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• Your midterm (!!) STARTS TODAY (by 11AM) = once the exam has started, 
DO NOT COMMUNICATE WITH ANYONE IN ANY WAY ABOUT ANY 
ASPECT OF THE EXAM (work on your own!) - the only exception is 
myself, Beulah, Sam (we will answer clarifying questions).

• No office hours tomorrow (!!)

Announcements



Summary of lecture 20: Population 
Structure in GWAS

• Last lecture, we continued our discussion GWAS analysis issues, 
including multiple test correction, covariates and QQ plots!

• Today we will continue our discussion of using covariates (and QQ 
plots) by discussing a critical covariates in GWAS: population 
structure!



Review: True and False Positive 
Trade-offs in GWAS

• For GWAS, we are generally concerned with correctly 
identifying the position of as many causal polymorphisms as 
possible (True Positives) while minimizing the number of 
cases where we identify a position where we think there is 
a causal polymorphism but there is not (False Positive)

• We are less concerned with cases where there is a causal 
polymorphism but we do not detect it (why is this?)

• Issues that affect the number of True Positives and False 
Positives that we identify in a GWAS can be statistical and 
experimental (or a combination)



Review: Experimental issues that 
produce false positives

• Type 1 errors can produce a false positives (= places we 
identify in the genome as containing a causal 
polymorphism / locus that do not)

• However, there are experimental reasons why we can 
correctly reject the null hypothesis (= we do not make a 
Type 1 error) but we still get a false positive:

• Cases of disequilibrium when there is no linkage

• Genotyping errors

• Unaccounted for covariates

• There are others...



Review: Introduction to covariates I
• Recall that in a GWAS, we are considering the following 

regression model and hypotheses to assess a possible 
association for every marker with the phenotype 

• Also recall that with these hypotheses we are actually 
testing:

the other haplotype alleles, this is a reasonable solution for determining the number of al-
leles. Now, this might not be a very satisfying answer but it turns out that, for humans at
least, if one looks at a haplotype region, it is often relatively easy to identify 3-5 haplotype
alleles that account for all observed variation. In sum, there is no hard rule, but we define
a collapsing that makes the most sense given data we observe.

3 Fixed Covariates

Remember that when we are performing a GWAS using a GLM:

Y = �
�1(�µ +Xa�a +Xd�d) (1)

where we are testing:
H0 : �a = 0 \ �d = 0 (2)

HA : �a 6= 0 [ �d 6= 0 (3)

and where another way to consider these hypotheses is that we are actually testing:

H0 : Cov(Y,Xa) = 0 \ Cov(Y,Xd) = 0 (4)

HA : Cov(Y,Xa) 6= 0 [ Cov(Y,Xd) 6= 0 (5)

Let’s now consider a case where a marker is not linked to a causal polymorphism, so that
the null hypothesis is true, but there is another factor, which we could code as an additional
variable Xz, that has an e↵ect on Y (which we could describe with a parameter �) such
that Cov(Y,Xz) 6= 0. Let’s assume that this factor has the following relationship with the
genotype Cov(Xa, Xz) 6= 0, i.e. Xz it is correlated with Xa. In this case, when testing the
null hypothesis using equation (8), we should expect to reject the null. While this is not a
false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)
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• Let’s consider these two cases:

• For the first, the marker is not correlated with a causal polymorphism 
but the factor is correlated with BOTH the phenotype and the marker 
such that a test of the marker using our framework will produce a 
false positive (!!):

• For the second, the marker is correlated with a causal polymorphism 
and while the factor is correlated with the phenotype but not the 
marker, a test of the marker in our framework will model the effect of 
the factor in our error term (which will reduce power!):
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the actual error we are considering is:

✏Xz = Xz�z + ✏ (8)

✏ ⇠ N(0,�2
✏ ) (9)

which is not the correct model, i.e. the true error term is actually a mixture of normals.
Even beyond the problem that we are not applying the correct model, the result in this
case is that the error term will be larger as a consequence of the factor, so the power of
our test will be lower (compared to a case where there was no e↵ect of a factor).

These examples provide two intuitive consequences of factors contributing to our phe-
notype of interest Y , i.e. biological false positives and higher error terms. On a practical
level, there are many such factors that contribute to phenotype variation in GWAS studies,
e.g. environmental factors such as ‘smoking’ or ‘non-smoking’, gender di↵erences, multiple
causal loci, etc. The good news is when we have information about these factors, (e.g.
whether a given individual is a smoker or non-smoker) we can include an additional co-
variate term in our linear (or logistic) equation and an associate parameter to account for
the e↵ects of the factor. We call such an approach (where we have a dummy variable Xz

and parameter �z) a fixed covariate:

Y = �
�1(�µ +Xa�a +Xd�d +Xz�z) (10)

and we use the sample statistical framework (including hypothesis testing) to analyze such
a model. Note that we may code the dummy variable for the covariate as we have with
our genotypes (just a few states) or with many states, e.g. an individual fixed state for
each individual in our sample. Also note that we have arbitrarily designated the genotype
dummy variables to be what we are interested in and all other factors to be covariates but
they are modeled and handled the same way for the purposes of inference.

A few quick comments about fixed covariates. First, in practice, we may not have in-
formation in our GWAS study about an important factor contributing to our phenotype
and in such cases we are simply out of luck. Second, even if we have information on a num-
ber of possible factors that may be contributing to our phenotype, we do not know which
ones are actually covariates, i.e. have true non-zero � terms. In general, the way we handle
such situations is repeat the analysis several times including individual or combinations of
these possible covariates. If the estimates of the �’s are close to zero for given covariates,
we can leave them out of the analysis (where we decide which are close to zero using model
selection procedures). Third, if there are multiple loci contributing to the phenotype, we
could include additional markers in the model to account for these ‘covariates’. However,
this brings up an additional challenge of how to select which markers to include (again, the
problem of model selection), a subject that we will deal with in notes that we will post but
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false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)
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Modeling covariates I
• Therefore, if we have a factor that is correlated with our 

phenotype and we do not handle it in some manner in our 
analysis, we risk producing false positives AND/OR reduce 
the power of our tests!

• The good news is that, assuming we have measured the 
factor (i.e. it is part of our GWAS dataset) then we can 
incorporate the factor in our model as a covariate(s):

• The effect of this is that we will estimate the covariate 
model parameter and this will account for the correlation of 
the factor with phenotype (such that we can test for our 
marker correlation without false positives / lower power!)

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ⇥ (100)
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Modeling covariates II
• How do we perform inference with a covariate in our regression 

model?

• We perform MLE the same way (!!) our X matrix now simply 
includes extra columns, one for each of the additional covariates, 
where for the linear regression we have:

• We perform hypothesis testing the same way (!!) with a slight 
difference: our LRT includes the covariate in both the null 
hypothesis and the alternative (and therefore two different X 
matrices!), but we are testing the same null hypothesis:

2 Hypothesis testing with the regression model

As a reminder, our inference goal in quantitative genomics is to test the following null
hypothesis for a multiple regression model: Y = �µ +Xa�a +Xd�d + ✏ with ✏ ⇠ N(0,�2

✏ ),
which we use to assess whether there is an e↵ect of a polymorphism on a phenotype:

H0 : �a = 0 \ �d = 0 (1)

HA : �a 6= 0 [ �d 6= 0 (2)

To do this, we will construct a likelihood ratio test (LRT) with an exact distribution (in
this case, an F-test). We will not go into the details of how this test is derived, but remem-
ber that this has the same form as any LRT that we discussed in a previous lecture (and
remember that a LRT works like any other statistic, i.e. it is a function on a sample that
produces a value that we then use to determine a p-value!!). We will however consider the
components of an F-statistic so we know how to calculate it and perform our hypothesis
test.

To construct this LRT, we need the maximum likelihood estimates of the regression pa-
rameters:

MLE(✓̂) =

2

4
�̂µ

�̂a

�̂d

3

5

where recall from last lecture, this has the following form:

MLE(✓̂) = (XTX)�1XTY (3)

MLE(�̂) = (xTx)�1xTy (4)

With these estimates, we can construct the predicted phenotypic value ŷi for an individual
i in a sample:

ŷi = �̂µ + xi,a�̂a + xi,d�̂d (5)

where the parameter estimates are the MLE. We will next define two functions of the
predicted values. The first is the sum of squares of the model (SSM):

SSM =
nX

i=1

(ŷi � y)2 (6)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE =
nX

i=1

(yi � ŷi)
2 (7)
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the other haplotype alleles, this is a reasonable solution for determining the number of al-
leles. Now, this might not be a very satisfying answer but it turns out that, for humans at
least, if one looks at a haplotype region, it is often relatively easy to identify 3-5 haplotype
alleles that account for all observed variation. In sum, there is no hard rule, but we define
a collapsing that makes the most sense given data we observe.

3 Fixed Covariates

Remember that when we are performing a GWAS using a GLM:

Y = �
�1(�µ +Xa�a +Xd�d) (1)
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H0 : �a = 0 \ �d = 0 (2)

HA : �a 6= 0 [ �d 6= 0 (3)
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H0 : Cov(Y,Xa) = 0 \ Cov(Y,Xd) = 0 (4)
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the null hypothesis is true, but there is another factor, which we could code as an additional
variable Xz, that has an e↵ect on Y (which we could describe with a parameter �) such
that Cov(Y,Xz) 6= 0. Let’s assume that this factor has the following relationship with the
genotype Cov(Xa, Xz) 6= 0, i.e. Xz it is correlated with Xa. In this case, when testing the
null hypothesis using equation (8), we should expect to reject the null. While this is not a
false positive in the sense that we are getting the right statistical answer, this is the wrong
answer from a genetic perspective, so it is a biological false positive i.e. the result of the
test is indicating that the marker is linked to a causal polymorphism although it is not.

Let’s now consider a case where there is a factor that has an e↵ect on Y but it is not
correlated with either Xa or Xd. If we apply our basic glm, we are actually incorporating
the e↵ect of this factor in the error term. For example, for a linear regression model:

Y = �µ +Xa�a +Xd�d + ✏Xz (6)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (7)

✏ ⇠ N(0,�2
✏ ) (8)
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• First, determine the predicted value of the phenotype of each 
individual under the null hypothesis (how do we set up x?):

• Second, determine the predicted value of the phenotype of each 
individual under the alternative hypothesis (set up x?):

• Third, calculate the “Error Sum of Squares” for each:   

• Finally, we calculate the F-statistic with degrees of freedom [2, 
n-3] (why two and n-#params degrees of freedom?):

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)

3
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(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)

5

pval(T (x)) =

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)X

Torder(min(T (X))

Pr(T (Torder(i))|✓ = c)

(42)

+

Torder(max(T (X))X

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)

Pr(T (Torder(i))|✓ = c) (43)

Torder(T (x)) = i|for the ith largest value of T(X) (44)

ŷi,✓̂1
= �̂µ,✓̂1

+ xi,a�̂a,✓̂1
+ xi,d�̂d,✓̂1

+
X

j=1

xi,z,j �̂z,✓̂1,j
(45)

6
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(42)

+
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(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)
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ŷi,✓̂1
= �̂µ,✓̂1

+ xi,a�̂a,✓̂1
+ xi,d�̂d,✓̂1

+
X

j=1

xi,z,j �̂z,✓̂1,j
(45)

ŷi,✓̂0
= �̂µ,✓̂0

+
X

j=1

xi,z,j �̂z,✓̂0,j
(46)
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• Thus, for testing the null hypothesis in a linear regression, we can construct an 
F-test using a slightly different formula:

• For the null hypotheses we are testing, once you calculate this F-statistic, you 
compare to an F-distribution with 2 and n - #(alternative hypothesis 
parameters) degrees of freedom 

• The “2” df in the numerator comes from the #(alternative hypothesis model 
parameters) - #(null hypothesis model parameters)

• Note that our previous formula for an F-statistic can be represented this way 
as well (!!)

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)

3
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it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:
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SSM
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=
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(11)
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SSE
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and with these definitions, we can finally calculate our F-statistic:
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)
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Modeling covariates VI
• Say you have GWAS data (a phenotype and genotypes) and your 

GWAS data also includes information on a number of covariates, 
e.g. male / female, several different ancestral groups (different 
populations!!), other risk factors, etc.

• First, you need to figure out how to code the XZ in each case for 
each of these, which may be simple (male / female) but more 
complex with others (where how to code them involves fuzzy 
rules, i.e. it depends on your context!!)

• Second, you will need to figure out which to include in your 
analysis (again, fuzzy rules!) but a good rule is if the parameter 
estimate associated with the covariate is large (=significant 
individual p-value) you should include it!

• There are many ways to figure out how to include covariates 
(again a topic in itself!!) - next lecture we will provide an 
(important!) example: population structure 



Covariate modeling example: 
population structure 

• “Population structure” or “stratification” is a case where a sample includes 
groups of people that fit into two or more different ancestry groups (fuzzy 
def!)

• Population structure is often a major issue in GWAS where it can cause 
lots of false positives if it is not accounted for in your model

• Intuitively, you can model population structure as a covariate if you know: 

• How many populations are represented in your sample

• Which individual in your sample belongs to which population

• QQ plots are good for determining whether there may be population 
structure

• “Clustering” techniques are good for detecting population structure and 
determining which individual is in which population (=ancestry group) 



Origin of population structure

© Sarver World Cultures

People geographically separate through migration and then the set 
of alleles present in the population evolves (=changes) over time



• Even if you had a case where there were NO causal polymorphisms 
for a phenotype, you can get false positives if:

• If you have more than one population in your sample (that you do 
not model with a covariate)

• If these populations differ in frequencies of genotypes at a subset of 
measured genotypes / polymorphisms

• If these populations differ in the mean value of the phenotype

• In such a case, every genotype where an MAF is different between the 
populations would be expected to produce a low p-value (=biological 
false positives!)

• Note: if you can “learn” (or know) the population information for your 
data, you can model this as a covariate and you (may) be able to 
correct this problem 

Why might (unaccounted for) structure 
be a problem in a GWAS?



Modeling population structure as a 
covariate (intuition)

• If you can determine which individual is in which pop and define 
random variables for pop assignment, e.g. for two populations 
include single covariate by setting, XZ,1(pop1) = 1, XZ,1(pop2) = 0 
(generally less optimal but can be used!)

• Use one of these approaches to model a covariate in your analysis, 
i.e. for every genotype marker that you test in your GWAS:

• How do we tell if our covariate correction “worked” well enough 
that we should interpret the results of our analysis?

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ⇥ (100)

17



• To learn a population factor, analyze the genotype data

• Apply a Principal Component Analysis (PCA) where the “axes” (features) in this case 
are individuals and each point is a (scaled) genotype

• What we are interested in the projections (loadings) of the individual PCs on the axes 
(dotted arrows) on each of the individual axes, where for each, this will produce n (i.e. 
one value for each sample) value of a new independent (covariate) variable XZ 

Learning unmeasured population factors 
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�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:
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Using the results of a PCA 
population structure analysis

• Once you have detected the populations (e.g. by eye in a PCA = 
fuzzy!) in your GWAS sample, set your independent variables equal 
to the loadings for each individual, e.g., for two pop covariates, set 
XZ,1 = Z1, XZ,2 = Z2

• You could also determine which individual is in which pop and 
define random variables for pop assignment, e.g. for two populations 
include single covariate by setting, XZ,1(pop1) = 1, XZ,1(pop2) = 0 
(generally less optimal but can be used!)

• Use one of these approaches to model a covariate in your analysis, 
i.e. for every genotype marker that you test in your GWAS:

• The goal is to produce a good QQ plot (what if it does not?)

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)

H0 : Cov(Y,X) (99)

To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

⇤

⌥⇧
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

⌅

�⌃

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ⇥ (100)
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Reminder: Quantile-Quantile (QQ) 
plots

• We will now introduce an essential tool for detecting the most 
problematic covariates (and can be used to diagnose many other 
problems!): a Quantile-Quantile (QQ) plot

• While the definition of a QQ-plot is complex, you will see that 
how we generate a QQ-plot is easy!

• We will demonstrate the value of a QQ plot for detecting the 
often problematic variable: population structure

• In general, whenever you perform a GWAS, you should construct 
a QQ plot (!!) and always include a QQ plot in your publication



Before (top) and after including a 
population covariate (bottom)



• In a GWAS (i.e., when you have a single 
phenotype and you are considering the 
impact of MANY genotypes!) always use a 
QQ and interpret two cases (i.e., all on 45 
deg line or most on 45 deg line with “tail” as 
an indicator to interpret analysis results 
(otherwise there is a problem!)

• Caveat: there can be exceptions… but make 
sure you understand when these occur and 
why (!!)

• In analyses with MANY phenotypes and a 
single genotype, it is very possible that the 
genotype impacts many phenotypes 
producing way more significant tests and a 
QQ that would NOT be acceptable for 
GWAS but is FINE for assessing a single 
genotype impact on many phenotypes:

• Plotting a QQ can still be useful in these 
cases (=recommended!)

Important (!!): when to use / how to 
interpret QQ diagnostics
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That’s it for today

• Next lecture, we will discuss minimal GWAS analysis steps (and 
begin our discussion of logistic regression) (!!)


