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Announcements

REMINDER: | will be lecturing by zoom this coming Thurs (March 21) and
next week (March 26 and 28)

There will be NO OFFICE HOURS THIS WEEK (March 20) (!!) but we will
have office hours next week (March 25) as regularly scheduled

Homework #4 (last homework!) has been posted and is due by | 1:59PM
Friday March 29

Your midterm (!!) will be the week of April 8 (more information to follow
in lecture this coming Thurs)



Summary of lecture |6: Introduction
to GWAS

® |ast lecture, we completed our introduction to inference for genetic
(Regression!) models - specifically MLE and Hypothesis Testing using
F-statistics!

® Today we will begin our introduction to Genome-Wide Association
Studies (and associated critical concepts)



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



Review: Genetic probability model

® Remember that we define the random variables we need for our genetic

del b
mode by Y:(*,Qp)%R

X :(Qg,%) >R

® Where we have three possible genotypes:
Qg ={A1A1,A1 A2, Ax Ao}

® The quantitative genetic model is a “multiple” regression model with the
following TWO independent (“dummy”) X variables:

Xa(A1A7) = =1, X4 (A142) =0, X (A242) =1
Xd(AlAl) = —1,Xd(A1A2> = 1,Xd(A2A2) = —1

1 A1 Ay
—1 AlAl A2A2
| -1 0 1

® and the following “multiple” regression equation:

YZﬁu""XaBa"‘Xdﬁd"‘e
e~ N(0,07)



Estimators
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Hypothesis Tests
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Review: Genetic inference |

Recall that inference (whether estimation or hypothesis testing)
starts by collecting a sample and defining a statistic on that
sample

In this case, we are going to collect a sample of n individuals
where for each we will measure their phenotype and their
genotype (i.e. at the locus we are focusing on)

That is an individual i will have phenotype yi and genotype
gi = AjAk (where we translate these into xaand xd)

Using the phenotype and genotype we will construct both an
estimator (a statistic!) and we will additionally construct a test
statistic

Remember that our regression probability model defines a
sampling distribution on our sample and therefore on our
estimator and test statistic (!!)



Review: Genetic inference ||

® For notation convenience, we are going to use vector / matrix
notation to represent a sample:

Vi = By + Tiafa + Tiadfa + €

Y1 _5,& + 1,084 + T1,484 + €1 |
Y2 B,u + 5(32,&5@ + an,d/Bd + €9
| Yn | _5/1J + Znafa + J/’n,dﬁd T €n_
K 1 214 T14| . €1 |
Y2 I x2, w24 B €2
— | ; . Ba | +

. o . _/Bd_
| Yn | _1 Ln,a In,d] | €En |

y =xB+e



Review: Genetic estimation |

We will define a MLE for our parameters:

5 — [6/“ ﬁaa Bd]

Recall that an MLE is simply a statistic (a function that takes a
sample in and outputs a number that is our estimate)

In this case, our statistic will be a vector valued function that takes
in the vectors that represent our sample

T(Y7Xa7Xd) — B — [Buaéaaéd]

Note that we calculate an MLE for this case just as we would any
case (we use the likelihood of the fixed sample where we identify
the parameter values that maximize this function)

In the linear regression case (just as with normal parameters) this
has a closed form:

MLE(8) = (x"x)"'x"y



Review: Genetic estimation I

® |et’s look at the structure of this estimator:

y =X0 +¢€
Y1 1 T4 T14] _ €1 |
Y2 I w2, x24 B €2
— ﬁa +
e
_yn_ _1 CIjn,a xn,d_ _En_




Review: hypothesis testing |

We now have everything we need to construct a hypothesis test

for:
Hozﬁa:()ﬂﬁd:()

Hy: Ba 70U Bg # 0

This is equivalent to testing the following:
Hy:Cov(X,Y)=0

For a linear regression, we use the F-statistic for our sample:
MSM

MSE
We then determine a p-value using the distribution of the F-
statistic under the null:

F[2,n—3] (¥, Xa,Xq) =

PUCLZ(F[Q,n—S] (¥, Xa,Xd))



Review: hypothesis testing ||

To construct our LRT for our null, we will need several components, first the
predicted value of the phenotype for each individual:

Yi = BAM + xi,aga + Zl?‘i,dgd

Second, we need the “Sum of Squares of the Model” (SSM) and the “Sum of
Squares of the Error” (SSE):

SSM =Y (-9  SSE= (yi—i)
1=1 n=1

Third, we need the “Mean Squared Model” (MSM) and the “Mean Square
Error” (MSE) with degrees of freedom (df) df(M) =3 -1 =2 and

df(F) =n—3

E E
MSM:SS—M:SS_M MSE:ﬂzss

df (M) 2 df(E) n-—3

Finally, we calculate our (LRT!) statistic, the F-statistic with degrees of

freedom [2, n-3]: MSM



Review: hypothesis testing |V

® |n general, the F-distribution (continuous random variable!) under
the HO has variable forms that depend on d.f.:

F Distribution PDF

— h=4, m=4

__ n=10, m=4

— n=10, m=10
n=4, m=10

Random Variable

® Note when calculating a p-value for the genetic model, we consider
the value of the F-statistic we observe or more extreme towards
positive infinite (!!) using the F-distribution with [2,n=3] d.f.

® However, also this is actually a two-tailed test (what is going on
here (!?)



Review: hypothesis testingV

® An F-statistic is a Likelihood Ratio Test (LRT) statistic
after a simple (monotonic) transformation

F—statistic = f(A)

® Note that an F-statistic has an exact pdf under many
conditions (note that we do not always produce a LRT
that has an exact pdf that we can state easily)

® Also note that a t-test is actually an F-statistic (and
therefore a transformed LRT) for a case where we are
comparing the means of just two groups (when might
this apply in genetic testing!?), similarly for a t-test of the
slope of a regression)



Side-topic: Alternative (ANOVA)
formulation |

® Note that we can construct an equivalent formulation
to our linear regression using an ANOVA coding

® ANOVA stands for ANalysis Of VAriance and, despite
the name, it is really a test of whether “means” of
groups are different

® A genetic ANOVA model is the same as our linear
regression, except the “dummy’ variables are coded
differently (everything else is the same!)



Side-topic: Alternative (ANOVA)
formulation |l

Remember the independent (dummy) variable coding for a regression
IS. Xu(A1 A1) =1, X, (A1 A7) = 1, X,,(A24,) = 1
Xo(A1 A1) = —1, Xo(A1 As) = 0, Xo(As4s) = 1

Xa(A1A1) = —1, Xg(A1Az) = 1, Xg(AsAs) = —1

The ANOVA coding is the following:

Xaa, (A1A1) =1, X4,4,(A1A2) =0, X 4,4, (A2A9)
Xa,4,(A1A1) =0, X4,4,(A1A42) =1, X 4,4,(A2A9)
Xa,a,(A1A1) =0, Xa,4,(A1A42) =0, X 4,4, (A2A2)

0
0
1

The models corresponding to a linear regression and ANOVA are:

Y = X,uﬁ,u + XoBa + XgBa + €
Y = Xa,4,84,4, + Xa,4,84,4, + Xa,4,84,4, + €



Side-topic: Alternative (ANOVA)
formulation Il

® For the ANOVA formulation, the parameters are:
0 = [Ba,Ay, BayAy5 Baga,]
® And we test the null hypothesis:
Ho: fBaja, = Baja, = Pasa,
Hy: Baa, # Baa,  jk # Im

® Note that estimation (MLE) and the hypothesis test (F-
test) construction are the same (=same equations)!!

® Why would we use an ANOVA formulation (what is
the difference)?



Quantitative genomic analysis |

We now know how to assess the null hypothesis as to
whether a polymorphism has a causal effect on our
phenotype

Occasionally we will assess this hypothesis for a single
genotype

In quantitative genomics, we generally do not know the
location of causal polymorphisms in the genome

We therefore perform a hypothesis test of many genotypes
throughout the genome

This is a genome-wide association study (GWAS)



Quantitative genomic analysis ||

® Analysis in a GWAS raises (at least) two issues we have not
yet encountered:

® An analysis will consist of many hypothesis tests (not just
one)

® We often do not test the causal polymorphism (usually)

® Note that this latter issue is a bit strange (!?) - how do we
assess causal polymorphisms if we have not measured the
causal polymorphism?

® Also note that causal genotypes will begin to be measured
in our GWAS with next-generation sequencing data (but
the issue will still be present!)



Correlation among genotypes

® [f we test a (non-causal) A -
genotype that is correlated with o Exon 2 Exon 3

the causal genotype AND if = -

A349G

correlated genotypes are in the aamst \
same position in the genome e ‘
THEN we can identify the

genomic position of the casual

genotype (!!)

® This is the case in genetic ®
systems (why!?)

® Do we know which genotype is
causal in this scenario?

Copyright: Journal of Diabetes and its Complications; Science
Direct;Vendramini et al



Linkage Disequilibrium

Mapping the position of a causal polymorphism in a GWAS requires there
to be LD for genotypes that are both physically linked and close to each
other AND that markers that are either far apart or on different
chromosomes to be in equilibrium

Note that disequilibrium includes both linkage disequilibrium AND other
types of disequilibrium (!!), e.g. gametic phase disequilibrium

LD
A<—> equilibrium, linkage C
l
I

B <« —>

Chr. | A

D equilibrium,
no linkage

Chr. 2 v




That’s it for today

® Next lecture, we will continue our discussion of GWAS analysis (!!)



