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Announcements |

® Homework #4 (last homework!):

® While the OFFICIAL due date is Fri, March 29 you will
NOT BE GIVEN A LATE PENALTY IF you turn in your
homework by | 1:59PM Sunday (March 31)

® Also, please see office hours recording from yesterday
(Weds, March 27) on Canvas for hints!

® Your midterm (!!) will be the week of April 8 (see next!)



Quantitative Genomics and Genetics - Spring 2024
BTRY 4830/6830; PBSB 5201.01

Midterm Exam

Available 11AM (ET), Tues., April 9
Due 11:59AM = 1 min before noon! (ET) Thurs., April 11

PLEASE NOTE THE FOLLOWING INSTRUCTIONS:

1. YOU ARE TO COMPLETE THIS EXAM ALONE! The exam is open book, so you
are allowed to use any books or information available online (even ChatGPT or similar!), your
own notes and your previously constructed code, etc. HOWEVER YOU ARE NOT
ALLOWED TO COMMUNICATE OR IN ANY WAY ASK ANYONE FOR
ASSISTANCE WITH THIS EXAM IN ANY FORM e.g., DO NOT POST PUB-
LIC MESSAGES ON ED DISCUSSION! (the only exceptions are Beulah, Sam, and
Dr. Mezey, e.g., you MAY send us a private message on Canvas). As a non-exhaustive list
this includes asking classmates or ANYONE else for advice or where to look for answers
concerning problems, you are not allowed to ask anyone for access to their notes or to even
look at their code whether constructed before the exam or not, etc. You are therefore only
allowed to look at your own materials and materials you can access on your own. In short,
work on your own! Please note that you will be violating Cornell’s honor code if you act
otherwise.

2. Please pay attention to instructions and complete ALL requirements for ALL questions, e.g.
some questions ask for R code, plots, AND written answers. We will give partial credit so it
is to your advantage to attempt every part of every question.

3. A complete answer to this exam will include R code answers, where you will submit your
.Rmd script and the results of running your code in an associated .pdf file (plus an additional
.pdf files if you have separate files for your written answers and code output). Note there will
be penalties for scripts that fail to compile (1!). Also, as always, you do not need to repeat
code for each part (i.e., if you write a single block of code that generates the answers for some
or all of the parts, that is fine, but do please label your output that answers each question!!).

4. The exam must be uploaded on Canvas before 11:59AM (!!) = 1 minute before noon! (ET)
Thurs, April 11. It is your responsibility to make sure that it is in uploaded by then and no
excuses will be accepted (power outages, computer problems, Cornell’s internet slowed to a
crawl, etc.). Remember: you are welcome to upload early! We will deduct points for being
late for exams received after this deadline (even if it is by minutes!!).



Announcements ||

® Your midterm (!!) will be the week of April 8 (available April 9 after class!):

There WILL BE A QUESTION ONYOUR MIDTERM that will be
answered in lectures on April 9 and April || (!!) = incentive to come to
those lectures (note recordings may not be available in time for you to
review for your midterm!)

What will be on the midterm? You will have to do a GWAS analysis
JUST LIKE HOMEWORK #4 (!!),i.e.,“SNPs” with two alleles such that
genotypes are combinations of a, g, ¢, or t (e.g., cc, ct, tt, etc.), you'll have
to code Xa and Xd, calculated MLE’s and construct an F statistic for
each of the N total SNPs, plot a Manhattan plot and a2 QQ plot (see
next lecture!) AND interpret the data (btw NO COVARIATES = if you
have the code to calculate an F statistic using Xa and Xd JUST LIKE
HOMEWORK #4 you'll be good to go!)

HOWEVER: note that not EVERYTHING on the midterm will be the
same as on your homework;, i.e., you may want to have your own code
that you understand and can adapt..., (e.g., the genotype data will look
like = see next!)
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Summary of lecture 19: GWAS
Analysis: covariates and QQ

® |ast lecture, we completed our discussion of Linkage Disequilibrium

® Today, we will also continue our discussion of GWAS analysis issues,
including multiple test correction, covariates and QQ plots!



Conceptual Overview

Sample or
experimental

Model params
F-test

Pr(Y|X)




Review: Genetic system

causal mutation - a position in the genome where an experimental
manipulation of the DNA would produce an effect on the phenotype
under specifiable conditions

Formally, we may represent this as follows:
A1 — AQ = AY|Z

Note: that this definition considers “under specifiable” conditions” so the
change in genome need not cause a difference under every manipulation
(just under broadly specifiable conditions)

Also note the symmetry of the relationship

|dentifying these is the core of quantitative genetics/genomics (why do we
want to do this!?)

What is the perfect experiment!?

Our experiment will be a statistical experiment (sample and inference!)



Review: Genome-Wide
Association Study (GWAYS)

For a typical GWAS, we have a phenotype of interest and we do not
know any causal polymorphisms (loci) that affect this phenotype
(but we would like to find them!)

In an “ideal” GWAS experiment, we measure the phenotype and N
genotypes THROUGHOUT the genome for n independent
individuals

To analyze a GWAS, we perform N independent hypothesis tests

When we reject the null hypothesis, we assume that we have
located a position in the genome that contains a causal
polymorphism (not the causal polymorphism!), hence a GWAS is a
mapping experiment

This is as far as we can go with a GWAS (!!) such that (often)
identifying the causal polymorphism requires additional data and or
follow-up experiments, i.e. GWAS is a starting point



Review: GWAS Resolution

Resolution - the region of the genome indicated by significant tests for
a set of correlated markers in a GWAS

Recall that we often consider a set of contiguous significant markers (a
“skyscraper” on a Manhattan plot) to indicate the location of a single
causal polymorphism (although it need not indicate just one!)

Note that the marker with the most significant p-value within a set is not
necessarily closest to the causal polymorphism (!!)

In practice, we often consider a set of markers with highly significant p-
values to span the region where a causal polymorphism is located (but
this is arbitrary and need not be the case!)

In general, resolution in a GWAS is limited by the level of LD, which
means there is a trade-off between resolution and the ability to map
causal polymorphisms and that there is a theoretical limit to the
resolution of a GWAS experiment (what is this limit?)
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Review: Manhattan plots

MTRR

™

nﬂ

1

2

s
.

4

5
io
'5

6

ﬁ‘iiigti

24 28 X




Review: LD plots (zoom-in
Manhattan plots)

We often see LD among a set of contiguous markers, using
either r-squared or D’, with the “triangle, half-correlation

matrices” where darker squares indicating higher LD (values
of these statistics, e.g. LD in a “zoom-in” plot:
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Review: True and False Positive
Trade-offs in GVWAS

® For GWAS, we are generally concerned with correctly
identifying the position of as many causal polymorphisms as
possible (True Positives) while minimizing the number of
cases where we identify a position where we think there is
a causal polymorphism but there is not (False Positive)

® We are less concerned with cases where there is a causal
polymorphism but we do not detect it (why is this?)

® |ssues that affect the number of True Positives and False
Positives that we identify in a GWAS can be statistical and
experimental (or a combination)



Statistical Issues |:Type | error

Recall that Type | error is the probability of incorrectly
rejecting the null hypothesis when it is correct

A Type | error in a GWAS produces a false positive

We can control Type | error by setting it to a specified
level but recall there is a trade-off: if we set it to low, we
will not make a Type | error but we will also never reject
the null hypothesis, even when it is wrong (e.g. if Type |
error is to low, we will not detect ANY causal
polymorphisms)

In general we like to set a conservative Type | error for a
GWAS (why is this!?)

To do this, we have to deal with the multiple testing problem



Statistical Issues |1: Multiple Testing

® Recall that when we perform a GWAS, we perform N hypothesis
tests (where N is the number of measured genotype markers)

® Also recall that if we set aType | error to a level (say 0.05) this is
the probability of incorrectly rejecting the null hypothesis

® |f we performed N tests that were independent, we would
therefore expect to incorrectly reject the null N*0.05 and if N is
large, we would therefore make LOTS of errors (!!)

® This is the multiple testing problem = the more tests we perform
the greater the probability of making a Type | error

® Now in a GWAS, our tests are not independent (LD!) but we could
still make many errors by performing N tests if we do not set the
Type | error appropriately



Correcting for multiple tests |

® Since we can control the Type | error, we can correct
for the probability of making a Type | error due to
multiple tests

® There are two general approaches for doing this in a
GWAS: those that involve a Bonferroni correction and
those that involve a correction based on the estimate

the False Discovery Rate (FDR)

® Both are different techniques for controlling Type |
error but in practice, both set the Type | error to a
specified level (!!)



Correcting for multiple tests |l

® A Bonferroni correction sets the Type | error for the entire
GWAS using the following approach: for a desired type |
error (X set the Bonferroni Type | error B to the
following:

CYB:N

® We therefore use the Bonferroni Type | error to assess
EACH of our N tests in a GWAS

® For example, if we have N=100 in our GWAS and we want
an overall GWAS Type | error of 0.05, we require a test to
have a p-value less than 0.0005 to be considered significant



Correcting for multiple tests Il

A False Discovery Rated (FDR) based approach (there are many variants!)
uses the expected number of false positives to set (=control) the type |
error

For N tests and a specified Type | error, the FDR is defined in terms or
the number of cases where the null hypothesis is rejected R:

N *x «
R

Intuitively, the FDR is the proportion of cases where we reject the null
hypothesis that are false positives

FDR =

We can estimate the FDR for a GWAS, e.g. say for N=100,000 tests and a
Type | error of 0.05, we reject the null hypothesis 10,000 times, the FDR
=0.5

FDR methods for controlling for multiple tests (e.g. Benjamini-Hochberg)
set the Type | error to control the FDR to a specific level, say FDR=0.01
(what is the intuition at this FDR level?)



Correcting for multiple tests IV

Since the lower the Type | error the lower the power of our test, if we
set the Type | error too low due to a very large N, we might not get any
hits even when there are clear causal polymorphisms (is this desirable!?)

In general, a Bonferroni correction sets a lower overall GWAS Type |
error than FDR approaches (what are the trade-offs and why would we
choose one over the other?)

Both Bonferroni and FDR approaches make the implicit assumption that
all tests are independent (which we know not to be the case in GWAS!)

A strategy that can produce a more accurate Bonferroni or FDR cutoff is
to use a permutation approach (which we do not have time to cover in
this course)

Regardless of the approach, some correction for multiple tests is
necessary to guard against a case where there are no true positives in the
experiment, i.e. this is why we do not automatically assume the highest
“peak” is a true positive (unless it is significant after a multiple test
correction)



Statistical / experimental issues that
affect True Positives: power |

® Recall that power is defined as the probability of correctly
rejecting the null hypothesis when it is false (incorrect)

® Also recall that we cannot control power directly because
it depends on the true parameter value(s) that we do not
know!

® Also recall that we can indirectly control power by setting
our Type | error, where there is a trade-off between Type |
error and power (what is this trade-off!?)

® There are also a number of issues that affect power that
are a function of the GWAS experiment



Statistical / experimental issues that
affect True Positives: power |

® Power tends to increase with the increasing size of the true effect of
the genotype on phenotype (how is this quantified in terms of linear
regression parameters?)

® Power tends to increase with increasing sample size n

® Power tends to increase as the Minor Allele Frequency (MAF)
increases (why is this?)

® Power tends to increase as the LD between a causal polymorphism
and the genotype marker being tested increases (i.e. as the correlation
between the causal and marker genotype increase)

® Power also depends on other factors including the type of statistical
test applied, etc.

® Can any of these be controlled?



Experimental issues that produce
false positives

® Type | errors can produce a false positives (= places we
identify in the genome as containing a causal
polymorphism / locus that do not)

® However, there are experimental reasons why we can
correctly reject the null hypothesis (= we do not make a
Type | error) but we still get a false positive:

® Cases of disequilibrium when there is no linkage
® Genotyping errors
® Unaccounted for covariates

® There are others...



Introduction to covariates |

® Recall that in a GWAS, we are considering the following
regression model and hypotheses to assess a possible
association for every marker with the phenotype

Y:5M+Xa6a‘|‘Xd6d‘|‘€
Hy:B8,=0NpGg=0
Hy:Ba Z0UBg #0

® Also recall that with these hypotheses we are actually
testing:
Hy:Cov(Y, X,) =0NCov(Y,Xy) =0

Hy:Cou(Y,X,) #0UCou(Y, X4) # 0



Introduction to covariates ||

® |et’s consider these two cases:

® For the first, the marker is not correlated with a causal polymorphism
but the factor is correlated with BOTH the phenotype and the marker
such that a test of the marker using our framework will produce a

false positive (!!):
COU(Y,XZ)#O Hy:8,=0Nnp;=0
Hy: 8, 70U Bq #0
Y:5M+Xaﬁa+Xdﬁd+€

Cov(Xg, X;) #0

® For the second, the marker is correlated with a causal polymorphism
and while the factor is correlated with the phenotype but not the
marker, a test of the marker in our framework will model the effect of

the factor in our error term (which will reduce power!):

Y = Xafa + X
€EX, — Xzﬁz + €

Cov(X,,X,) =0 e ~ N(0,0?)



Modeling covariates |

® Therefore, if we have a factor that is correlated with our
phenotype and we do not handle it in some manner in our
analysis, we risk producing false positives AND/OR reduce
the power of our tests!

® The good news is that, assuming we have measured the
factor (i.e.it is part of our GWAS dataset) then we can
incorporate the factor in our model as a covariate(s):

Y = B,u - Xaﬁa, + Xdﬁd + Xz,lﬁz,l + Xz,25z,2 + €

® The effect of this is that we will estimate the covariate
model parameter and this will account for the correlation of
the factor with phenotype (such that we can test for our
marker correlation without false positives / lower power!)



Modeling covariates |

® How do we perform inference with a covariate in our regression
model?

® We perform MLE the same way (!!) our X matrix now simply
includes extra columns, one for each of the additional covariates,
where for the linear regression we have:

N (T N\—1,T
MLE(f) = (x"x)"x'y
® We perform hypothesis testing the same way (!!) with a slight
difference: our LRT includes the covariate in both the null

hypothesis and the alternative (and therefore two different X
matrices!), but we are testing the same null hypothesis:

Hy:B8,=0NGs=0
Hy: Bq 70U By # 0



Modeling covariates |V

First, determine the predicted value of the phenotype of each
individual under the null hypothesis (how do we set up x?):

U560 = Bude T D TieriBs gy s
J=1

Second, determine the predicted value of the phenotype of each
individual under the alternative hypothesis (set up x?):
Uiy = B, + TiaBog, +TiaBeg, + D 7023810,
j=1
Third, calculate the “Error Sum of Squares” for each:

SSE(f0) =Y (i —,5)°  SSE0) =) (yi— 84,
1=1 1=1
Finally, we calculate the F-statistic with degrees of freedom [2,
n-3] (why two and n-#params degrees of freedom?):

SSE(0y)—SSE(61)
2
SSE(6,)
n—#(61)

Flam—s (0, (Y Xar Xa) =



Modeling covariates V

® Thus, for testing the null hypothesis in a linear regression, we can construct an
F-test using a slightly different formula:

n
SSE(@A()) — (y oy )2
; ¢ 4,00 SSE(éO)ESSE(él)
A n 2 F[Q,n—#(él)]<Y7xa’Xd) - SSE—(QAQ
SSE61) =Y (vi— 9,4, n# ()
i=1

® For the null hypotheses we are testing, once you calculate this F-statistic, you
compare to an F-distribution with 2 and n - #(alternative hypothesis
parameters) degrees of freedom

® The “2” df in the numerator comes from the #(alternative hypothesis model
parameters) - #(null hypothesis model parameters)

® Note that our previous formula for an F-statistic can be represented this way
as well (1)



Modeling covariates VI

Say you have GWAS data (a phenotype and genotypes) and your
GWAS data also includes information on a number of covariates,
e.g. male / female, several different ancestral groups (different
populations!!), other risk factors, etc.

First, you need to figure out how to code the Xz in each case for
each of these, which may be simple (male / female) but more
complex with others (where how to code them involves fuzzy
rules, i.e. it depends on your context!!)

Second, you will need to figure out which to include in your
analysis (again, fuzzy rules!) but a good rule is if the parameter
estimate associated with the covariate is large (=significant
individual p-value) you should include it!

There are many ways to figure out how to include covariates
(again a topic in itself!!) - next lecture we will provide an
(important!) example: population structure



Quantile-Quantile (QQ) plots |

We will now introduce an essential tool for detecting the most
problematic covariates (and can be used to diagnose many other
problems!): a Quantile-Quantile (QQ) plot

While the definition of a QQ-plot is complex, you will see that
how we generate a QQ-plot is easy!

We will demonstrate the value of a QQ plot for detecting the
often problematic variable: population structure

In general, whenever you perform a GWAS, you should construct
a QQ plot (!!) and always include a QQ plot in your publication



Quantile-Quantile (QQ) plots |l

Consider a random variable with a continuous probability
distribution

quantile - regular, equally spaced intervals of a random variable
that divide the random variable into units of equal distribution

A Quantile-Quantile (QQ) plot (in general) plots the observed
quantiles of one distribution versus another OR plots the
observed quantiles of a distribution versus the quantiles of the
ideal distribution

We will use a QQ plot to plot our the quantile distribution of
observed p-values (on the y-axis) versus the quantile distribution
of expected p-values (what distribution is this!?)



Quantile-Quantile (QQ) plots Il

® How to construct a QQ plot for a GWAS:

® |f you performed N tests, take the -log (base 10) of each of the
p-values and put them in rank order from smallest to largest

® Create a vector of N values evenly spaces from | to | / N
(how do we do this?), take the -log of each of these values and
rank them from smallest to largest

® Take the pair of the smallest of values of each of these lists
and plot a point on an x-y plot with the observed -log p-value
on the y-axis and the spaced -log value on the x-axis

® Repeat for the next smallest pair, for the next, etc. until you
have plotted all N pairs in order



Quantile-Quantile (QQ) plots Il

® In an ideal GWAS case where there ARE NO causal polymorphisms, your QQ
plot will be a line:

\ \ \ \ \
0 1 2 3 4

-log(expected p-values)

-log(observed p-values)

® The reason is that we will observe a uniform distribution of p-values from such a
case and in our QQ we are plotting this observed distribution of p-value versus
the expected distribution of p-values: a uniform distribution (where both have
been -log transformed)

® Note that if you GWAS analysis is correct but you do not have enough power to
detect positions of causal polymorphisms, this will also be your result (!!),i.e.it is a
way to assess whether you can detect any hits in your GWAS (!!)



Quantile-Quantile (QQ) plots IV

® In an ideal GWAS case where there ARE causal polymorphisms, your QQ plot will
be a line with a tail (!!):

15

10

o/

0 1 2 3 4

-log(expected p-values)

-log(observed p-values)

® This happens because most of the p-values observed follow a uniform distribution
(i.e. they are not in LD with a causal polymorphism so the null hypothesis is
correct!) but the few that are in LD with a causal polymorphism will produce
significant p-values (extremely low = extremely high -log(p-values)) and these are
in the “tail”

® This is ideally how you want your QQ-plot to look - if it does, you are in good
shape!



Quantile-Quantile (QQ) plotsV

® In practice, you can find your QQ plot looks different than either the “null GWAS” case or
the “ideal GWAS” case, for example:

I I I I I
0 1 2 3 4

-log(expected p-values)

-log(observed p-values)

® This indicates that something is wrong (!!!!) and if this is the case, you should not interpret
any of your significant p-values as indicating locations of causal polymorphisms (!!!!)

® Note that this means that you need to find an analysis strategy such that the result of your
GWAS produces a QQ plot that does NOT look like this (note that this takes experience
and many tools to do consistently!)

® Also note that unaccounted for covariates can cause this issue and the most frequent culprit
is unaccounted for population structure



That’s it for today

® Next lecture, we will continue our discussion GWAS analysis with
a discussion of population structure (!!)



