘degree of freedom’
(where d.f. is more generally the dimension of � minus the dimension of �0). We have not
yet discussed the structure of ⇥2 distributions. The formula for these does not provide any
deep intuition, so it is probably better to take a look at the ‘shape’ of the pdf’s of these
distributions for di⇤erent degrees of freedom, to get an idea of their structure (take a look
at wikipedia).

A few comments about LRT’s:

1. Note that, as with may hypothesis tests, with LRT we are estimating parameters
to construct this test statistic. Parameter estimation is therefore often a critical
component of hypothesis testing.

2. Part of the reason LRT’s are a desirable statistic derives from the Neyman-Pearson
Lemma, which intuitively states that if H0 and HA are simple (i.e. they both are
equal to a constant), then LRT’s are the most powerful tests that can be constructed.
We are almost never dealing with a case where our HA is simple, but it is often the
case that LRTs are powerful tests.

3. In many common statistical tests, the LRT (under H0) has an exact (known) distri-
bution. For example, most of the tests that you have seen in your introductory statis-
tics classes, including t-tests and F-tests (which you may have used for ANOVAs)
are LRTs.

4. Even when we cannot derive the exact sampling distribution of the LRT under H0,
the sampling distribution of the LRT (under H0) approaches a chi-square distribution
(for a relatively broad set of conditions that we often assume apply), i.e. even in cases
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• There is a difference between a sampling distribution (under the null) that 
approaches a distribution as                  and a case where we know the exact 
distribution for any size n (i.e., for the former, the null distribution is approximate)

• Why use a test statistic where the distribution under the null is approximate 
(since we need to know this distribution to do the hypothesis test!)?

• The approximation is very close even for moderate sized n

• An LRT is a very versatile way of constructing a hypothesis test with “good” 
properties for many types of cases 

• Even better, for some specific tests, the sampling distribution under the null for 
ANY sample size n is known exactly for a specified transformation of the 
likelihood ratio statistic

• Note that this is the case for many of the tests you are familiar with (t-tests, F-
tests, tests of the linear regression slope, etc.), that is, these tests are forms of 
likelihood ratio test statistic!!!

Likelihood ratio tests V
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Genetic system 1

• We will reduce the complexity of a genetic system to two 
components: the genome (the inherited DNA possessed by an 
individual) and the phenotype (an aspect we measure)

• In quantitative genetics we are interested in positions in the 
genome where differences produce a difference in phenotype

• These differences were originally a result of a mutation



Genetic system 1I

• mutation - a change in the DNA sequence of a genome

• In a population of individuals (broadly defined), all differences in the 
genomes among the individuals were originally due to mutations

• Note: for our purposes, regardless of the cause of a mutation, we 
consider any difference produced in a genome that is passed on (or could 
be passed on) to the next generation to be a mutation

• For example, a SNP (Single Nucleotide Polymorphism; = A, G, C, T 
difference), Indels, microsatellites, etc.

• Also note that we will ignore the physical structure of a mutation (e.g. 
SNP, Indel, etc.) and quantify differences as Ai, Aj, etc.

• More specifically, we will be concerned with causal mutations, cases 
where the difference in genome is responsible for a difference in 
phenotype



Genetic system III

• causal mutation - a position in the genome where an experimental 
manipulation of the DNA would produce an effect on the phenotype 
under specifiable conditions

• Formally, we may represent this as follows:

• Note: that this definition considers “under specifiable” conditions” so the 
change in genome need not cause a difference under every manipulation 
(just under broadly specifiable conditions)

• Also note the symmetry of the relationship

• Identifying these is the core of quantitative genetics/genomics (why do we 
want to do this!?) 

• What is the perfect experiment?

• Our experiment will be a statistical experiment (sample and inference!)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)
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The statistical model 1

• We will make the following assumptions about the system:

• At least one causal mutation affecting the phenotype of interest 
has occurred during the history of the population

• At the locus (position) where the mutation occurred, there are 
at least two alleles (states of DNA) among individuals in the 
population (i.e. one is the original state, the other is the 
mutation)

• polymorphism - the existence of more than one allele at a 
locus

• These differences were originally a result of a mutation



The statistical model II

• For most of this class, we will be discussing diploid systems (i.e. 
cases where individuals have two copies of a chromosome), which 
are sexual (i.e. offspring are produced that have a genome that is a 
copy of half of the mother’s and half of the father’s genome), and 
we will be considering polymorphisms that only have two alleles 
(e.g. A1 and A2)

• However, note that the formalism easily extends to ANY genetic 
system (bacteria, tetraploids, cancer, etc.)

• We are also largely going to consider a natural experiment (i.e. our 
sample will be selected from an existing set of individuals in 
nature), although again, the formalism extends to controlled 
experiments as well (!!)



That’s it for today

• Next lecture, we will discuss inference for Genetic Models (!!)


