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Announcements I

• All homeworks have been graded and your midterm will be 
graded / available next week

• The final (required!) work for the class: 

• Final exam

• One more computer lab (of three!) this week (Fri,  April 19)

• Class project, assigned today (Apr 16 - see following!)



Announcements II

• Your FINAL EXAM (!!):

• SAME format as the midterm (take-home, open book, work 
alone!)

• Will be made available May 11 and will be DUE by 11:59pm 
May 18 (ie Cornell, Ithaca exam week

• Will be designed to take 2-3 hours IF you prepare (e.g., your 
understanding, code, etc.) ahead of time!

• You will have to perform a GWAS analysis by applying a 
LINEAR regression with and without covariates AND a 
LOGISTIC regression with and without covariates (plus 
Manhattan plots, QQ plots, and some written answers) - 
That’s it (!!)



Announcements III

• Last class topics covered in lecture:

• Logistic regression (this week!)

• Basics of mixed models (optional!)

• (Brief) intro to Bayesian statistics (optional!)

• Basics of pedigree, inbred line, evolutionary analysis (optional!)

• Last class topics covered in labs 

• Logistic regression (this week: April 19) - REQUIRED (!!)

• Mixed models + review (next week: April 26) - optional!

• MCMC algorithms for Bayesian inference + review (following: 
May 3) - optional!



BIOCB 4830/6830 & PBSB.5201.01

Quantitative Genomics and Genetics Spring 2024

Project - posted April 16

Due 11:59PM May 7

1 Introduction and instructions

The goal of the class project is for you to demonstrate what you have learned by performing a
GWAS analysis on real data. To accomplish this, assume that you have been provided data by
a collaborator who wants to identify positions of causal polymorphisms (loci). You will perform
an in-depth analysis and write a report for your collaborator that explains your methods and results.

Instructions: While we provide some general guidelines for how to proceed below, the techniques
you use to analyze the data and how you construct your report will be up to you. Do however note
the following instructions (PLEASE READ THESE CAREFULLY!!):

(1) Your project must be uploaded by 11:59PM, May 7 - if it is late for any reason, standard
grading policies apply.

(2) You are allowed to work together with other students in the class to analyze these data.
However, note that turning in a report that describes exactly the same analyses as a fellow
student is not a good strategy for getting a good grade. Also note that you must write your
own report.

(3) This is an ‘open book’ assignment, such that you are allowed to use any resources online,
ChatGPT, in books, etc. You may also ask third-party (i.e. people not in the class) for
suggestions on what analyses to perform but you cannot have a third-party do any of the
analyses (or write any code for you!).

(4) You are also allowed to use any software or programming language that you would like as
part of your analysis. However, we expect that some of the tasks will be performed in R (also
note that you are welcome to use any packages, functions, etc. in R).

(5) Your final project will include at most three files a SINGLE report file (ideally a .pdf), a
SINGLE file including all of your R code (ideally an .rmd file!) and / or commands or scripts
you used to run other software packages, and IF YOU WANT a SINGLE, a pdf or html
conversion of your .rmd. That is, for your R code, the best way to maximize your grade is to
have well commented code that we can run from the command line. If you use other software
for some of the tasks, a reasonable approach is to include commented out descriptions in your
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code that provides details on how you ran the software, e.g. what parameters did you use,
etc.

(6) The report file must be no more than 8 pages (single-sided), with NO MORE than 5 pages
of text and NO MORE than 3 pages of figures / tables.

(7) For your report, you must describe what you did in detail (a good guide is have you provided
enough detail such that someone reading your report could replicate what you have done?).
You also need to describe the results you have obtained from your analysis. You may also
wish to include some text to describe interpretations and conclusions that may be of interest
to your collaborator, including statistical and possibly, biological interpretations. For your
Figures and Tables, note that clarity and clear labels is a strategy for maximizing your grade.

(8) We will grade on two broad criteria: 1. the overall quality of the analyses / report, 2. the
amount of e↵ort put into your project. Note that ‘e↵ort’ does not mean run many analyses
without thinking carefully about why you are running them or how they fit together to provide
a clear picture of results. A guide maximizing your grade on e↵ort is to think carefully about
how to produce the best possible report that you can and then put in as many hours as you
wish to devote to the project accomplishing this objective (your e↵ort level will be clear to
us).

2 The experiment and data

The experiment: About a decade ago, the large scale human genomics resources Genetic Eu-
ropean Variation in Health and Disease (gEUVADIS) was made available (now a part of larger
genomics consortium e↵orts but still relevant / relevant data!) - see the following links for relevant
descriptions and information:

http://www.internationalgenome.org/data-portal/data-collection/geuvadis/

https://www.nature.com/articles/nature12531

with a samples from 4 di↵erent European populations. Each of these individuals were part of
the 1000 Genomes project and their genomes were sequenced and analyzed to identify SNP geno-
types. For expression profiling, lympoblastoid cell lines (LCL) were generated from each sample
and mRNA levels were quantified through RNA sequencing.

Each of these gene expression measurements may be thought of as a phenotype and one can do a
GWAS analysis on each individually, which is called an ‘expression Quantitative Trait Locus’ or
‘eQTL’ analysis, an unnecessarily fancy name for a GWAS when the phenotype is gene expression!

What you have been provided is a small subset of these data that are publicly available. Specifi-
cally, you have been provided 50,000 of the SNP genotypes for 344 samples from the CEU (Utah
residents with European ancestry), FIN (Finns), GBR (British) and, TSI (Toscani) population.
For these same individuals, you have also been provided the expression levels of five genes. You
have also been provided information on the population and gender of each of these individuals, and
information regarding the position of each gene and SNP in the genome.
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The data: These have been provided to you in five total files: ‘phenotypes.csv’,‘genotypes.csv’,
‘covars.csv’, ‘gene info.csv’,‘SNP info.csv’ (within a ‘data files.zip’).

‘phenotypes.csv’ contains the phenotype data for 344 samples and 5 genes.

‘genotypes.csv’ contains the SNP data for 344 samples and 50000 genotypes.

‘covars.csv’ contains the population origin and gender information for the 344 samples.

‘gene info.csv’ contains information about each gene that was measured. The ‘chromosome’ column
indicates the chromosome where the gene is located, ‘start’ marks the position in the chromosome
where the region of the gene begins and ‘end’ marks the position where the region ends, ‘symbol’
contains the common gene name of the measured transcript and ‘probe’ contains the ids of the
transcripts that match with the column names of the phenotype data.

‘SNP info.csv’ contains the additional information on the genotypes and has four columns. The
1st column contains the chromosome number of each SNP, the 2nd column contains the physical
position of the SNP on the chromosome, the 3rd column contains the abbreviation used to the
‘rsID’ = the name of each SNP in order.

3 Your assignment and hints for getting started

Your GWAS assignment is to find the position of as many causal polymorphisms as possible for the
five expressed genes using the data (note that each ‘hit’ will potentially indicate an eQTL). You
may / should use any and as many analysis approaches as you think that are useful to accomplish
this goal. In your report, you will need to describe in detail what you did, why you did it, and
describe results in a manner that your ‘non-statistical’ collaborator will be able to understand, e.g.
explain your terms, provide interpretations, etc.

A few hints:

• Apply the applicable steps of a ‘minimum GWAS’ analysis.

• In your report, justify why you applied each individual step and statistical approach.

• In your report, provide a summary of your results and what they mean.

• You may want to consider going to various resources online (e.g. genecards, UCSC genome
browser, dbSNP, many others) to incorporate biological information into your interpretation
and hypotheses concerning what you may have found.

• Ask Beulah, Sam, and Jason for thoughts and ideas!

Good luck!
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Summary of lecture 22: Logistic 
Regression II

• Last lecture, we began our discussion of the last major (non-
optional!) topic: logistic regression

• Today we will continue our introduction!



Review: Linear regression
• So far, we have considered a linear regression is a reasonable 

model for the relationship between genotype and phenotype 
(where this implicitly assumes a normal error provides a 
reasonable approximation of the phenotype distribution given 
the genotype):

and we can write the ‘predicted’ value of yi of an individual as:

ŷi = �̂0 + xi�̂1 (14)

which is the value we would expect yi to take if there is no error. Note that by convention
we write the predicted value of y with a ‘hat’, which is the same terminology that we use
for parameter estimates. I consider this a bit confusing, since we only estimate parame-
ters, but you can see where it comes from, i.e. the predicted value of yi is a function of
parameter estimates.

As an example, let’s consider the values all of the linear regression components would
take for a specific value yi. Let’s consider a system where:

Y = �0 +X�1 + ✏ = 0.5 +X(1) + ✏ (15)

✏ ⇠ N(0,�2
✏ ) = N(0, 1) (16)

If we take a sample and obtain the value y1 = 3.8 for an individual in our sample, the true
values of the equation for this individual are:

3.8 = 0.5 + 3(1) + 0.3 (17)

Let’s say we had estimated the parameters �0 and �1 from the sample to be �̂0 = 0.6 and
�̂1 = 2.9. The predicted value of y1 in this case would be:

ŷ1 = 3.5 = 0.6 + 2.9(1) (18)

Note that we have not yet discussed how we estimate the � parameters but we will get to
this next lecture.

To produce a linear regression model useful in quantitative genomics, we will define a
multiple linear regression, which simply means that we have more than one independent
(fixed random) variable X, each with their own associated �. Specifically, we will define
the two following independent (random) variables:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (19)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (20)

and the following regression equation:

Y = �µ +Xa�a +Xd�d + ✏ (21)

✏ ⇠ N(0,�2
✏ ) (22)
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Review: Case / Control 
Phenotypes I

• While a linear regression may provide a reasonable model for 
many phenotypes, we are commonly interested in analyzing 
phenotypes where this is NOT a good model

• As an example, we are often in situations where we are 
interested in identifying causal polymorphisms (loci) that 
contribute to the risk for developing a disease, e.g. heart disease, 
diabetes, etc.

• In this case, the phenotype we are measuring is often “has 
disease” or “does not have disease” or more precisely “case” or 
“control”

• Recall that such phenotypes are properties of measured 
individuals and therefore elements of a sample space, such that 
we can define a random variable such as Y(case) = 1 and 
Y(control) = 0 



Case / Control Phenotypes II

• Let’s contrast the situation, let’s contrast data we might model 
with a linear regression model versus case / control data: 
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Logistic regression I

• Instead, we’re going to consider a logistic regression model



Logistic regression II

• It may not be immediately obvious why we choose regression 
“line” function of this “shape”

• The reason is mathematical convenience, i.e. this function can be 
considered (along with linear regression) within a broader class 
of models called Generalized Linear Models (GLM) which we will 
discuss next lecture

• However, beyond a few differences (the error term and the 
regression function) we will see that the structure and out 
approach to inference is the same with this model!



Logistic regression III
• To begin, let’s consider the structure of a regression model:

• We code the “X’s” the same (!!) although a major difference here is 
the “logistic” function as yet undefined

• However, the expected value of  Y has the same structure as we 
have seen before in a  regression:

• We can similarly write for a population using matrix notation 
(where the X matrix has the same form as we have been 
considering!):

• In fact the two major differences are in the form of the error and 
the logistic function

phenotypes, and any statistical test that accomplishes this goal is a reasonable approach.

For the moment, we will consider a logistic regression approach to modeling case-control

phenotypes. Logistic regression (and related models) provide the most versatile approach

to case-control analysis.

As the general framework is the same as we have discussed before, we are still dealing

with a sample space S = {Sg, SP }, which contains genotype Sg and phenotype SP sub-

sets. We will define the same genotypic random variables as before X : (Sg, ⇤) ! R
using the same codings: Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 and Xd(A1A1) =

�1, Xd(A1A2) = �1, Xa(A2A2) = �1. We will also define a phenotypic random variable

Y : (⇤, SP ) ! R which has the following structure: Y (case) = 1, Y (control) = 0. You’ll no-

tice that plotting phenotype versus the three genotype classes in this case is a little di↵erent

than for a continuous, normal phenotype because we only have six possible combinations of

genotype and phenotype. We will therefore use a slightly di↵erent ‘circle’ notation to repre-

sent the frequency of observations in each of these categories (see class notes for a diagram).

As with our continuous, normal random variable, we will define a probability model

for Y under the assumption Pr(Y |X). Now we could in theory continue to use a lin-

ear regression to model the relationship between genotype and phenotype and, in fact,

you sometimes see this approach (although I would encourage you not to use this strat-

egy). However, the distribution of the phenotype has clearly violated a major assumption

of the linear regression model, that the distribution of Y |AjAk ⇠ N(E(Y |AjAk),�
2
✏ ) =

N((�µ + Xa�a + Xd�d),�
2
✏ ) = N(G(Y ),�

2
✏ ), i.e. this violates the assumption that the

phenotype is normally distributed around the expected (genotypic) value of each geno-

type. This error cannot be normal if the phenotype only takes two states: zero and one.

What’s more, a linear regression model can lead to genotypic values greater or less than

one, which tends not to match our intuition about how we should model genotypic values

of case-control phenotypes (as we will see). We therefore need a di↵erent approach and a

logistic regression is the model we will consider.

Let’s first consider the structure of a logistic regression:

Y = logistic(�µ +Xa�a +Xd�d) + ✏l (1)

You’ll note this has the same structure as a linear regression with the addition of the, as

of yet, undefined function logistic(). The logistic function results in fitting a function to

the data that is close to flat at zero, increases in the middle, and flattens out again near

one (see class notes for a diagram). However, just as E(Y |X) = �µ +Xa�a +Xd�d for a

linear regression:

E(Y |X) = logistic(�µ +Xa�a +Xd�d) (2)

2

and we can similarly write for an individual i :

E(Yi|Xi) = logistic(�µ +Xi,a�a +Xi,d�d) (3)

That is, in our genotype-phenotype plot, if we were to find the value of the logistic function

on the Y-axis at the point on the X-axis corresponding to A1A1, this is the expected value

of the phenotype Y for genotype A1A1, etc. Note that this number will be between zero

and one. We can similarly write a equation for a sample of size n using vector notation:

E(Y|X) = logistic(X�) (4)

where Y, X, and the vector � have the same definition as previously.

There is one other di↵erence between equation (1) and a linear regression: the distri-

bution of the error random variable ✏. For a given value of the logistic regression for a

genotype AjAk, this random variable has to make up the di↵erence between a value of

Y , which is zero or one, and the value of this function. For a given genotype AjAk, this

random variable has to take one of two values. For a genotype AjAk, the value of the

phenotype Y = 1:

✏ = �E(Y |X) = �E(Y |AiAj) = �logistic(�µ +Xa�a +Xd�d) (5)

or if for this same genotype AjAk, the value of the phenotype Y = 0, then:

✏ = 1� E(Y |X) = 1� E(Y |AiAj) = 1� logistic(�µ +Xa�a +Xd�d) (6)

The random variable ✏ therefore takes one of two values, which is the di↵erence between

the value of the function at a genotype and one or zero (see class notes for a diagram).

As ✏ only has two states, this random variable has a Bernoulli distribution. Note that

a Bernoulli distribution is parameterized by a single parameter: ✏ ⇠ bern(p), where the

parameter p is the probability that the random variable will take the value ‘one’. So what

is the parameter p? This takes the following value:

p = logistic(�µ +Xa�a +Xd�d) (7)

where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),
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That’s it for today

• Next lecture we will continue our discussion of logistic regression!


