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Summary of lecture 21: Minimal 
GWAS (& Logistic Regression 1)

• Last lecture, we discussed population structure (and 
accounting for population structure with a covariate!) 

• Today, we will also discuss “minimal steps” to perform in a 
GWAS analysis (!!) 

• We will begin also begin our discussion of the last major 
(non-optional!) topic: logistic regression



Minimal GWAS 1

• You have now reached a stage when you are ready to perform 
a real GWAS data on your own (please note that there is 
more to learn and analyzing GWAS well requires that you 
jump in and analyze!!)

• Our final concept to allow you to do this are minimal GWAS 
steps, i.e. a list of analyses you should always do when analyzing 
GWAS data (you now know how to do most of these, a few 
you will have to do additional work to figure out)

• While these minimal steps are fuzzy (=they do not apply in 
every situation!) they provide a good guide to how you should 
think about analyzing your GWAS data (in fact, no matter how 
experienced you become, you will always consider these 
steps!)



Minimal GWAS II

• The minimal steps are as follows:

• (1) Make sure you understand the data and are clear on the 
components of the data

• (2) Check the phenotype data

• (3) Check and filter the genotype data

• (4) Perform a GWAS analysis and diagnostics

• (5) Present your final analysis and consider other evidence

• Note 1: the software PLINK (google it!) is a very useful tool for some (but 
not all) of these steps (but you can do everything in R!)

• Note II: GWAS analysis is not “do this and you are done” - it requires that 
you consider the output of each step (does it make sense? what does it 
mean in this case?) and that you use this information to iteratively change 
your analysis / try different approaches to get to your goal (what is this 
goal!?)



Minimal GWAS III: check data

• Look at the files (!!) using a text editor (if they are too large to 
do this - you will need another approach)

• Make sure you can identify: phenotypes, genotypes, covariates, 
and that you know what all other information indicates, i.e. 
indicators of the structure of the data, missing data, 
information that is not useful, etc. (also make sure you do not 
have any strange formatting, etc. in your file that will mess up 
your analysis!)

• Make sure you understand how phenotypes are coded and 
what they represent (how are they collected? are they the 
same phenotype?) and the structure of the genotype data (are 
they SNPs? are there three states for each?) - ideally talk to 
your collaborator about this (!!)



Minimal GWAS IV: phenotype data

• Plot your phenotype data (histogram!) 

• Check for odd phenotypes or outliers (remove if applicable)

• Make sure it conforms to a distribution that you expect and 
can model (!!) - this will determine which analysis techniques 
you can use

• e.g. if the data is continuous, is it approximately normal (or 
can be transformed to normal?)

• e.g. if it has two states (see logistic regression this week / 
next!), make sure you have coded the two states 
appropriately and know what they represent (are there 
enough in each category to do an analysis?

• e.g. what if your phenotype does not conform to either?



Minimal GWAS V: genotype data 
(“human centric rules"…)

• Make sure you know how many states you have for your genotypes and that they 
are coded appropriately

• Filter your genotypes (fuzzy rules! e.g., for humans = not all organisms!) - PLEASE 
NOTE: DO NOT filter for your midterm (!!):

• Remove individuals with >10% missing data across all genotypes (also remove 
individuals without phenotypes!)

• Remove genotypes with >5% missing data across the entire individual

• Remove genotypes with MAF < 5%

• Remove individuals that fail a test of Hardy-Weinberg equilibrium (where 
appropriate!)

• Remove individuals that fail transmission, sex chromosome test, etc.

• Perform a Principal Component Analysis (PCA) to check for clustering of n 
individuals (population structure!) or outliers, i.e. use the covariance matrix among 
individuals after scaling genotypes (by mean and sd) and look at the loadings of 
each individual on the PCs (you may have to “thin” the data!)



Minimal GWAS VI: GWAS analysis

• Perform an association analysis considering the association of each marker 
one at a time (always do this not matter how complicated your 
experimental design!)

• Apply as many individual analyses as you find informative (e.g. perform 
individual GWAS each with different statistical covariate sets) 

• CHECK QQ PLOTS FOR EACH INDIVIDUAL GWAS ANALYSIS and use 
this information to indicate if your analysis can be interpreted as indicating 
the positions of causal polymorphisms (if not, try more analyses, different 
filtering, etc. = experience is key!)

• For significant markers (multiple test correction!) do a “local” Manhattan 
plot and visualize the LD among the markers (r^2 or D’ if possible but just 
a correlation of you Xa can work) to determine if anything might be amiss

• Compare significant “hits” among different analyses (what might be causing 
the differences if there are any?)



Comparing results of multiple 
analyses of the same GWAS data I

• I’ve run my initial analyses using covariate models and produced 
the following (now what!?):



• The best case is that the same markers (SNPs) pass a multiple test 
correction regardless of the testing approach used, i.e. the result is 
robust to testing approach.

• In cases where this does not happen (most) it becomes helpful to 
understand why test results could be different:

• Are particular covariate models altering the results if included/excluded?  Why 
might this be?

• Are some tests more powerful than others or depend on certain assumptions 
being true?

• Does it depend on how you partition the data (e.g. batch effects)?

• This can help narrow down the set of tests you feel are the most 
informative.  In general, a good publishing strategy is limiting yourself to 
tests that both give you significant results that you believe!

Comparing results of multiple 
analyses of the same GWAS data II



Minimal GWAS VII: present results

• List ALL of the steps (methods!) you have taken to analyze the 
data such that someone could replicate what you did from 
your description (!!), i.e. what data did you remove? what 
intermediate analyses did you do? how did you analyze the 
data? if you used software what settings did you use?

• Plot a Manhattan and QQ plot (at least!)

• Present your hits (many ways to do this)

• Consider other information available from other sources 
(databases, literature) to try to determine more about the 
possible causal locus, i.e. are there good candidate loci, control 
regions, known genome structure, gene expression or other 
types of data, pathway information, etc.
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Linear regression review
• So far, we have considered a linear regression is a reasonable 

model for the relationship between genotype and phenotype 
(where this implicitly assumes a normal error provides a 
reasonable approximation of the phenotype distribution given 
the genotype):

and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)
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Case / Control Phenotypes I
• While a linear regression may provide a reasonable model for 

many phenotypes, we are commonly interested in analyzing 
phenotypes where this is NOT a good model

• As an example, we are often in situations where we are 
interested in identifying causal polymorphisms (loci) that 
contribute to the risk for developing a disease, e.g. heart disease, 
diabetes, etc.

• In this case, the phenotype we are measuring is often “has 
disease” or “does not have disease” or more precisely “case” or 
“control”

• Recall that such phenotypes are properties of measured 
individuals and therefore elements of a sample space, such that 
we can define a random variable such as Y(case) = 1 and 
Y(control) = 0 



Case / Control Phenotypes II

• Let’s contrast the situation, let’s contrast data we might model 
with a linear regression model versus case / control data: 
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Case / Control Phenotypes II
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Logistic regression I

• Instead, we’re going to consider a logistic regression model



Logistic regression II

• It may not be immediately obvious why we choose regression 
“line” function of this “shape”

• The reason is mathematical convenience, i.e. this function can be 
considered (along with linear regression) within a broader class 
of models called Generalized Linear Models (GLM) which we will 
discuss next lecture

• However, beyond a few differences (the error term and the 
regression function) we will see that the structure and out 
approach to inference is the same with this model!



That’s it for today

• Next lecture we will continue our discussion of logistic regression!


