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• A Homework #2 Key “V2” now posted (an error has been corrected)

• I have updated the syllabus (!!) where please note

• We will have one more homework (#4) that will be available next week

• Your “midterm” will be AFTER Cornell, Ithaca Spring break (available 
April 9) - more to come on this in the coming weeks…

• The next two weeks (March 18 and March 25) I will be lecturing by zoom 
for BOTH Tues and Thurs lectures

• You are welcome to join by zoom 

• I will be projecting to the Cornell (Ithaca) classrooms as usual

• I will be projecting to Weill Cornell Med (NYC) classrooms as (now 
updated) on the syllabus (PLEASE NOTE: we do not have an NYC 
classroom March 19 - please join by zoom!)

Announcements



Summary of lecture 15: Genetic 
Model Hypothesis Testing

• Last lecture, we completed our introduction to Regression models 
(=families of probability models!)

• Today we will discuss how to do inference for these models - 
specifically MLE and Hypothesis Testing using F-statistics!
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Review: Genetic system

• causal mutation - a position in the genome where an experimental 
manipulation of the DNA would produce an effect on the phenotype 
under specifiable conditions

• Formally, we may represent this as follows:

• Note: that this definition considers “under specifiable” conditions” so the 
change in genome need not cause a difference under every manipulation 
(just under broadly specifiable conditions)

• Also note the symmetry of the relationship

• Identifying these is the core of quantitative genetics/genomics (why do we 
want to do this!?) 

• What is the perfect experiment?

• Our experiment will be a statistical experiment (sample and inference!)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)
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• Remember that we define the random variables we need for our genetic 
model by

• Where we have three possible genotypes:

• The quantitative genetic model is a “multiple” regression model with the 
following TWO independent (“dummy”) X variables:

• and the following “multiple” regression equation:

where for an individual i in a sample we may write:

yi = �µ +Xi,a�a + xi,d�d + ✏ (23)

An intuitive way to consider this model, is to plot the phenotype Y on the Y-axis against
the genotypes A1A1, A1A2, A2A2 on the X-axis for a sample (see class). We can repre-
sent all the individuals in our sample as points that are grouped in the three categories
A1A1, A1A2, A2A2 and note that the true model would include points distributed in three
normal distributions, with the means defined by the three classes A1A1, A1A2, A2A2. If
we were to then re-plot these points in two plots, Y versus Xa and Y versus Xd, the first
would look like the original plot, and the second would put the points in two groups (see
class). The multiple linear regression equation (20, 21) defines ‘two’ regression lines (or
more accurately a plane) for these latter two plots, where the slopes of the lines are �a and
�d (see class). Note that �µ is where these two plots (the plane) intersect the Y-axis but
with the way we have coded Xa and Xd, this is actually an estimate of the overall mean
of the population (hence the notation �µ).

To consider a ‘plane’ interpretation of the multiple regression model, let’s consider three
axes, where on the x-axis we will plot Xa, on the y-axis we will plot Xd, and on the z-axis
(which we will plot coming out towards you from the page) we will plot the phenotype Y .
We can draw the x-axis and y-axis as follows:

1 A1A2

�1 A1A1 A2A2

-1 0 1

where the genotype are placed where they would map on the x- and y-axis. Now the phe-
notypes would be plotted above each of these three genotypes in the z-plane and we could
think of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =

⇥
�µ,�a,�d,�

2
✏

⇤
. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �

2
✏ may be any value). As we will discuss, the way we are going to assess whether a

genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)
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and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)
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Review: Genetic probability model

�̂ or H0 : � = c
Pr(T (X) , Pr(T (X|�) , Pr(T (X|H0 : � = c)

L(�|x) =
�

1↵
2⇤

⇥n

e
Pn

i=1
�(xi�µ)2

2 (3)

⇥ = { Possible Individuals }
⇥ = {⇥g ⌥ ⇥P } (4)

⇥g = {A1A1, A1A2, A2A2} (5)

⇥g (6)

⇥P (7)

F{g,P} (8)

Pr(F{g,P}) (9)

Pr{g, P} (10)

Pr(Y ⌥X) = Pr(Y,X) ⇧= Pr(Y )Pr(X) (11)

H0 : Pr(Y,X) = Pr(Y )Pr(X) (12)

Y : (⇥,⇥P ) ⇤ R (13)

X : (⇥g, ⇥) ⇤ R (14)

LRT = � =

1

(2⇥)
n
2
e
Pn

i=1
�(xi�H0(µ))

2

2

1

(2⇥)
n
2
e
Pn

i=1
�(xi�MLE(µ̂))2

2

(15)

� =
L(�̂0|x)
L(�̂1|x)

(16)

Pr(LRT |H0 : � = c) ⇤ ⌅2
d.f. (17)

LRT = �2ln(�) = �2ln

�
L(�̂0|x)
L(�̂1|x)

⇥
(18)

L(�|x) (19)

�̂0 = argmax���0L(�|x) (20)

�̂1 = argmax���1L(�|x) (21)

H0 : µ = c (22)

[0,⌅) (23)
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Linear regression IV
• A multiple regression model has the same structure, with a 

single dependent variable Y and more than one independent 
variable Xi, Xj, e.g., 



Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Estimators
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Pr(T (X)) (5)
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Estimator: Estimator (Statistic) 
Sampling Distribution:
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T (X) (4)

T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)

3

=

✓ 2 ⇥ (3)

✓̂ (4)

N = {1, 2, 3, ...} (5)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (6)

R = { 0!} (7)

�1 > x >1 (8)

⌦ (9)

F (10)
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This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (14)

F (15)

X1, ..., Xk : ⌦! Rk (16)

[X1 = x1, ..., Xk = xk] (17)

Pr(X1, ..., Xk) (18)

E(⌦) (19)

E (20)

X(⌦) (21)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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• For set of genotypes at a position taking states A1A1, 
A1A2, A2A2 (given our Xa and Xd coding) for the 
TRUE model (!!):

• If               AND / OR           then the genotypes 
(polymorphism, alleles, mutation) are causal (!!)

• If      = 0 AND     = 0 there is no effect of the 
genotype on the phenotype (the genotype is not 
causal!)

• There our H0 of interest is      = 0 AND      = 0 (!!)

Review: Genetic probability model
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Review: Genetic inference I

• For our model focusing on one locus:

• We have four possible parameters we could estimate:

• However, for our purposes, we are only interested in the 
genetic parameters and testing the following null hypothesis:

think of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =

⇥
�µ,�a,�d,�

2
✏

⇤
. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �

2
✏ may be any value). As we will discuss, the way we are going to assess whether a

genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)

HA : �a 6= 0 [ �d 6= 0 (25)

Note that intuitively, if we reject this null hypothesis, there is a relationship between the
phenotype Y and the genotype possessed by an individual, i.e. the definition of a causal
polymorphism. Also, note that cases where �a 6= 0 or �d = 0 and �a = 0 and �d 6= 0 are
such cases (where the first defines a straight line through the mean of the phenotypes asso-
ciated with each genotype and the latter defines a case where the mean of the heterozygotes
A1A2 is greater than the homozygotes). In genetic terms, a case where �d = 0 is a (purely)
additive case and any case where �d 6= 0 is a case of ‘dominance’, i.e. a case where the
mean phenotype associated with the heterozygote genotype is not mid-way between the
means of the phenotypes associated with the homozygote genotypes (a case where �a = 0
and �d 6= 0 is an example of ‘overdominance’ or ‘underdominance’).

Note section 4 on ‘quantitative genetic notation’ has been moved to the notes for next
lecture (lecture 10).
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and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)
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HA : Cov(Xa, Y ) 6= 0 [ Cov(Xd, Y ) 6= 0 (35)

H0 : �a = 0 \ �d = 0 (36)

HA : �a 6= 0 [ �d 6= 0 (37)
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Review: Genetic inference II
• Recall that inference (whether estimation or hypothesis testing) 

starts by collecting a sample and defining a statistic on that 
sample

• In this case, we are going to collect a sample of n individuals 
where for each we will measure their phenotype and their 
genotype (i.e. at the locus we are focusing on) 

• That is an individual i will have phenotype yi and genotype          
gi = AjAk (where we translate these into xa and xd)

• Using the phenotype and genotype we will construct both an 
estimator (a statistic!) and we will additionally construct a test 
statistic

• Remember that our regression probability model defines a 
sampling distribution on our sample and therefore on our 
estimator and test statistic (!!)



Matrix Basics



Genetic inference III
• For notation convenience, we are going to use vector / matrix 

notation to represent a sample: 

4 Estimation of parameters in the multiple regression model

To provide a compact description of the estimator (more specifically the maximum likeli-
hood estimator) of parameters in our multiple regression model, we are going to use vector
notation. We have used vector and matrix notation in this course previously in our dis-
cussion of random vectors. So far, we have simply used these for notation convenience.
However, it turns out that vectors and matrices are objects like numbers that (when ap-
propriately defined) follow basic rules such as matrix addition and multiplication (which
are analogs of addition and multiplication operations that you are used to). To allow
such rules, we have to rigorously define a vector space and associated concepts. These are
covered in a linear algebra course and we will not discuss these concepts here. We will
therefore assume that the rigorous assumptions allowing matrix operations are met and
make use of these operations.

Instead of going through the set of operations and concepts that we will use (see ‘Sup-
plement’ on the class site), I have provided a handout which outlines all the concepts
that you will need: matrix (vector) addition and multiplication, matrix transpose, scalar
and matrix multiplication, matrix inverses, the identity matrix I, symmetric matrices, and
orthogonal vectors. We will follow these rules throughout the course without a deep discus-
sion of why they work and make sense, i.e. assume that they are mathematical consistent
and that there is a deep intuition behind them. Note one critical concept: we have allowed
vectors to be written horizontally, e.g.:

Y = [Y1, Y2] (13)

or vertically, e.g.:

Y =

�
Y1
Y2

⇥

While the distinction has not been important previously, when dealing with vector and
matrix operations, we need to specify whether our vector is horizontal or vertical. For the
remainder of this course, you can assume that when we write a vector Y, we assume that
the vector is vertical unless stated otherwise.

We are going to make use of vector operations to write a regression formula for all the
individuals in a sample of size n in a compact manner. The non-compact way of represent-
ing the sample is: ⇤

⌥⌥⌥⇧

y1
y2
...
yn

⌅

���⌃
=

⇤

⌥⌥⌥⇧

�µ + x1,a�a + x1,d�d + ⇥1
�µ + x2,a�a + x2,d�d + ⇥2

...
�µ + xn,a�a + xn,d�d + ⇥n

⌅

���⌃
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Using matrix notation, matrix multiplication, and matrix addition, we can re-write this as:

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

1 x1,a x1,d
1 x2,a x2,d
...

...
. . .

1 xn,a xn,d

⇥

⌃⌃⌃⌅

�

⇤
�µ
�a
�d

⇥

⌅+

�

⇧⇧⇧⇤

⇥1
⇥2
...
⇥n

⇥

⌃⌃⌃⌅

which we can write using the following compact matrix notation:

y = x� + ⇥ (14)

for a specific sample and
Y = X� + ⇥ (15)

for an arbitrary sample, where the � and ⇥ here are vectors.

Recall that there are true values of � = [�µ,�a,�d] that describe the true relationship
between genotype and phenotype (specifically the true genotypic values), which in turn
describe the variation in Y in a given sample of size n, given genotype states X. Just as
with our general estimation framework, we are interested in defining a statistic (a function
on a sample) that takes a sample as input and returns a vector, where the elements of the
vector provide an estimate of �, i.e. we will define a statistic T (y,xa,xd) = �̂ = [�̂µ, �̂a, �̂d].
More specifically we will define a maximum likelihood estimate (MLE) of these parameters
(again, recall that for all the complexity of how MLE’s are calculated, they are simply
statistics that take a sample as an input and provide an estimator as an output). We will
not discuss the derivation of the MLE for the � parameters of a multiple regression model
(although it is not that di⇥cult to derive), but will rather just provide the form of the MLE.
Note that this MLE has a simple form, such that we do not have to go through the process
of maximizing a likelihood, rather, we can write down a simple formula that provides an
expression that we know is the (single) maximum of the likelihood of the regression model.

With the vector and matrix notation introduced above, we can write the MLE as follows:

MLE(�̂) =

�

⇤
�̂µ
�̂a
�̂d

⇥

⌅

where the formula is as follows:

MLE(�̂) = (XTX)�1XTY (16)

As a side-note, this is also the ‘least-squares’ estimate of the regression parameters and
the ‘Best Linear Unbiased Estimate’ (BLUE) of these parameters, i.e. several statistics
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where for an individual i in a sample we may write:

yi = �µ + xi,a�a + xi,d�d + ✏i (23)

H0 : Cov(X,Y ) = 0 (24)

An intuitive way to consider this model, is to plot the phenotype Y on the Y-axis against
the genotypes A1A1, A1A2, A2A2 on the X-axis for a sample (see class). We can repre-
sent all the individuals in our sample as points that are grouped in the three categories
A1A1, A1A2, A2A2 and note that the true model would include points distributed in three
normal distributions, with the means defined by the three classes A1A1, A1A2, A2A2. If
we were to then re-plot these points in two plots, Y versus Xa and Y versus Xd, the first
would look like the original plot, and the second would put the points in two groups (see
class). The multiple linear regression equation (20, 21) defines ‘two’ regression lines (or
more accurately a plane) for these latter two plots, where the slopes of the lines are �a and
�d (see class). Note that �µ is where these two plots (the plane) intersect the Y-axis but
with the way we have coded Xa and Xd, this is actually an estimate of the overall mean
of the population (hence the notation �µ).

�µ = 2,�a = 5,�d = 0,�2
✏ = 1

�µ = 0,�a = 4,�d = �2,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 2,�a = 0,�d = 0,�2
✏ = 1

To consider a ‘plane’ interpretation of the multiple regression model, let’s consider three
axes, where on the x-axis we will plot Xa, on the y-axis we will plot Xd, and on the z-axis
(which we will plot coming out towards you from the page) we will plot the phenotype Y .
We can draw the x-axis and y-axis as follows:

1 A1A2

�1 A1A1 A2A2

-1 0 1

where the genotype are placed where they would map on the x- and y-axis. Now the phe-
notypes would be plotted above each of these three genotypes in the z-plane and we could
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Genetic estimation I
• We will define a MLE for our parameters:

• Recall that an MLE is simply a statistic (a function that takes a 
sample in and outputs a number that is our estimate)

• In this case, our statistic will be a vector valued function that takes 
in the vectors that represent our sample

• Note that we calculate an MLE for this case just as we would any 
case (we use the likelihood of the fixed sample where we identify 
the parameter values that maximize this function)

• In the linear regression case (just as with normal parameters) this 
has a closed form:
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describe the variation in Y in a given sample of size n, given genotype states X. Just as
with our general estimation framework, we are interested in defining a statistic (a function
on a sample) that takes a sample as input and returns a vector, where the elements of the
vector provide an estimate of �, i.e. we will define a statistic T (y,xa,xd) = �̂ = [�̂µ, �̂a, �̂d].
More specifically we will define a maximum likelihood estimate (MLE) of these parameters
(again, recall that for all the complexity of how MLE’s are calculated, they are simply
statistics that take a sample as an input and provide an estimator as an output). We will
not discuss the derivation of the MLE for the � parameters of a multiple regression model
(although it is not that di⇥cult to derive), but will rather just provide the form of the MLE.
Note that this MLE has a simple form, such that we do not have to go through the process
of maximizing a likelihood, rather, we can write down a simple formula that provides an
expression that we know is the (single) maximum of the likelihood of the regression model.

With the vector and matrix notation introduced above, we can write the MLE as follows:
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where the formula is as follows:

MLE(�̂) = (XTX)�1XTY (16)

As a side-note, this is also the ‘least-squares’ estimate of the regression parameters and
the ‘Best Linear Unbiased Estimate’ (BLUE) of these parameters, i.e. several statistics
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2 Hypothesis testing with the regression model

As a reminder, our inference goal in quantitative genomics is to test the following null
hypothesis for a multiple regression model: Y = �µ +Xa�a +Xd�d + ✏ with ✏ ⇠ N(0,�2

✏ ),
which we use to assess whether there is an e↵ect of a polymorphism on a phenotype:

H0 : �a = 0 \ �d = 0 (1)

HA : �a 6= 0 [ �d 6= 0 (2)

To do this, we will construct a likelihood ratio test (LRT) with an exact distribution (in
this case, an F-test). We will not go into the details of how this test is derived, but remem-
ber that this has the same form as any LRT that we discussed in a previous lecture (and
remember that a LRT works like any other statistic, i.e. it is a function on a sample that
produces a value that we then use to determine a p-value!!). We will however consider the
components of an F-statistic so we know how to calculate it and perform our hypothesis
test.

To construct this LRT, we need the maximum likelihood estimates of the regression pa-
rameters:

MLE(✓̂) =
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�̂a

�̂d
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where recall from last lecture, this has the following form:

MLE(✓̂) = (XTX)�1XTY (3)

MLE(�̂) = (xTx)�1xTy (4)

With these estimates, we can construct the predicted phenotypic value ŷi for an individual
i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (5)

where the parameter estimates are the MLE. We will next define two functions of the
predicted values. The first is the sum of squares of the model (SSM):

SSM =
nX

i=1

(ŷi � y)2 (6)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE =
nX

i=1

(yi � ŷi)
2 (7)

2



Genetic estimation II

• Let’s look at the structure of this estimator:
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As a reminder, our inference goal in quantitative genomics is to test the following null
hypothesis for a multiple regression model: Y = �µ +Xa�a +Xd�d + ✏ with ✏ ⇠ N(0,�2

✏ ),
which we use to assess whether there is an e↵ect of a polymorphism on a phenotype:

H0 : �a = 0 \ �d = 0 (1)

HA : �a 6= 0 [ �d 6= 0 (2)

To do this, we will construct a likelihood ratio test (LRT) with an exact distribution (in
this case, an F-test). We will not go into the details of how this test is derived, but remem-
ber that this has the same form as any LRT that we discussed in a previous lecture (and
remember that a LRT works like any other statistic, i.e. it is a function on a sample that
produces a value that we then use to determine a p-value!!). We will however consider the
components of an F-statistic so we know how to calculate it and perform our hypothesis
test.

To construct this LRT, we need the maximum likelihood estimates of the regression pa-
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where recall from last lecture, this has the following form:

MLE(✓̂) = (XTX)�1XTY (3)

MLE(�̂) = (xTx)�1xTy (4)

With these estimates, we can construct the predicted phenotypic value ŷi for an individual
i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (5)

where the parameter estimates are the MLE. We will next define two functions of the
predicted values. The first is the sum of squares of the model (SSM):
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Genetic hypothesis testing I
• We are going to test the following hypothesis:

• To do this, we need to construct the following test statistic (for which 
we know the distribution!):

• Specifically, we are going to construct a likelihood ratio test (LRT)

• This is calculated using the same structure that we have discussed (i.e. 
ratio of likelihoods that take values of parameters maximized under 
the null and alternative hypothesis)

• In the case of a regression (not all cases!) we can write the form of 
the LRT for our null in an alternative (but equivalent!) form

• In addition, our LRT has an exact distribution for all sample sizes n (!!)

think of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =

⇥
�µ,�a,�d,�

2
✏

⇤
. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �

2
✏ may be any value). As we will discuss, the way we are going to assess whether a

genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)

HA : �a 6= 0 [ �d 6= 0 (25)

Note that intuitively, if we reject this null hypothesis, there is a relationship between the
phenotype Y and the genotype possessed by an individual, i.e. the definition of a causal
polymorphism. Also, note that cases where �a 6= 0 or �d = 0 and �a = 0 and �d 6= 0 are
such cases (where the first defines a straight line through the mean of the phenotypes asso-
ciated with each genotype and the latter defines a case where the mean of the heterozygotes
A1A2 is greater than the homozygotes). In genetic terms, a case where �d = 0 is a (purely)
additive case and any case where �d 6= 0 is a case of ‘dominance’, i.e. a case where the
mean phenotype associated with the heterozygote genotype is not mid-way between the
means of the phenotypes associated with the homozygote genotypes (a case where �a = 0
and �d 6= 0 is an example of ‘overdominance’ or ‘underdominance’).

Note section 4 on ‘quantitative genetic notation’ has been moved to the notes for next
lecture (lecture 10).
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Using matrix notation, matrix multiplication, and matrix addition, we can re-write this as:
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...
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which we can write using the following compact matrix notation:

y = x� + ✏ (14)

for a specific sample and
Y = X� + ✏ (15)

for an arbitrary sample, where the � and ✏ here are vectors.

Recall that there are true values of � = [�µ,�a,�d] that describe the true relationship
between genotype and phenotype (specifically the true genotypic values), which in turn
describe the variation in Y in a given sample of size n, given genotype states X. Just as
with our general estimation framework, we are interested in defining a statistic (a function
on a sample) that takes a sample as input and returns a vector, where the elements of the
vector provide an estimate of �, i.e. we will define a statistic

T (y,xa,xd) = �̂ = [�̂µ, �̂a, �̂d]

T (y,xa,xd|H0 : �a = 0 \ �d = 0)

Pr(T (y,xa,xd|H0 : �a = 0 \ �d = 0))

Pr(T (y,xa,xd|H0)

More specifically we will define a maximum likelihood estimate (MLE) of these parameters
(again, recall that for all the complexity of how MLE’s are calculated, they are simply
statistics that take a sample as an input and provide an estimator as an output). We will
not discuss the derivation of the MLE for the � parameters of a multiple regression model
(although it is not that di�cult to derive), but will rather just provide the form of the MLE.
Note that this MLE has a simple form, such that we do not have to go through the process
of maximizing a likelihood, rather, we can write down a simple formula that provides an
expression that we know is the (single) maximum of the likelihood of the regression model.
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• We now have everything we need to construct a hypothesis test 
for:

• This is equivalent to testing the following:

• For a linear regression, we use the F-statistic for our sample:

• We then determine a p-value using the distribution of the F-
statistic under the null:

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(8)

MSE =
SSE

df(E)
=

SSE

n� 3
(9)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(10)

F[2,n�3](y,xa,xd) =
MSM

MSE
(11)

Pr(F[2,n�3]|H0) (12)

pval(F[2,n�3](y,xa,xd)) (13)

where the distribution of an F-statistic depends on two numbers [2, n� 3]. Now, while it
seems very complex work to calculate an F-statistic, again, remember that this operates
like any other statistic in a hypothesis testing framework. The F-statistic is simply a
function on a sample, where we know the distribution of the F-statistic under the null
hypothesis H0 : �a = 0\ �d = 0 (which we can look up in a table). If our sample produces
a value for the F-statistic that is greater than some critical threshold c↵ corresponding to
a type I error ↵, we reject the null hypothesis. Again, note that F-tests (i.e. tests using
F-statistics) are LRT where we know the exact distribution under the null hypothesis.

3
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think of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =
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. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �

2
✏ may be any value). As we will discuss, the way we are going to assess whether a

genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)

HA : �a 6= 0 [ �d 6= 0 (25)

Note that intuitively, if we reject this null hypothesis, there is a relationship between the
phenotype Y and the genotype possessed by an individual, i.e. the definition of a causal
polymorphism. Also, note that cases where �a 6= 0 or �d = 0 and �a = 0 and �d 6= 0 are
such cases (where the first defines a straight line through the mean of the phenotypes asso-
ciated with each genotype and the latter defines a case where the mean of the heterozygotes
A1A2 is greater than the homozygotes). In genetic terms, a case where �d = 0 is a (purely)
additive case and any case where �d 6= 0 is a case of ‘dominance’, i.e. a case where the
mean phenotype associated with the heterozygote genotype is not mid-way between the
means of the phenotypes associated with the homozygote genotypes (a case where �a = 0
and �d 6= 0 is an example of ‘overdominance’ or ‘underdominance’).

Note section 4 on ‘quantitative genetic notation’ has been moved to the notes for next
lecture (lecture 10).
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where for an individual i in a sample we may write:

yi = �µ + xi,a�a + xi,d�d + ✏i (23)

H0 : Cov(X,Y ) = 0 (24)

An intuitive way to consider this model, is to plot the phenotype Y on the Y-axis against
the genotypes A1A1, A1A2, A2A2 on the X-axis for a sample (see class). We can repre-
sent all the individuals in our sample as points that are grouped in the three categories
A1A1, A1A2, A2A2 and note that the true model would include points distributed in three
normal distributions, with the means defined by the three classes A1A1, A1A2, A2A2. If
we were to then re-plot these points in two plots, Y versus Xa and Y versus Xd, the first
would look like the original plot, and the second would put the points in two groups (see
class). The multiple linear regression equation (20, 21) defines ‘two’ regression lines (or
more accurately a plane) for these latter two plots, where the slopes of the lines are �a and
�d (see class). Note that �µ is where these two plots (the plane) intersect the Y-axis but
with the way we have coded Xa and Xd, this is actually an estimate of the overall mean
of the population (hence the notation �µ).

�µ = 2,�a = 5,�d = 0,�2
✏ = 1

�µ = 0,�a = 4,�d = �2,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 0,�a = 2,�d = 3,�2
✏ = 1

�µ = 2,�a = 0,�d = 0,�2
✏ = 1

To consider a ‘plane’ interpretation of the multiple regression model, let’s consider three
axes, where on the x-axis we will plot Xa, on the y-axis we will plot Xd, and on the z-axis
(which we will plot coming out towards you from the page) we will plot the phenotype Y .
We can draw the x-axis and y-axis as follows:

1 A1A2

�1 A1A1 A2A2

-1 0 1

where the genotype are placed where they would map on the x- and y-axis. Now the phe-
notypes would be plotted above each of these three genotypes in the z-plane and we could
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Genetic hypothesis testing II



Genetic hypothesis testing III
• To construct our LRT for our null, we will need several components, first the 

predicted value of the phenotype for each individual:

• Second, we need the “Sum of Squares of the Model” (SSM) and the “Sum of 
Squares of the Error” (SSE):

• Third, we need the “Mean Squared Model” (MSM) and the “Mean Square 
Error” (MSE) with degrees of freedom (df)                                and                           
:   

• Finally, we calculate our (LRT!) statistic, the F-statistic with degrees of 
freedom [2, n-3]:

that use di�erent approaches for defining an estimator have the same answer for a multiple
regression model. With these estimates, we can construct the predicted phenotypic value
yi for and individual i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (17)

where the parameter estimates are MLE. Note that the ‘hat’ notation for the predicted
value is a little odd, since yi is not a parameter we estimate, but given that the predicted
value is a function of the estimates of parameters, you can see the origin of this notation.
We will use predicted values next lecture when we construct a statistic for performing a
hypothesis test using the multiple regression model.

6

2 Hypothesis testing with the regression model

As a reminder, our inference goal in quantitative genomics is to test the following null
hypothesis for a multiple regression model: Y = �µ +Xa�a +Xd�d + ✏ with ✏ ⇠ N(0,�2

✏ ),
which we use to assess whether there is an e↵ect of a polymorphism on a phenotype:

H0 : �a = 0 \ �d = 0 (1)

HA : �a 6= 0 [ �d 6= 0 (2)

To do this, we will construct a likelihood ratio test (LRT) with an exact distribution (in
this case, an F-test). We will not go into the details of how this test is derived, but remem-
ber that this has the same form as any LRT that we discussed in a previous lecture (and
remember that a LRT works like any other statistic, i.e. it is a function on a sample that
produces a value that we then use to determine a p-value!!). We will however consider the
components of an F-statistic so we know how to calculate it and perform our hypothesis
test.

To construct this LRT, we need the maximum likelihood estimates of the regression pa-
rameters:

MLE(✓̂) =

2

4
�̂µ

�̂a

�̂d

3

5

where recall from last lecture, this has the following form:

MLE(✓̂) = (XTX)�1XTY (3)

With these estimates, we can construct the predicted phenotypic value ŷi for an individual
i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (4)

where the parameter estimates are the MLE. We will next define two functions of the
predicted values. The first is the sum of squares of the model (SSM):

SSM =
nX

i=1

(ŷi � y)2 (5)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE =
nX

i=1

(yi � ŷi)
2 (6)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
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We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(8)

MSE =
SSE

df(E)
=

SSE

n� 3
(9)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(10)

where the distribution of an F-statistic depends on two numbers [2, n� 3]. Now, while it
seems very complex work to calculate an F-statistic, again, remember that this operates
like any other statistic in a hypothesis testing framework. The F-statistic is simply a
function on a sample, where we know the distribution of the F-statistic under the null
hypothesis H0 : �a = 0\ �d = 0 (which we can look up in a table). If our sample produces
a value for the F-statistic that is greater than some critical threshold c↵ corresponding to
a type I error ↵, we reject the null hypothesis. Again, note that F-tests (i.e. tests using
F-statistics) are LRT where we know the exact distribution under the null hypothesis.

3 Alternative linear models for testing the same null hy-

pothesis

So far we have used a multiple regression formulation to test the null hypothesis that a
given polymorphism is not a causal polymorphism:

Y = �µ +Xa�a +Xd�d + ✏ (11)
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3

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)

gi = AjAk (11)

2.1� 0.3 + (0)(�0.2) + (1)(1.1) + 0.7 (12)

SSE =
nX

n=1

(yi � ŷi)
2 (13)
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Genetic hypothesis testing IV
• In general, the F-distribution (continuous random variable!) under 

the H0 has variable forms that depend on d.f.:

• Note when calculating a p-value for the genetic model, we consider 
the value of the F-statistic we observe or more extreme towards 
positive infinite (!!) using the F-distribution with [2,n=3] d.f.

• However, also this is actually a two-tailed test (what is going on 
here (!?)



Genetic hypothesis testing V

• An F-statistic is a Likelihood Ratio Test (LRT) statistic 
after a simple (monotonic) transformation

• Note that an F-statistic has an exact pdf under many 
conditions (note that we do not always produce a LRT 
that has an exact pdf that we can state easily)

• Also note that a t-test is actually an F-statistic (and 
therefore a transformed LRT) for a case where we are 
comparing the means of just two groups (when might 
this apply in genetic testing!?), similarly for a t-test of the 
slope of a regression)

H0 : Cov(Xa, Y ) = 0 \ Cov(Xd, Y ) = 0 (35)

HA : Cov(Xa, Y ) 6= 0 [ Cov(Xd, Y ) 6= 0 (36)

H0 : �a = 0 \ �d = 0 (37)

HA : �a 6= 0 [ �d 6= 0 (38)

F�statistic = f(⇤) (39)
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That’s it for today

• Next lecture, we introduce GWAS analysis (!!)


