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• Homework #4 (last homework!):

• While the OFFICIAL due date is Fri, March 29 you will 
NOT BE GIVEN A LATE PENALTY IF you turn in your 
homework by 11:59PM Sunday (March 31)

• Also, please see office hours recording from yesterday 
(Weds, March 27) on Canvas for hints!

• Your midterm (!!) will be the week of April 8 (see next!)

Announcements I



Quantitative Genomics and Genetics - Spring 2024
BTRY 4830/6830; PBSB 5201.01

Midterm Exam

Available 11AM (ET), Tues., April 9
Due 11:59AM = 1 min before noon! (ET) Thurs., April 11

PLEASE NOTE THE FOLLOWING INSTRUCTIONS:

1. YOU ARE TO COMPLETE THIS EXAM ALONE! The exam is open book, so you
are allowed to use any books or information available online (even ChatGPT or similar!), your
own notes and your previously constructed code, etc. HOWEVER YOU ARE NOT
ALLOWED TO COMMUNICATE OR IN ANY WAY ASK ANYONE FOR
ASSISTANCE WITH THIS EXAM IN ANY FORM e.g., DO NOT POST PUB-
LIC MESSAGES ON ED DISCUSSION! (the only exceptions are Beulah, Sam, and
Dr. Mezey, e.g., you MAY send us a private message on Canvas). As a non-exhaustive list
this includes asking classmates or ANYONE else for advice or where to look for answers
concerning problems, you are not allowed to ask anyone for access to their notes or to even
look at their code whether constructed before the exam or not, etc. You are therefore only
allowed to look at your own materials and materials you can access on your own. In short,
work on your own! Please note that you will be violating Cornell’s honor code if you act
otherwise.

2. Please pay attention to instructions and complete ALL requirements for ALL questions, e.g.
some questions ask for R code, plots, AND written answers. We will give partial credit so it
is to your advantage to attempt every part of every question.

3. A complete answer to this exam will include R code answers, where you will submit your
.Rmd script and the results of running your code in an associated .pdf file (plus an additional
.pdf files if you have separate files for your written answers and code output). Note there will
be penalties for scripts that fail to compile (!!). Also, as always, you do not need to repeat
code for each part (i.e., if you write a single block of code that generates the answers for some
or all of the parts, that is fine, but do please label your output that answers each question!!).

4. The exam must be uploaded on Canvas before 11:59AM (!!) = 1 minute before noon! (ET)
Thurs, April 11. It is your responsibility to make sure that it is in uploaded by then and no
excuses will be accepted (power outages, computer problems, Cornell’s internet slowed to a
crawl, etc.). Remember: you are welcome to upload early! We will deduct points for being
late for exams received after this deadline (even if it is by minutes!!).
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• Your midterm (!!) will be the week of April 8 (available April 9 after class!):

• There WILL BE A QUESTION ON YOUR MIDTERM that will be 
answered in lectures on April 9 and April 11 (!!) = incentive to come to 
those lectures (note recordings may not be available in time for you to 
review for your midterm!)

• What will be on the midterm?  You will have to do a GWAS analysis 
JUST LIKE HOMEWORK #4 (!!), i.e., “SNPs” with two alleles such that 
genotypes are combinations of a, g, c, or t (e.g., cc, ct, tt, etc.), you’ll have 
to code Xa and Xd, calculated MLE’s and construct an F statistic for 
each of the N total SNPs, plot a Manhattan plot and a QQ plot (see 
next lecture!) AND interpret the data (btw NO COVARIATES = if you 
have the code to calculate an F statistic using Xa and Xd JUST LIKE 
HOMEWORK #4 you’ll be good to go!)

• HOWEVER: note that not EVERYTHING on the midterm will be the 
same as on your homework, i.e., you may want to have your own code 
that you understand and can adapt…, (e.g., the genotype data will look 
like = see next!)

Announcements II





Summary of lecture 19: GWAS 
Analysis: covariates and QQ

• Last lecture, we completed our discussion of Linkage Disequilibrium

• Today, we will also continue our discussion of GWAS analysis issues, 
including multiple test correction, covariates and QQ plots!
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Review: Genetic system

• causal mutation - a position in the genome where an experimental 
manipulation of the DNA would produce an effect on the phenotype 
under specifiable conditions

• Formally, we may represent this as follows:

• Note: that this definition considers “under specifiable” conditions” so the 
change in genome need not cause a difference under every manipulation 
(just under broadly specifiable conditions)

• Also note the symmetry of the relationship

• Identifying these is the core of quantitative genetics/genomics (why do we 
want to do this!?) 

• What is the perfect experiment?

• Our experiment will be a statistical experiment (sample and inference!)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)
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Review: Genome-Wide 
Association Study (GWAS)

• For a typical GWAS, we have a phenotype of interest and we do not 
know any causal polymorphisms (loci) that affect this phenotype 
(but we would like to find them!)

• In an “ideal” GWAS experiment, we measure the phenotype and N 
genotypes THROUGHOUT the genome for n independent 
individuals

• To analyze a GWAS, we perform N independent hypothesis tests

• When we reject the null hypothesis, we assume that we have 
located a position in the genome that contains a causal 
polymorphism (not the causal polymorphism!), hence a GWAS is a 
mapping experiment

• This is as far as we can go with a GWAS (!!) such that (often) 
identifying the causal polymorphism requires additional data and or 
follow-up experiments, i.e. GWAS is a starting point



• Resolution - the region of the genome indicated by significant tests for 
a set of correlated markers in a GWAS

• Recall that we often consider a set of contiguous significant markers (a 
“skyscraper” on a Manhattan plot) to indicate the location of a single 
causal polymorphism (although it need not indicate just one!)

• Note that the marker with the most significant p-value within a set is not 
necessarily closest to the causal polymorphism (!!)

• In practice, we often consider a set of markers with highly significant p-
values to span the region where a causal polymorphism is located (but 
this is arbitrary and need not be the case!)

• In general, resolution in a GWAS is limited by the level of LD,  which 
means there is a trade-off between resolution and the ability to map 
causal polymorphisms and that there is a theoretical limit to the 
resolution of a GWAS experiment (what is this limit?) 

Review: GWAS Resolution



Review: Manhattan plots
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• We often see LD among a set of contiguous markers, using 
either r-squared or D’, with the “triangle, half-correlation 
matrices” where darker squares indicating higher LD (values 
of these statistics, e.g. LD in a “zoom-in” plot:

Review: LD plots (zoom-in 
Manhattan plots)



Review: True and False Positive 
Trade-offs in GWAS

• For GWAS, we are generally concerned with correctly 
identifying the position of as many causal polymorphisms as 
possible (True Positives) while minimizing the number of 
cases where we identify a position where we think there is 
a causal polymorphism but there is not (False Positive)

• We are less concerned with cases where there is a causal 
polymorphism but we do not detect it (why is this?)

• Issues that affect the number of True Positives and False 
Positives that we identify in a GWAS can be statistical and 
experimental (or a combination)



Statistical Issues 1: Type 1 error

• Recall that Type 1 error is the probability of incorrectly 
rejecting the null hypothesis when it is correct

• A Type 1 error in a GWAS produces a false positive

• We can control Type 1 error by setting it to a specified 
level but recall there is a trade-off: if we set it to low, we 
will not make a Type 1 error but we will also never reject 
the null hypothesis, even when it is wrong (e.g. if Type 1 
error is to low, we will not detect ANY causal 
polymorphisms)

• In general we like to set a conservative Type 1 error for a 
GWAS (why is this!?)

• To do this, we have to deal with the multiple testing problem



Statistical Issues I1: Multiple Testing

• Recall that when we perform a GWAS, we perform N hypothesis 
tests (where N is the number of measured genotype markers)

• Also recall that if we set a Type 1 error to a level (say 0.05) this is 
the probability of incorrectly rejecting the null hypothesis

• If we performed N tests that were independent, we would 
therefore expect to incorrectly reject the null N*0.05 and if N is 
large, we would therefore make LOTS of errors (!!)

• This is the multiple testing problem = the more tests we perform 
the greater the probability of making a Type 1 error

• Now in a GWAS, our tests are not independent (LD!) but we could 
still make many errors by performing N tests if we do not set the 
Type I error appropriately



Correcting for multiple tests I

• Since we can control the Type I error, we can correct 
for the probability of making a Type 1 error due to 
multiple tests

• There are two general approaches for doing this in a 
GWAS: those that involve a Bonferroni correction and 
those that involve a correction based on the estimate 
the False Discovery Rate (FDR) 

• Both are different techniques for controlling Type 1 
error but in practice, both set the Type I error to a 
specified level (!!)



Correcting for multiple tests II
• A Bonferroni correction sets the Type I error for the entire 

GWAS using the following approach: for a desired type 1 
error       set the Bonferroni Type 1 error        to the 
following:

• We therefore use the Bonferroni Type I error to assess 
EACH of our N tests in a GWAS

• For example, if we have N=100 in our GWAS and we want 
an overall GWAS Type 1 error of 0.05, we require a test to 
have a p-value less than 0.0005 to be considered significant

marker when there is no causal polymorphism in LD, i.e. we do not consider a case where
we reject the null for a marker in LD with a causal polymorphism a type I error. Next
sentences moved to section above.

A potential source of Type I error in GWAS arises from the multiple testing problem. Recall
that the sampling distribution of p-values, when the null hypothesis is true, is uniform, i.e.
Pr(pval) ⇠ unif [0, 1]. This means that if we were to repeat a large number of independent
hypothesis tests, we would expect the p-values to follow a uniform distribution, such that
some of the p-values would be very low just by chance. More precisely, if we set a Type I
error at say ↵ = 0.05 we would incorrectly reject the null hypothesis in approximately 5%
of the cases. If we did a large number of tests, say a million, this would produce a very
large number of false positives. This is e↵ectively the case we have in a GWAS (with the
one di↵erence that many of the tests of markers are correlated, an issue we will discuss
next lecture). If we have N markers, we will perform N hypothesis tests, which means if
our ↵ is set relatively high, we will expect to get a large number of false positives by chance.

Now, the nice property of Type I error is that we can control this error rate by setting ↵

lower. However, there is a trade-o↵: the lower we set the Type I error, the lower the power
of our hypothesis tests (see lecture 7). We therefore would like to adjust the Type I error
but how should this be done? It turns out, there is no perfect way to set the Type I error
and all proposed methods have drawbacks. Here we will consider three common approaches
for controlling Type I error in GWAS: 1. Bonferroni correct, 2. Benjamini-Hochberg cor-
rection (which is one way of implementing a False Discovery Rate (FDR) correction), and
3. a permutation approach.

A Bonferroni correction is applied as follows. Say we are interested in controlling the
probability of making one Type I error at ↵ among N tests. A strategy for doing this is
to set a Bonferroni adjusted Type I error ↵B, which uses the formula:

↵B =
↵

N
(13)

Note that a Bonferroni correction controls the Type I error of the entire experiment (i.e.
the probability of making one or more Type I errors) to 0.05 or, more precisely, to a level
that is less that 0.05 (i.e. a standard Bonferroni correction bounds the Type I error at less
than 0.05 because of how this correction is derived). For example, if we were interested in
controlling the probability of a single Type I error among N = 1, 000, 000 tests to ↵ = 0.05,
we would set the Type I error to ↵B = 0.05/1, 000, 000. It turns out that a Bonferroni
correction makes some assumptions (which we will not describe here), which in fact sets
the probability of making a single Type I error to a level even lower than ↵. A drawback
of these assumptions is a Bonferroni correction is very ‘conservative’, i.e. there is a low
probability of making a Type I error by also low power. This is particularly problematic
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Correcting for multiple tests III
• A False Discovery Rated (FDR) based approach (there are many variants!) 

uses the expected number of false positives to set (=control) the type 1 
error

• For N tests and a specified Type 1 error, the FDR is defined in terms or 
the number of cases where the null hypothesis is rejected R:

• Intuitively, the FDR is the proportion of cases where we reject the null 
hypothesis that are false positives 

• We can estimate the FDR for a GWAS, e.g. say for N=100,000 tests and a 
Type I error of 0.05, we reject the null hypothesis 10,000 times, the FDR 
= 0.5

• FDR methods for controlling for multiple tests (e.g. Benjamini-Hochberg) 
set the Type 1 error to control the FDR to a specific level, say FDR=0.01 
(what is the intuition at this FDR level?)

hypothesis for a marker when there is no causal polymorphism in LD, i.e. we do not con-
sider a case where we reject the null for a marker in LD with a causal polymorphism a
type I error. Next sentences moved to section above.

Last lecture, we defined a Bonferroni adjusted Type I error ↵B strategy, which uses the
formula:

↵B =
↵

N
(1)

Recall that a drawback of a Bonferroni correction is the approach is very ‘conservative’, i.e.
there is a low probability of making a Type I error but also low power. This is particularly
problematic in cases where the number of N markers (tests) and the sample size n is not
particularly large. Larger sample sizes are required to produce lower p-values. This means
that a Bonferroni correction using a large N can make the power of GWAS tests so low that
true positives do not produce significant results, i.e. the power is extremely low. However,
a Bonferroni correction is a good strategy for keeping Type I error extremely low and it
is often applied in GWAS studies, where significant tests at a Bonferroni correct Type I
error are considered to have a very low probability of being false positives.

A class of less conservative approaches for correcting Type I error makes use of the concept
of a False Discovery Rate (FDR). These approaches include many variants. To get some
intuition concerning an FDR, consider the following example. If we have N = 1, 000, 000
independent tests, we would expect 50,000 of them to incorrectly reject the null hypothesis
by chance with a Type I error rate set to ↵ = 0.05. What if we were to perform the GWAS
study and we reject the null in 100,000 cases? This is a far greater number than we would
expect to reject by chance if all of the tests were false positives. This may therefore indicate
that some of these tests that we rejected were actually true positives. A way of calculating
the proportion of these tests that are false positives is to calculate a False Discovery Rate
(FDR):

FDR =
N ⇤ ↵
R

(2)

where R is the number of tests where H0 was rejected. For our simplistic example, the FDR
would be 0.5, indicating that half or the cases where we rejected H0 reflect true positives.

Now unfortunately, we have now way of knowing which of the tests where we rejected
the null are the false positives, only the proportion, i.e. we can’t say for any one test
whether it is a false positive or not. However, a way to deal with this problem is to set
the FDR rate to some specified low level, e.g. FDR = 0.1. In such cases, the FDR is low
enough that the probability of a case where we rejected the null hypothesis of being a false
positive is so low, we can be relatively confident that it represents a true positive. We can
identify such a level by setting FDR in equation (12) to a desired level (say FDR = 0.1)
and considering ↵ in equation (12) to be the p-value for which we want to consider tests

2



Correcting for multiple tests IV
• Since the lower the Type 1 error the lower the power of our test, if we 

set the Type 1 error too low due to a very large N, we might not get any 
hits even when there are clear causal polymorphisms (is this desirable!?) 

• In general, a Bonferroni correction sets a lower overall GWAS Type I 
error than FDR approaches (what are the trade-offs and why would we 
choose one over the other?)

• Both Bonferroni and FDR approaches make the implicit assumption that 
all tests are independent (which we know not to be the case in GWAS!)

• A strategy that can produce a more accurate Bonferroni or FDR cutoff is 
to use a permutation approach (which we do not have time to cover in 
this course)

• Regardless of the approach, some correction for multiple tests is 
necessary to guard against a case where there are no true positives in the 
experiment, i.e. this is why we do not automatically assume the highest 
“peak” is a true positive (unless it is significant after a multiple test 
correction)



Statistical / experimental issues that 
affect True Positives: power I

• Recall that power is defined as the probability of correctly 
rejecting the null hypothesis when it is false (incorrect)

• Also recall that we cannot control power directly because 
it depends on the true parameter value(s) that we do not 
know!

• Also recall that we can indirectly control power by setting 
our Type 1 error, where there is a trade-off between Type 1 
error and power (what is this trade-off!?)

• There are also a number of issues that affect power that 
are a function of the GWAS experiment



• Power tends to increase with the increasing size of the true effect of 
the genotype on phenotype (how is this quantified in terms of linear 
regression parameters?)

• Power tends to increase with increasing sample size n

• Power tends to increase as the Minor Allele Frequency (MAF) 
increases (why is this?)

• Power tends to increase as the LD between a causal polymorphism 
and the genotype marker being tested increases (i.e. as the correlation 
between the causal and marker genotype increase)

• Power also depends on other factors including the type of statistical 
test applied, etc.

• Can any of these be controlled?  

Statistical / experimental issues that 
affect True Positives: power II



Experimental issues that produce 
false positives

• Type 1 errors can produce a false positives (= places we 
identify in the genome as containing a causal 
polymorphism / locus that do not)

• However, there are experimental reasons why we can 
correctly reject the null hypothesis (= we do not make a 
Type 1 error) but we still get a false positive:

• Cases of disequilibrium when there is no linkage

• Genotyping errors

• Unaccounted for covariates

• There are others...



Introduction to covariates I
• Recall that in a GWAS, we are considering the following 

regression model and hypotheses to assess a possible 
association for every marker with the phenotype 

• Also recall that with these hypotheses we are actually 
testing:

the other haplotype alleles, this is a reasonable solution for determining the number of al-
leles. Now, this might not be a very satisfying answer but it turns out that, for humans at
least, if one looks at a haplotype region, it is often relatively easy to identify 3-5 haplotype
alleles that account for all observed variation. In sum, there is no hard rule, but we define
a collapsing that makes the most sense given data we observe.

3 Fixed Covariates

Remember that when we are performing a GWAS using a GLM:

Y = �
�1(�µ +Xa�a +Xd�d) (1)

where we are testing:
H0 : �a = 0 \ �d = 0 (2)

HA : �a 6= 0 [ �d 6= 0 (3)

and where another way to consider these hypotheses is that we are actually testing:

H0 : Cov(Y,Xa) = 0 \ Cov(Y,Xd) = 0 (4)

HA : Cov(Y,Xa) 6= 0 [ Cov(Y,Xd) 6= 0 (5)

Let’s now consider a case where a marker is not linked to a causal polymorphism, so that
the null hypothesis is true, but there is another factor, which we could code as an additional
variable Xz, that has an e↵ect on Y (which we could describe with a parameter �) such
that Cov(Y,Xz) 6= 0. Let’s assume that this factor has the following relationship with the
genotype Cov(Xa, Xz) 6= 0, i.e. Xz it is correlated with Xa. In this case, when testing the
null hypothesis using equation (8), we should expect to reject the null. While this is not a
false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)
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• Let’s consider these two cases:

• For the first, the marker is not correlated with a causal polymorphism 
but the factor is correlated with BOTH the phenotype and the marker 
such that a test of the marker using our framework will produce a 
false positive (!!):

• For the second, the marker is correlated with a causal polymorphism 
and while the factor is correlated with the phenotype but not the 
marker, a test of the marker in our framework will model the effect of 
the factor in our error term (which will reduce power!):
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the actual error we are considering is:

✏Xz = Xz�z + ✏ (8)

✏ ⇠ N(0,�2
✏ ) (9)

which is not the correct model, i.e. the true error term is actually a mixture of normals.
Even beyond the problem that we are not applying the correct model, the result in this
case is that the error term will be larger as a consequence of the factor, so the power of
our test will be lower (compared to a case where there was no e↵ect of a factor).

These examples provide two intuitive consequences of factors contributing to our phe-
notype of interest Y , i.e. biological false positives and higher error terms. On a practical
level, there are many such factors that contribute to phenotype variation in GWAS studies,
e.g. environmental factors such as ‘smoking’ or ‘non-smoking’, gender di↵erences, multiple
causal loci, etc. The good news is when we have information about these factors, (e.g.
whether a given individual is a smoker or non-smoker) we can include an additional co-
variate term in our linear (or logistic) equation and an associate parameter to account for
the e↵ects of the factor. We call such an approach (where we have a dummy variable Xz

and parameter �z) a fixed covariate:

Y = �
�1(�µ +Xa�a +Xd�d +Xz�z) (10)

and we use the sample statistical framework (including hypothesis testing) to analyze such
a model. Note that we may code the dummy variable for the covariate as we have with
our genotypes (just a few states) or with many states, e.g. an individual fixed state for
each individual in our sample. Also note that we have arbitrarily designated the genotype
dummy variables to be what we are interested in and all other factors to be covariates but
they are modeled and handled the same way for the purposes of inference.

A few quick comments about fixed covariates. First, in practice, we may not have in-
formation in our GWAS study about an important factor contributing to our phenotype
and in such cases we are simply out of luck. Second, even if we have information on a num-
ber of possible factors that may be contributing to our phenotype, we do not know which
ones are actually covariates, i.e. have true non-zero � terms. In general, the way we handle
such situations is repeat the analysis several times including individual or combinations of
these possible covariates. If the estimates of the �’s are close to zero for given covariates,
we can leave them out of the analysis (where we decide which are close to zero using model
selection procedures). Third, if there are multiple loci contributing to the phenotype, we
could include additional markers in the model to account for these ‘covariates’. However,
this brings up an additional challenge of how to select which markers to include (again, the
problem of model selection), a subject that we will deal with in notes that we will post but
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Modeling covariates I
• Therefore, if we have a factor that is correlated with our 

phenotype and we do not handle it in some manner in our 
analysis, we risk producing false positives AND/OR reduce 
the power of our tests!

• The good news is that, assuming we have measured the 
factor (i.e. it is part of our GWAS dataset) then we can 
incorporate the factor in our model as a covariate(s):

• The effect of this is that we will estimate the covariate 
model parameter and this will account for the correlation of 
the factor with phenotype (such that we can test for our 
marker correlation without false positives / lower power!)

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ⇥ (100)
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Modeling covariates II
• How do we perform inference with a covariate in our regression 

model?

• We perform MLE the same way (!!) our X matrix now simply 
includes extra columns, one for each of the additional covariates, 
where for the linear regression we have:

• We perform hypothesis testing the same way (!!) with a slight 
difference: our LRT includes the covariate in both the null 
hypothesis and the alternative (and therefore two different X 
matrices!), but we are testing the same null hypothesis:

2 Hypothesis testing with the regression model

As a reminder, our inference goal in quantitative genomics is to test the following null
hypothesis for a multiple regression model: Y = �µ +Xa�a +Xd�d + ✏ with ✏ ⇠ N(0,�2

✏ ),
which we use to assess whether there is an e↵ect of a polymorphism on a phenotype:

H0 : �a = 0 \ �d = 0 (1)

HA : �a 6= 0 [ �d 6= 0 (2)

To do this, we will construct a likelihood ratio test (LRT) with an exact distribution (in
this case, an F-test). We will not go into the details of how this test is derived, but remem-
ber that this has the same form as any LRT that we discussed in a previous lecture (and
remember that a LRT works like any other statistic, i.e. it is a function on a sample that
produces a value that we then use to determine a p-value!!). We will however consider the
components of an F-statistic so we know how to calculate it and perform our hypothesis
test.

To construct this LRT, we need the maximum likelihood estimates of the regression pa-
rameters:

MLE(✓̂) =

2

4
�̂µ

�̂a

�̂d

3

5

where recall from last lecture, this has the following form:

MLE(✓̂) = (XTX)�1XTY (3)

MLE(�̂) = (xTx)�1xTy (4)

With these estimates, we can construct the predicted phenotypic value ŷi for an individual
i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (5)

where the parameter estimates are the MLE. We will next define two functions of the
predicted values. The first is the sum of squares of the model (SSM):

SSM =
nX

i=1

(ŷi � y)2 (6)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE =
nX

i=1

(yi � ŷi)
2 (7)
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• First, determine the predicted value of the phenotype of each 
individual under the null hypothesis (how do we set up x?):

• Second, determine the predicted value of the phenotype of each 
individual under the alternative hypothesis (set up x?):

• Third, calculate the “Error Sum of Squares” for each:   

• Finally, we calculate the F-statistic with degrees of freedom [2, 
n-3] (why two and n-#params degrees of freedom?):

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)
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pval(T (x)) =

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)X

Torder(min(T (X))

Pr(T (Torder(i))|✓ = c)

(42)

+

Torder(max(T (X))X

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)

Pr(T (Torder(i))|✓ = c) (43)

Torder(T (x)) = i|for the ith largest value of T(X) (44)

ŷi,✓̂1
= �̂µ,✓̂1

+ xi,a�̂a,✓̂1
+ xi,d�̂d,✓̂1

+
X

j=1

xi,z,j �̂z,✓̂1,j
(45)
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ŷi,✓̂0
= �̂µ,✓̂0

+
X

j=1

xi,z,j �̂z,✓̂0,j
(46)
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• Thus, for testing the null hypothesis in a linear regression, we can construct an 
F-test using a slightly different formula:

• For the null hypotheses we are testing, once you calculate this F-statistic, you 
compare to an F-distribution with 2 and n - #(alternative hypothesis 
parameters) degrees of freedom 

• The “2” df in the numerator comes from the #(alternative hypothesis model 
parameters) - #(null hypothesis model parameters)

• Note that our previous formula for an F-statistic can be represented this way 
as well (!!)

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)

3

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)

3

l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)
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Modeling covariates VI
• Say you have GWAS data (a phenotype and genotypes) and your 

GWAS data also includes information on a number of covariates, 
e.g. male / female, several different ancestral groups (different 
populations!!), other risk factors, etc.

• First, you need to figure out how to code the XZ in each case for 
each of these, which may be simple (male / female) but more 
complex with others (where how to code them involves fuzzy 
rules, i.e. it depends on your context!!)

• Second, you will need to figure out which to include in your 
analysis (again, fuzzy rules!) but a good rule is if the parameter 
estimate associated with the covariate is large (=significant 
individual p-value) you should include it!

• There are many ways to figure out how to include covariates 
(again a topic in itself!!) - next lecture we will provide an 
(important!) example: population structure 



Quantile-Quantile (QQ) plots 1

• We will now introduce an essential tool for detecting the most 
problematic covariates (and can be used to diagnose many other 
problems!): a Quantile-Quantile (QQ) plot

• While the definition of a QQ-plot is complex, you will see that 
how we generate a QQ-plot is easy!

• We will demonstrate the value of a QQ plot for detecting the 
often problematic variable: population structure

• In general, whenever you perform a GWAS, you should construct 
a QQ plot (!!) and always include a QQ plot in your publication



Quantile-Quantile (QQ) plots II

• Consider a random variable with a continuous probability 
distribution

• quantile - regular, equally spaced intervals of a random variable 
that divide the random variable into units of equal distribution

• A Quantile-Quantile (QQ) plot (in general) plots the observed 
quantiles of one distribution versus another OR plots the 
observed quantiles of a distribution versus the quantiles of the 
ideal distribution

• We will use a QQ plot to plot our the quantile distribution of 
observed p-values (on the y-axis) versus the quantile distribution 
of expected p-values (what distribution is this!?)



Quantile-Quantile (QQ) plots III

• How to construct a QQ plot for a GWAS:

• If you performed N tests, take the -log (base 10) of each of the 
p-values and put them in rank order from smallest to largest

• Create a vector of N values evenly spaces from 1 to 1 / N 
(how do we do this?), take the -log of each of these values and 
rank them from smallest to largest

• Take the pair of the smallest of values of each of these lists 
and plot a point on an x-y plot with the observed -log p-value 
on the y-axis and the spaced -log value on the x-axis

• Repeat for the next smallest pair, for the next, etc. until you 
have plotted all N pairs in order 



Quantile-Quantile (QQ) plots III
• In an ideal GWAS case where there ARE NO causal polymorphisms, your QQ 

plot will be a line:

• The reason is that we will observe a uniform distribution of p-values from such a 
case and in our QQ we are plotting this observed distribution of p-value versus 
the expected distribution of p-values: a uniform distribution (where both have 
been -log transformed)

• Note that if you GWAS analysis is correct but you do not have enough power to 
detect positions of causal polymorphisms, this will also be your result (!!), i.e. it is a 
way to assess whether you can detect any hits in your GWAS (!!)
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• In an ideal GWAS case where there ARE causal polymorphisms, your QQ plot will 
be a line with a tail (!!):

• This happens because most of the p-values observed follow a uniform distribution 
(i.e. they are not in LD with a causal polymorphism so the null hypothesis is 
correct!) but the few that are in LD with a causal polymorphism will produce 
significant p-values (extremely low = extremely high -log(p-values)) and these are 
in the “tail” 

• This is ideally how you want your QQ-plot to look - if it does, you are in good 
shape!
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• In practice, you can find your QQ plot looks different than either the “null GWAS” case or 
the “ideal GWAS” case, for example:

• This indicates that something is wrong (!!!!) and if this is the case, you should not interpret 
any of your significant p-values as indicating locations of causal polymorphisms (!!!!) 

• Note that this means that you need to find an analysis strategy such that the result of your 
GWAS produces a QQ plot that does NOT look like this (note that this takes experience 
and many tools to do consistently!)

• Also note that unaccounted for covariates can cause this issue and the most frequent culprit 
is unaccounted for population structure 
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That’s it for today

• Next lecture, we will continue our discussion GWAS analysis with 
a discussion of population structure (!!)


