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• Another typo in homework #3 now corrected (!!) and posted as V3 on 
canvas - for problem 2a had n=5 but the paragraph before it had n=10 
(now both switched to n=5) but PLEASE NOTE:

• We will give full credit for n=5 OR n=10 in 2a (just as we will give full 
credit if you used the older / incorrect critical values for 2h and 2j)

• That is: if you have handed in your homework already no need to 
change it (!!)

• I have updated the syllabus (!!) where please note

• We will have one more homework (#4) that will be available next week

• Your “midterm” will be AFTER Cornell, Ithaca Spring break (available 
April 9)

• On Thurs (March 14) I will be in lecturing from Ithaca and the following 
two weeks I will be lecturing by zoom (although lecture rooms will be 
available) - I will announce more details on Thurs

Announcements



Summary of lecture 14: Genetic 
Probability Models

• Last lecture, we began our introduction to Genetic Models 
(Regressions!)

• Today we will complete our introduction to Regression models 
(=families of probability models!)

• …and we will begin discussing how to do inference for these models 
(specifically MLE!)
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Review: Genetic system

• causal mutation - a position in the genome where an experimental 
manipulation of the DNA would produce an effect on the phenotype 
under specifiable conditions

• Formally, we may represent this as follows:

• Note: that this definition considers “under specifiable” conditions” so the 
change in genome need not cause a difference under every manipulation 
(just under broadly specifiable conditions)

• Also note the symmetry of the relationship

• Identifying these is the core of quantitative genetics/genomics (why do we 
want to do this!?) 

• What is the perfect experiment?

• Our experiment will be a statistical experiment (sample and inference!)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
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A1 ! A2 ) �Y |Z (10)

4



The statistical model I
• As with any statistical experiment, we need to begin by defining our sample space

• In the most general sense, our sample space is:

• More specifically, each individual in our sample space can be quantified as a pair 
of sample outcomes so our sample space can be written as:

• Where        is the genotype sample space at a locus and        is the phenotype 
sample space

• Note that genotype                      is the set of possible genotypes, where for a 
diploid, with two alleles:

• For the phenotype, this can be any type of measurement (e.g. sick or healthy, 
height, etc.)
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The statistical model II
• Next, we need to define the probability model on the sigma 

algebra of the sample space (           ):

• Which defines the probability of each possible genotype and 
phenotype pair:

• We will define two (types) or random variables (* = state 
does not matter):

• Note that the probability model induces a (joint) probability 
distribution on this random vector (these random variables):

For this sample space, we define a probability function (model):

Pr(S) = Pr(Sg, SP ) (5)

One could intuitively look at this as defining distinct probability functions for each of
these sample spaces Sg and SP , although these probability functions would be related and
would actually define a single (joint) pdf for the sample space S = {Sg, SP }, S = {Sg\SP }.

We will define the following two (types) of random variables Y and X, where Y takes
the value of the phenotype to the reals (regardless of the genotype) and X takes the value
of the genotype to the reals (regardless of phenotype):

Y : (⇤, SP ) ! R (6)

X : (Sg, ⇤) ! R (7)

where ⇤ indicates the state of the given subset does not matter. Again, we could intuitively
think of this as defining individual random variables for each sample space Sg and SP where
each element of these random vectors is associated with only one probability function, i.e.
a single random variable cannot be associated with more than one probability function.
A more accurate way to think about this set-up is that we have defined a random vector
[Y,X], where the probability function on S actually defines a joint probability function
over the random variables Y and X:

Pr(Y,X) (8)

and note we could have random vectors that include both discrete and continuous random
variables, such that the joint probability distributions could combine discrete and contin-
uous models.

As we discussed, regardless of the probability model describing our random variables /
vectors, we can use expectations and variances to describe basic aspects of the models. If
we can take the expectation of the random vector [X,Y ] we obtain:

E [Y,X] = [EY,EX] (9)

and the variance of this random vector is:

V ar [Y,X] =


V ar(Y ) Cov(Y,X)

Cov(Y,X) V ar(X)

�

If X reflects a causal mutation (=causal allele =causal polymorphism), then Cov(Y,X) 6= 0
(or Corr(Y,X) 6= 0). Our goal with quantitative genomic inference can therefore be broadly
stated as determining whether Cov(Y,X) 6= 0 using a sample and we will do this using a
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Review: The statistical model III

• The goal of quantitative genomics and genetics is to identify cases 
of the following relationship:

• Remember that, regardless of the probability distribution of our 
random vector, we can define the expectation:

• and the variance:

• The goal of quantitative genomics can be rephrased as assessing 
the following relationship:

For this sample space, we define a probability function (model):

Pr(S) = Pr(Sg, SP ) (5)

One could intuitively look at this as defining distinct probability functions for each of
these sample spaces Sg and SP , although these probability functions would be related and
would actually define a single (joint) pdf for the sample space S = {Sg, SP }, S = {Sg\SP }.

We will define the following two (types) of random variables Y and X, where Y takes
the value of the phenotype to the reals (regardless of the genotype) and X takes the value
of the genotype to the reals (regardless of phenotype):

Y : (⇤, SP ) ! R (6)

X : (Sg, ⇤) ! R (7)

where ⇤ indicates the state of the given subset does not matter. Again, we could intuitively
think of this as defining individual random variables for each sample space Sg and SP where
each element of these random vectors is associated with only one probability function, i.e.
a single random variable cannot be associated with more than one probability function.
A more accurate way to think about this set-up is that we have defined a random vector
[Y,X], where the probability function on S actually defines a joint probability function
over the random variables Y and X:

Pr(Y,X) (8)

and note we could have random vectors that include both discrete and continuous random
variables, such that the joint probability distributions could combine discrete and contin-
uous models.

As we discussed, regardless of the probability model describing our random variables /
vectors, we can use expectations and variances to describe basic aspects of the models. If
we can take the expectation of the random vector [X,Y ] we obtain:

E [Y,X] = [EY,EX] (9)

and the variance of this random vector is:

V ar [Y,X] =


V ar(Y ) Cov(Y,X)

Cov(Y,X) V ar(X)
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If X reflects a causal mutation (=causal allele =causal polymorphism), then Cov(Y,X) 6= 0
(or Corr(Y,X) 6= 0). Our goal with quantitative genomic inference can therefore be broadly
stated as determining whether Cov(Y,X) 6= 0 using a sample and we will do this using a
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Review: The statistical model IV
• We are going to consider a parameterized model to represent the 

probability model of X and Y (that is the true statistical model of 
genetics!!!)

• Specifically, we will consider a regression model

• For the moment, let’s consider a regression model with normal 
error:

• Note that in this model, we consider Y to be the dependent or 
response variable and X to be the independent variable (what are 
the parameters!?)

• Also note implicitly assumes the following:

hypothesis testing framework. Note that while we are going to consider a specific prob-
ability model as the basis for testing this hypothesis, any hypothesis test that assesses
Cov(Y,X) is a legitimate approach to the same goal (and many are used in quantitative
genomic analysis).

So far, we have not described the specific form of the probability model Pr(Y,X) that
we are going to consider. While there are many ways of defining the probability model
that will allow us to accomplish our purpose, we are going to consider the most versatile
and widely used formulation. We will begin our introduction to this model by consider-
ing a phenotype that we can model as continuous, and more specifically, with a normal
probability model, e.g. height (later we will introduce the broad class of models that can
apply to continuous and discrete phentoypes). For such cases, we are going to consider a
linear regression model. We are going to use a form of the same linear regression model
that you likely learned about in your introductory statistics class. Recall that a linear re-
gression mode assumes a similar set-up to the case we have considered, we have measured
a dependent or response variable Y and an independent variable X for each individual in
a sample. We can visualize this sample by plotting X versus Y (see your class notes for a
diagram). We are going to define a probability model that has the following form:

Y = �0 +X�1 + ✏ (10)

✏ ⇠ N(0,�2
✏ ) (11)

where Y and X are the values taken for each individual in the sample, �0 and �1 are
parameters (constants) with some true value that we will estimate from the sample, ✏

is the ‘error’ term and is a random variable with a normal distribution with parameters
µ = 0 and �

2 = �
2
✏ which is unknown (which we generally do not estimate). Note that this

equation is a line (hence ‘linear regression’) and intuitively defines a line through the the
points on the graph of X versus Y , with a slope defined by �1 and which intersects the
Y-axis at �0. Note that the sample points are more ‘scattered’ around this line the greater
the �2

✏ , i.e. we assume that the true probability model is gaussian (normal) where the mean
value of the normal distribution is the value X (the model depends on the value X of an
individual). This means that our probability model actually has the following form:

Pr(Y,X) = Pr(Y |X) (12)

i.e. we assume that X is fixed. This latter point is often not presented in introductory
statistics classes but it is implicit in all regression models.

We can write the value for single individual i in our sample as:

yi = �0 + xi�1 + ✏i (13)
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Review: Linear regression is a 
bivariate distribution

• We’ve seen bivariate (multivariate) distributions before:



Review: Linear regression I

• Let’s review the structure of a linear regression (not 
necessarily a genetic model):
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Review: Linear regression II



• Remember that we define the random variables we need for our genetic 
model by

• Where we have three possible genotypes:

• The quantitative genetic model is a “multiple” regression model with the 
following TWO independent (“dummy”) X variables:

• and the following “multiple” regression equation:

where for an individual i in a sample we may write:

yi = �µ +Xi,a�a + xi,d�d + ✏ (23)

An intuitive way to consider this model, is to plot the phenotype Y on the Y-axis against
the genotypes A1A1, A1A2, A2A2 on the X-axis for a sample (see class). We can repre-
sent all the individuals in our sample as points that are grouped in the three categories
A1A1, A1A2, A2A2 and note that the true model would include points distributed in three
normal distributions, with the means defined by the three classes A1A1, A1A2, A2A2. If
we were to then re-plot these points in two plots, Y versus Xa and Y versus Xd, the first
would look like the original plot, and the second would put the points in two groups (see
class). The multiple linear regression equation (20, 21) defines ‘two’ regression lines (or
more accurately a plane) for these latter two plots, where the slopes of the lines are �a and
�d (see class). Note that �µ is where these two plots (the plane) intersect the Y-axis but
with the way we have coded Xa and Xd, this is actually an estimate of the overall mean
of the population (hence the notation �µ).

To consider a ‘plane’ interpretation of the multiple regression model, let’s consider three
axes, where on the x-axis we will plot Xa, on the y-axis we will plot Xd, and on the z-axis
(which we will plot coming out towards you from the page) we will plot the phenotype Y .
We can draw the x-axis and y-axis as follows:

1 A1A2

�1 A1A1 A2A2

-1 0 1

where the genotype are placed where they would map on the x- and y-axis. Now the phe-
notypes would be plotted above each of these three genotypes in the z-plane and we could
think of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =

⇥
�µ,�a,�d,�

2
✏

⇤
. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �

2
✏ may be any value). As we will discuss, the way we are going to assess whether a

genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)
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and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)
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The genetic probability model I
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The genetic probability model II
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and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)
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S
k

i
Ai = ⌦ and Ai \Aj = ; for all i 6= j

B ⇢ ⌦ (223)

Pr(Xcp|X, r) = Pr(g|r) (224)

Pr(Y |X) ⇠ N(�µ +Xa�a +Xd�d,�
2
✏ ) (225)
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Linear regression III

• The linear regression model allows calculation of the 
(interval) probability of observations (!!)

hypothesis testing framework. Note that while we are going to consider a specific prob-
ability model as the basis for testing this hypothesis, any hypothesis test that assesses
Cov(Y,X) is a legitimate approach to the same goal (and many are used in quantitative
genomic analysis).

So far, we have not described the specific form of the probability model Pr(Y,X) that
we are going to consider. While there are many ways of defining the probability model
that will allow us to accomplish our purpose, we are going to consider the most versatile
and widely used formulation. We will begin our introduction to this model by consider-
ing a phenotype that we can model as continuous, and more specifically, with a normal
probability model, e.g. height (later we will introduce the broad class of models that can
apply to continuous and discrete phentoypes). For such cases, we are going to consider a
linear regression model. We are going to use a form of the same linear regression model
that you likely learned about in your introductory statistics class. Recall that a linear re-
gression mode assumes a similar set-up to the case we have considered, we have measured
a dependent or response variable Y and an independent variable X for each individual in
a sample. We can visualize this sample by plotting X versus Y (see your class notes for a
diagram). We are going to define a probability model that has the following form:

Y = �0 +X�1 + ✏ (10)

✏ ⇠ N(0,�2
✏ ) (11)

where Y and X are the values taken for each individual in the sample, �0 and �1 are
parameters (constants) with some true value that we will estimate from the sample, ✏

is the ‘error’ term and is a random variable with a normal distribution with parameters
µ = 0 and �

2 = �
2
✏ which is unknown (which we generally do not estimate). Note that this

equation is a line (hence ‘linear regression’) and intuitively defines a line through the the
points on the graph of X versus Y , with a slope defined by �1 and which intersects the
Y-axis at �0. Note that the sample points are more ‘scattered’ around this line the greater
the �2

✏ , i.e. we assume that the true probability model is gaussian (normal) where the mean
value of the normal distribution is the value X (the model depends on the value X of an
individual). This means that our probability model actually has the following form:

Pr(Y,X) = Pr(Y |X) (12)

i.e. we assume that X is fixed. This latter point is often not presented in introductory
statistics classes but it is implicit in all regression models.

We can write the value for single individual i in our sample as:

yi = �0 + xi�1 + ✏i (13)
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Linear regression IV
• A multiple regression model has the same structure, with a 

single dependent variable Y and more than one independent 
variable Xi, Xj, e.g., 



• Note that, while somewhat arbitrary, the advantage of the Xa 
and Xd coding is the parameters       and       map directly on 
to relationships between the genotype and phenotype that 
are important in genetics:

• If                           then this is a “purely” additive case

• If                            then this is only over- or under-
dominance (homozygotes have equal effects on phenotype)

• If both are non-zero, there are both additive and 
dominance effects

• If both are zero, there is no effect of the genotype on the 
phenotype (the genotype is not causal!)

The genetic probability model III
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Genetic example 1

• As an example, consider the following of a “purely additive” 
case (= no dominance):

where for an individual i in a sample we may write:

yi = �µ +Xi,a�a + xi,d�d + ✏ (23)

An intuitive way to consider this model, is to plot the phenotype Y on the Y-axis against
the genotypes A1A1, A1A2, A2A2 on the X-axis for a sample (see class). We can repre-
sent all the individuals in our sample as points that are grouped in the three categories
A1A1, A1A2, A2A2 and note that the true model would include points distributed in three
normal distributions, with the means defined by the three classes A1A1, A1A2, A2A2. If
we were to then re-plot these points in two plots, Y versus Xa and Y versus Xd, the first
would look like the original plot, and the second would put the points in two groups (see
class). The multiple linear regression equation (20, 21) defines ‘two’ regression lines (or
more accurately a plane) for these latter two plots, where the slopes of the lines are �a and
�d (see class). Note that �µ is where these two plots (the plane) intersect the Y-axis but
with the way we have coded Xa and Xd, this is actually an estimate of the overall mean
of the population (hence the notation �µ).

�µ = 2,�a = 5,�d = 0,�2
✏ = 1

�µ = 0,�a = 4,�d = �2,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 2,�a = 0,�d = 0,�2
✏ = 1

To consider a ‘plane’ interpretation of the multiple regression model, let’s consider three
axes, where on the x-axis we will plot Xa, on the y-axis we will plot Xd, and on the z-axis
(which we will plot coming out towards you from the page) we will plot the phenotype Y .
We can draw the x-axis and y-axis as follows:

1 A1A2

�1 A1A1 A2A2

-1 0 1

where the genotype are placed where they would map on the x- and y-axis. Now the phe-
notypes would be plotted above each of these three genotypes in the z-plane and we could

8



Genetic example II

• An example of  “dominance” (= not a “pure additive” case):

H0 : Cov(Xa, Y ) = 0 \ Cov(Xd, Y ) = 0 (35)

HA : Cov(Xa, Y ) 6= 0 [ Cov(Xd, Y ) 6= 0 (36)

H0 : �a = 0 \ �d = 0 (37)

HA : �a 6= 0 [ �d 6= 0 (38)

F�statistic = f(⇤) (39)

�µ = 0,�a = 4,�d = �1,�2
✏ = 1 (40)
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Review: Genetic example III
• A case of NO genetic effect:

where for an individual i in a sample we may write:

yi = �µ +Xi,a�a + xi,d�d + ✏ (23)

An intuitive way to consider this model, is to plot the phenotype Y on the Y-axis against
the genotypes A1A1, A1A2, A2A2 on the X-axis for a sample (see class). We can repre-
sent all the individuals in our sample as points that are grouped in the three categories
A1A1, A1A2, A2A2 and note that the true model would include points distributed in three
normal distributions, with the means defined by the three classes A1A1, A1A2, A2A2. If
we were to then re-plot these points in two plots, Y versus Xa and Y versus Xd, the first
would look like the original plot, and the second would put the points in two groups (see
class). The multiple linear regression equation (20, 21) defines ‘two’ regression lines (or
more accurately a plane) for these latter two plots, where the slopes of the lines are �a and
�d (see class). Note that �µ is where these two plots (the plane) intersect the Y-axis but
with the way we have coded Xa and Xd, this is actually an estimate of the overall mean
of the population (hence the notation �µ).

�µ = 2,�a = 5,�d = 0,�2
✏ = 1

�µ = 0,�a = 4,�d = �2,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 2,�a = 0,�d = 0,�2
✏ = 1

To consider a ‘plane’ interpretation of the multiple regression model, let’s consider three
axes, where on the x-axis we will plot Xa, on the y-axis we will plot Xd, and on the z-axis
(which we will plot coming out towards you from the page) we will plot the phenotype Y .
We can draw the x-axis and y-axis as follows:

1 A1A2

�1 A1A1 A2A2

-1 0 1

where the genotype are placed where they would map on the x- and y-axis. Now the phe-
notypes would be plotted above each of these three genotypes in the z-plane and we could
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Quantitative genetic formalism
• For those of you who have been exposed to classic quantitative 

genetics, you have seen a different notation for this model: 

• P is the phenotypic value - the value of the aspect measured

• G is the genotypic value - the expected value of the phenotype 
conditional on the genotype

• E is the environmental value - the value of the phenotype that 
we cannot explain given the genotype

• These translate as follows for our one locus case (although note the 
formalism extends to any multiple locus case):

Our eventual goal with this model is to perform to infer whether the genotypic value
G = EY = �µ +Xi,a�a +Xi,d�d associated with the three genotypes have the same value
(if they do not, this indicates a causal polymorphism). We will therefore eventually con-
struct a hypothesis test with the following null and alternative hypotheses, to assess this
possibility:

H0 : �a = 0 ⇤ �d = 0 (7)

HA : �a �= 0 ⇥ �d �= 0 (8)

Note that quantitative genomics is a field where a hypothesis test in its pure form ‘makes
sense’. In many statistical hypothesis testing applications, we set up a null hypothesis that
is a ‘straw man’ where there are not critical implications if the null hypothesis is true.
In quantitative genomics, the null hypothesis and alternative hypothesis have clear (and
meaningful) interpretations: if the null is true then the polymorphism is not causal, if the
alternative is true then the polymorphism is causal. Hypothesis testing therefore has a
natural fit with the goals of quantitative genomic inference.

3 Quantitative genetic notation

We have expressed the probability model (the regression) model that we are going to use
for quantitative genomic inference using notation that is typical of regressions (in general).
You will notice that in the ‘quantitative genetic’ literature (field) they use slightly di�erent
notation. However, this notation maps directly on to the regression notation we employ.
In quantitative genomics, they are concerned with the random variable P , G, and E, which
are the phenotypic value, the genotypic value, and the environmental value respectively.
These have the following relationships with our regression notation:

Y = P (9)

G = EP = EY = �µ +Xa�a +Xd�d (10)

⇥ = E (11)

Note that here we are considering the genotypic value associated with a ‘single’ locus,
i.e. G also has a clear definition if we are considering more than one locus. Also, note
that E is often referred to as the environmental e�ect (although in inference, this term
accounts for environmental e�ects, measurement error, etc. any variation not accounted
for by genetics). With this notation in hand, we may now write the classic equation used
in quantitative genetics:

P = G+ E (12)

which we will return to in the last few lectures of the course.
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Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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2 (see figure
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where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)
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Estimators
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Estimator: Estimator (Statistic) 
Sampling Distribution:
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EY = a+ bEX

Var(Y ) = b
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4
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(⌦,F , P r)

x
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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✓ 2 ⇥ (3)

✓̂ (4)

N = {1, 2, 3, ...} (5)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (6)

R = { 0!} (7)

�1 > x >1 (8)

⌦ (9)

F (10)

Pr(F) (11)

; 2 F (12)

f(X(F), P r) : {X, P r(X)}! R (13)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (14)

F (15)

X1, ..., Xk : ⌦! Rk (16)
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Pr(X) (28)

X = x , Pr(X)
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,

X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

Pr(F) ! Pr(X)

Pr(✓̂)

Pr(T (X)|H0 : ✓ = c)

H0 : ✓ = c
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Genetic inference I

• For our model focusing on one locus:

• We have four possible parameters we could estimate:

• However, for our purposes, we are only interested in the 
genetic parameters and testing the following null hypothesis:

think of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =

⇥
�µ,�a,�d,�

2
✏

⇤
. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �

2
✏ may be any value). As we will discuss, the way we are going to assess whether a

genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)

HA : �a 6= 0 [ �d 6= 0 (25)

Note that intuitively, if we reject this null hypothesis, there is a relationship between the
phenotype Y and the genotype possessed by an individual, i.e. the definition of a causal
polymorphism. Also, note that cases where �a 6= 0 or �d = 0 and �a = 0 and �d 6= 0 are
such cases (where the first defines a straight line through the mean of the phenotypes asso-
ciated with each genotype and the latter defines a case where the mean of the heterozygotes
A1A2 is greater than the homozygotes). In genetic terms, a case where �d = 0 is a (purely)
additive case and any case where �d 6= 0 is a case of ‘dominance’, i.e. a case where the
mean phenotype associated with the heterozygote genotype is not mid-way between the
means of the phenotypes associated with the homozygote genotypes (a case where �a = 0
and �d 6= 0 is an example of ‘overdominance’ or ‘underdominance’).

Note section 4 on ‘quantitative genetic notation’ has been moved to the notes for next
lecture (lecture 10).
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and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)

7

and we can write the ‘predicted’ value of yi of an individual as:
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HA : Cov(Xa, Y ) 6= 0 [ Cov(Xd, Y ) 6= 0 (35)

H0 : �a = 0 \ �d = 0 (36)

HA : �a 6= 0 [ �d 6= 0 (37)
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H0 : Cov(Xa, Y ) = 0 \ Cov(Xd, Y ) = 0 (35)

HA : Cov(Xa, Y ) 6= 0 [ Cov(Xd, Y ) 6= 0 (36)

H0 : �a = 0 \ �d = 0 (37)

HA : �a 6= 0 [ �d 6= 0 (38)
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Genetic inference II
• Recall that inference (whether estimation or hypothesis testing) 

starts by collecting a sample and defining a statistic on that 
sample

• In this case, we are going to collect a sample of n individuals 
where for each we will measure their phenotype and their 
genotype (i.e. at the locus we are focusing on) 

• That is an individual i will have phenotype yi and genotype          
gi = AjAk (where we translate these into xa and xd)

• Using the phenotype and genotype we will construct both an 
estimator (a statistic!) and we will additionally construct a test 
statistic

• Remember that our regression probability model defines a 
sampling distribution on our sample and therefore on our 
estimator and test statistic (!!)



Matrix Basics



That’s it for today

• Next lecture, we will continue our discussion of inference for 
Genetic Models (!!)


