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Announcements

® Another typo in homework #3 now corrected (!!) and posted asV3 on
canvas - for problem 2a had n=5 but the paragraph before it had n=10
(now both switched to n=5) but PLEASE NOTE:

®  We will give full credit for n=5 OR n=10 in 2a (just as we will give full
credit if you used the older / incorrect critical values for 2h and 2j)

® That is: if you have handed in your homework already no need to
change it (!!)

® | have updated the syllabus (!!) where please note
® We will have one more homework (#4) that will be available next week

® Your “midterm” will be AFTER Cornell, Ithaca Spring break (available
April 9)

® On Thurs (March 14) | will be in lecturing from Ithaca and the following
two weeks | will be lecturing by zoom (although lecture rooms will be
available) - | will announce more details on Thurs



Summary of lecture |4: Genetic
Probability Models

® |[ast lecture, we began our introduction to Genetic Models
(Regressions!)

® Today we will complete our introduction to Regression models
(=families of probability models!)

® ...and we will begin discussing how to do inference for these models
(specifically MLE!)



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



The statistical model |

As with any statistical experiment, we need to begin by defining our sample space

In the most general sense, our sample space is:

() = { Possible Individuals }

More specifically, each individual in our sample space can be quantified as a pair
of sample outcomes so our sample space can be written as:

0 ={0,NQp}

Where Qg is the genotype sample space at a locus and {) p is the phenotype
sample space

Note that genotype g; = Aj Ay is the set of possible genotypes, where for a
diploid, with two alleles:

Qg ={A1A1,A1A2, Az Ao}

For the phenotype, this can be any type of measurement (e.g. sick or healthy,
height, etc.)



The statistical model Il

Next, we need to define the probability model on the sigma
algebra of the sample space (/¢  p1 ):

PT(.F{g,p})

Which defines the probability of each possible genotype and
phenotype pair:
Pr{g, P}

We will define two (types) or random variables (* = state
does not matter):

Y:(*,Qp)%R
X :(Qg,%x) =R

Note that the probability model induces a (joint) probability
distribution on this random vector (these random variables):

Pr(Y, X)



Review: The statistical model |l

The goal of quantitative genomics and genetics is to identify cases
of the following relationship:

Pr(YNX)=PrY,X)# Pr(Y)Pr(X)

Remember that, regardless of the probability distribution of our
random vector, we can define the expectation:

E[Y,X] — [EY, EX]
and the variance:

Var(Y) Covu(Y,X)

VarlY, X| = Cov(Y,X) Var(X)

The goal of quantitative genomics can be rephrased as assessing
the following relationship:

Cov(Y,X) #£ 0



Review: The statistical model IV

We are going to consider a parameterized model to represent the
probability model of X and Y (that is the true statistical model of
genetics!!!)

Specifically, we will consider a regression model

For the moment, let’s consider a regression model with normal
error:

Y =060+ XB1+e¢
e ~ N(0,07)

Note that in this model, we considerY to be the dependent or
response variable and X to be the independent variable (what are
the parameters!?)

Also note implicitly assumes the following:

Pr(Y,X) = Pr(Y|X)



Review: Linear regression is a
bivariate distribution

® We've seen bivariate (multivariate) distributions before:

rho=0.5




Review: Linear regression |

® |et’s review the structure of a linear regression (not
necessarily a genetic model):

Y =080+ XpB1+e€ GNN(ONT?)

Density




Review: Linear regression |l




The genetic probability model |

Remember that we define the random variables we need for our genetic

del b
mode by Y:(*,Qp)%R

X :(Qg,%) >R

Where we have three possible genotypes:
Qg ={A1A1,A1 A2, Ax Ao}

The quantitative genetic model is a “multiple” regression model with the
following TWO independent (“dummy”) X variables:

Xa(A1A7) = =1, X4 (A142) =0, X (A242) =1
Xd(AlAl) = —1,Xd(A1A2> = 1,Xd(A2A2) = —1

1 A1 Ay
—1 AlAl A2A2
| -1 0 1

and the following “multiple” regression equation:

YZﬁu""XaBa"‘Xdﬁd"‘e
e~ N(0,07)



The genetic probability model |l

The probability distribution of this model, is therefore:
Pr(Y|X) ~ N(B, + XaBa + XaB4,02)

Which has four parameters:

2
B,Lw 6&7 de O¢

The threeﬁ parameters are required to model the three
separate genotypes (AIAI,Al1A2,A2A2)

The € can be thought of as a random variable that describes
the probability an individual will have a specific value of Y,
conditional on the genotype AiAj, where the probability is
normally distributed around the value determined by the X’s
and 3 s

e ~ N(0,07)



Linear regression ||

® The linear regression model allows calculation of the
(interval) probability of observations (!!)

Y =+ Xp+e e~ N(0,07)




Linear regression |V

A multiple regression model has the same structure, with a
single dependent variable Y and more than one independent
variable Xi, X, e.g.,




The genetic probability model |l

® Note that, while somewhat arbitrary, the advantage of the Xa
and Xd coding is the parameters 5, and (35 map directly on
to relationships between the genotype and phenotype that
are important in genetics:

o |f 5, # 0,85 =0 then this is a “purely” additive case

o If 3, =0,847#0 then this is only over- or under-
dominance (homozygotes have equal effects on phenotype)

® |[f both are non-zero, there are both additive and
dominance effects

® |f both are zero, there is no effect of the genotype on the
phenotype (the genotype is not causal!)



Genetic example |

® As an example, consider the following of a “purely addltlve
case (= no dominance): 5# =2,8,=05,8;,=0, O' =1

f
oD CDOMMEYD ™ O

' 0.0 40 00 1.0 40 00 1.0
-0.5 Xa Xd

~1.0 -05 00 05 1.0
Xa



Genetic example |

® An example of “dominance” (= not a “pure additive” case):

B =0,Ba=4,80=—1,0; =1

-4 -2 0 2 4 6 8 10
OOTMNRD (D

10 65 o0 05 i0'°

Xa

1'6

1.0



Review: Genetic example I

® A case of NO genetic effect:

6#2275a2076d2070-62: 1

o
C

2 3
mrnl-lmnlnmmooo 00 O
OOD CONERIDOOOMDATOCHENINNGD (D 00 0o

o (o]
o
{0 05 00 05 10" 10 00 10

Xa



Quantitative genetic formalism

® For those of you who have been exposed to classic quantitative
genetics, you have seen a different notation for this model:

P=G+E
® Pis the phenotypic value - the value of the aspect measured

® G is the genotypic value - the expected value of the phenotype
conditional on the genotype

e [ is the environmental value - the value of the phenotype that
we cannot explain given the genotype

® These translate as follows for our one locus case (although note the
formalism extends to any multiple locus case):

Y =P

G:EP:EYZBM+Xa5a+XdBd
e=F



Estimators

. — N . E S
Estimator: T(x) = 6} sqmping bisstion: P (T(X)10) , 0 € ©

1 f

[Xl — L1y eeny Xn —an E X1 —xl,...,Xn:xn])

= I \ / Pr
/Ra:dom Varl:ble\

X X(w),w € N Pr(F)
4 A A
Experiment () F

(Sample Space) (Sigma Algebra)



Hypothesis Tests

Hypothesis: T'(x), Ho:0 =c avetic sampling - pr.(7(X)|6) , 0 € ©

Distribution:

1 f

[Xl — L1y eeny Xn —an E X1 —xl,...,Xn:xn])

= I \ / Pr
/Ra:dom Varl:ble\

X X(w),w € N Pr(F)
4 A A
Experiment () F

(Sample Space) (Sigma Algebra)



Genetic inference |

® For our model focusing on one locus:

Y:5u+Xa5a+Xd6d‘|'€
e ~ N(0,07)

® We have four possible parameters we could estimate:

0 = [B,Lw Baa 6d7 0-62}

® However, for our purposes, we are only interested in the
genetic parameters and testing the following null hypothesis:

Hy: Cov(X,,Y)=0NCov(Xy4,Y) =0 OR Hy:8,=0NpG3=0
Hy:Cov(X,,Y)#0UCov(Xyg,Y)#0 Hp: B, #0UBg #0



Genetic inference |l

Recall that inference (whether estimation or hypothesis testing)
starts by collecting a sample and defining a statistic on that
sample

In this case, we are going to collect a sample of n individuals
where for each we will measure their phenotype and their
genotype (i.e. at the locus we are focusing on)

That is an individual i will have phenotype yi and genotype
gi = AjAk (where we translate these into xaand xd)

Using the phenotype and genotype we will construct both an
estimator (a statistic!) and we will additionally construct a test
statistic

Remember that our regression probability model defines a
sampling distribution on our sample and therefore on our
estimator and test statistic (!!)



Matrix Basics

a
- Vi Y my. . mp ~
V=V = M, =M, = M,=M,=|b
my My
C

We will also follow statistics convention where the first subscript will index rows and the
second will index columns (note this is usually reversed in mathematics literature).

. my, +m, my, +m,
Matrix sum: M, + M, = -

my, +my My, +m,,

, . [a b ¢
Matrix transpose: M, =
S |d e f
. . cmy,  Ccmy,
Scalar times a matrix: cM, =

Chy . Chiy,

Matrix multiplication:
am,, +dm,, —am, +dm,,

M,M, =|bm, +em,  bm, +em,,

MIMI =l

mymy, +my,m,,  mmp, +m2|mzzl

My 1y + My My, My My, + My, 1,
cmy, + fmy, cmy, + fm,

1% v,V v,V v
whi=|"b, wl=| " T Vvl v =y vy,
V2 i Vv, W, Va
V,
If the following holds: v,Tv2 = [v, VQ{ ’l =0 then v4 and v, are orthogonal.
Vs

1 0
The identity matrix is defined as follows: I = [0 1] , i.e. diagonal elements are “1” and
all other elements are “0”.

The inverse of a matrix M™" has a structure such that is satisfies the following relationship
(for a “square”, k x k matrix): MM~ =T and M"'M =1.



That’s it for today

® Next lecture, we will continue our discussion of inference for
Genetic Models (!!)



