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Summary of lecture 23: Logistic
Regression |l

® |ast lecture, we began our discussion of the last major (non-
optional!) topic: logistic regression

® Today we will continue our introduction!



Review: Linear regression

® So far, we have considered a linear regression is a reasonable
model for the relationship between genotype and phenotype
(where this implicitly assumes a normal error provides a
reasonable approximation of the phenotype distribution given
the genotype):
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Review: Case / Control
Phenotypes |

While a linear regression may provide a reasonable model for
many phenotypes, we are commonly interested in analyzing
phenotypes where this is NOT a good model

As an example, we are often in situations where we are
interested in identifying causal polymorphisms (loci) that
contribute to the risk for developing a disease, e.g. heart disease,
diabetes, etc.

In this case, the phenotype we are measuring is often “has
disease” or “does not have disease” or more precisely “case” or
“control”

Recall that such phenotypes are properties of measured
individuals and therefore elements of a sample space, such that
we can define a random variable such as Y(case) = | and
Y(control) =0



Review: Case / Control
Phenotypes |

® | et’s contrast the situation, let’s contrast data we might model
with a linear regression model versus case / control data:
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Review: Case / Control
Phenotypes |

® | et’s contrast the situation, let’s contrast data we might model
with a linear regression model versus case / control data:
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Review: Case / Control
Phenotypes |

® | et’s contrast the situation, let’s contrast data we might model
with a linear regression model versus case / control data:
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Review: Logistic regression |

® |nstead, we're going to consider a logistic regression model
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Review: Logistic regression ||

® |t may not be immediately obvious why we choose regression
“line” function of this “shape”

® The reason is mathematical convenience, i.e. this function can be
considered (along with linear regression) within a broader class
of models called Generalized Linear Models (GLM) which we will
discuss next lecture

® However, beyond a few differences (the error term and the
regression function) we will see that the structure and out
approach to inference is the same with this model!



Logistic regression ||
To begin, let’s consider the structure of a regression model:

Y =logistic(B, + XaBa + XaBa) + €

We code the “X’s” the same (!!) although a major difference here is
the “logistic” function as yet undefined

However, the expected value of Y has the same structure as we
have seen before in a regression:

E(Yi|X:) = logistic(By + Xiafa + Xi,aBa)

We can similarly write for a population using matrix notation
(where the X matrix has the same form as we have been
considering!):

E(Y|X) = logistic(X3)

In fact the two major differences are in the form of the error and
the logistic function



Logistic regression: error term |

® Recall that for a linear regression, the error term accounted for the
difference between each point and the expected value (the linear
regression line), which we assume follow a normal, but for a logistic
regression, we have the same case but the value has to make up the
value to either 0 or | (what distribution is this?):
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Logistic regression: error term |

® For the error on an individual i, we therefore have to construct
an error that takes either the value of “1” or “0” depending on
the value of the expected value of the genotype

® ForY=0
€; = —E(Y;‘XZ) = —E(Y‘AZA]) = —logistic(ﬁﬂ + X7;7aﬁa + Xi,dﬁd)

® ForY = |
e =1— E(Y;’XZ) =1 — E(Y‘AZAJ) =1 — lOQiStiC(ﬂN —+ X’i,aﬁa —+ Xi,dﬁd)

® For a distribution that takes two such values, a reasonable
distribution is therefore the Bernoulli distribution with the

following parameter

e, = 2 — E(Y;|X;)
Pr(Z) ~bern(p) p=logistic(B, + Xafa + Xafa)



Logistic regression: error term ||

® This may look complicated at first glance but the intuition is
relatively simple

® |f the logistic regression line is near zero, the probability
distribution of the error term is set up to make the probability of
Y being zero greater than being one (and vice versa for the
regression line near one!):

¢ = Z — E(Y)|X) 4 o OO
Pr(Z) ~ bern(p) Y ,
p = logistic(B,, + XuBa + XaBa) = ) ,(}--\:' 5
\___ . \__/ )




The error term |

® Recall that the error term is either the negative of E(Yi | Xi) when
Yiis zero and |- E(Yi | Xi) whenYi is one:

¢|(Y; =0) = -E(Yi|X;) ¢€|(Yi=1)=1-EY]X;)

® For the entire distribution of the population, recall that

Pr(e;) ~ bern(p|X) — E(Y|X)
- &5 (Ot
p = E(Y]X)
For example: B (L/ ®
€; — —0.1 €; — 0.9
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The error term |l

® Recall that the error term is either the negative of E(Yi | Xi) when
Yiis zero and |- E(Yi | Xi) whenYi is one:

ei|(Yi = 0) = —E(Yi|Xi)  [(Y; =1) =1 - E(Y;]X;)
® For the entire distribution of the population, recall that

Pr(e;) ~ bern(p|X) — E(Y|X)

— - O |'/ ) ':-./—\:
p = E(Y|X) ;
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The error term Il

® Recall that the error term is either the negative of E(Yi | Xi) when
Yiis zero and |- E(Yi | Xi) whenYi is one:

¢|(Y; =0) = -E(Yi|X;) ¢€|(Yi=1)=1-EY]X;)

® For the entire distribution of the population, recall that

Pr(e;) ~ bern(p|X) — E(Y|X) | l
p = E(Y]X)
For example: S -
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Logistic regression: link function

® Next, we have to consider the function for the regression line of
a logistic regression (remember below we are plotting just versus
Xa but this really is a plot versus Xa AND Xd!!):

E(Y;|X;) = logistic(By + XiaBa + XiaBd) - o O, \/_3
66u+Xi,a5a+Xi,dBd Y ‘
E(E‘XZ) — 14+ eButXiafatX; abd - O\ (“\,
Y S




Calculating the components of an
individual |

® For example, say we have an individual i that has genotype Al Al and
phenotypeYi =0

® We know Xa =-] and Xd = -|

® Say we also know that for the population, the true parameters
(which we will not know in practice! We need to infer them!) are:

5/1 = 0.2 Ba = 2.2 Bd = 0.2

® We can then calculate the E(Yi|Xi) and the error term for i:

ePutziaBatzidbd
Y p— 6 i P -
"1 4+ eButwiaBatriaba T 1 o <>
0.2+ (—1)2.2+(—1)0.2 *
1 + 0-2+(-1)2.2+(-1)0.2 -1 (D
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Calculating the components of an
individual I

® For example, say we have an individual i that has genotype Al Al and
phenotype Yi = |

® We know Xa =-] and Xd = -|

® Say we also know that for the population, the true parameters
(which we will not know in practice! We need to infer them!) are:

5/1 = 0.2 Ba = 2.2 Bd = 0.2

® We can then calculate the E(Yi|Xi) and the error term for i:
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Y; = € O
v 1 + ebutaiaBataidfa T € - o O <>
£0.2++(—1)2.24(~1)0.2 ﬁ
1= 02+ (—D)z2+(—oz T € Ny A
1 —+ ev- . | e \__/

1 — 01 —|— 09 L 1 0 E



Calculating the components of an
individual Il

® For example, say we have an individual i that has genotype Al A2 and
phenotypeYi =0

® We know Xa=0and Xd = |

® Say we also know that for the population, the true parameters
(which we will not know in practice! We need to infer them!) are:

5/1 = 0.2 Ba = 2.2 Bd = 0.2

® We can then calculate the E(Yi|Xi) and the error term for i:
e@i"’iﬁi,aﬁa—i-xi,dﬁd 4

Yi = 1 + ePutiabatziaBa + € _ . (lj <_>
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Calculating the components of an
individual IV

® For example, say we have an individual i that has genotype A2A2 and
phenotypeYi =0

® We know Xa = 1| and Xd = -1

® Say we also know that for the population, the true parameters
(which we will not know in practice! We need to infer them!) are:

5/1 = 0.2 Ba = 2.2 Bd = 0.2

® VWe can then calculate the E(Yi|Xi) and the error term for; i
ePutziaBatzidbd |

Y, = €
v 1+ eButxiafatridba TE - o O i/

£0-2+(1)2.24(-1)0.2
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Notation (R code)

® Remember that while we are plotting this versus just Xa, the true
plot is versus BOTH Xa and Xd (harder to see what is going on)

® For an entire sample, we can use matrix notation as follows:

eX0 B 1
14+ eX8 14 e X5

E(Y[X) =~"1(X8) =

eﬁu—i—wl,aﬁa—l—wl,dﬁd

1_|_e,3,u—|—$1,a5a—|—$1’d5d

€5u+$n,aﬂa+$n,d5d

1_|_65,u—|—$n,a5a—|—90n,d5d



MLE of logistic regression parameters

® Recall that an MLE is simply a statistic (a function that takes the sample
as an input and outputs the estimate of the parameters)!

® |n this case, we want to construct the following MLE:
MLE(B) = MLE(Bu, Ba, Ba)

® To do this, we need to maximize the log-likelihood function for the
logistic regression, which has the following form (sample size n):

n

1(B) = Z [yiln(v_l(ﬁu + Zi.aBa + 7i984)) + (1 — yi)In(1l — W_l(ﬁu + % 080 + i dBd))
i=1

® Unlike the case of linear regression, where we had a “closed-form”
equation that allows us to plug in the Y’s and X’s and returns the beta
values that maximize the log-likelihood, there is no such simple
equation for a logistic regression

® We will therefore need an algorithm to calculate the MLE



Algorithm Basics

e algorithm - a sequence of instructions for taking an input and
producing an output

® We often use algorithms in estimation of parameters where the
structure of the estimation equation (e.g., the log-likelihood) is so
complicated that we cannot

® Derive a simple (closed) form equation for the estimator

® Cannot easily determine the value the estimator should take by
other means (e.g., by graphical visualization)

® We will use algorithms to “search” for the parameter values that
correspond to the estimator of interest

® Algorithms are not guaranteed to produce the correct value of the
estimator (!!), because the algorithm may “converge” (=return) the
wrong answer (e.g., converges to a “local” maximum or does not
converge!) and because the compute time to converge to exactly the
same answer is impractical for applications



IRLS algorithm |

® For logistic regression (and GLM’s in general!) we will construct an
algorithm to find the parameters that correspond to the maximum
of the log-likelihood:

n

[(B) = Z [yiln (v (By + iaBa + TiaBa)) + (1 — yi)in(1 — v (By + i aBa + TidBd))
i—1

® For logistic regression (and GLM’s in general!) we will construct an
Iterative Re-weighted Least Squares (IRLS) algorithm, which has the
following structure:

1. Choose starting values for the 8’s. Since we have a vector of three 8’s in our case,
we assign these numbers and call the resulting vector 9.

2. Using the re-weighting equation (described next slide), update the S vector.

3. At each step t > 0 check if gt ~ glt! (i.e. if these are approximately equal) using
an appropriate function. If the value is below a defined threshold, stop. If not, repeat

steps 2,3.



Step |:IRLS algorithm

1. Choose starting values for the 3’s. Since we have a vector of three 3’s in our case,
we assign these numbers and call the resulting vector 319

® These are simply values of the vector that we assign (!!)

® |n one sense, these can be anything we want (!!) although for
algorithms in general there are usually some restrictions and / or
certain starting values that are “better” than others in the sense that
the algorithm will converge faster, find a more “optimal” solution etc.

® |n our case, we can assign our starting values as follows:

Bl = |0




Step 2 (Update Step): IRLS algorithm

2. Using the re-weighting equation (described next slide), update the B4 vector.

® At step 2, we will update (= produce a new value of the vector) using
the following equation (then do this again and again until we stop!):

A = 514 W (y - 9 (x81)

1 @10 714 o ’ . B ol s 4Bl
1 @34 T4 7B+ wiabal + wiaby’) = Bl g gl gy gl
X = . . . 1 + ePu i,aPa 1,dPq
: ) : ot
~1(xglthy = _©

1 Zna Tnd] v (xBY) = | 4 oxB0

; Bl Wi =8 4+ wiaBl) + wiaB) (1 = v (B + w0 + i)
2

y = | . gl = Bc[f] - B+ i B i 4By B i B i 4By

. i = 1 —

y _Bc[lt]_ 1+ eﬁ;[f]+$i,aﬁc[zt]+xi,dﬁg] ( 1+ eﬁg]‘Fmi,aﬁc[zt]‘in,dﬂgt] )
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Step 3:IRLS algorithm

3. At each step t > 0 check if B+ ~ Bl (i.e. if these are approximately equal) using
an appropriate function. If the value is below a defined threshold, stop. If not, repeat
steps 2,3.
® At step 3, we “check” to see if we should stop the algorithm and, if we

decide not to stop, we go back to step 2

If we decide to stop, we will assume the final values of the vector are
the MLE (it may not be exactly the true MLE, but we will assume that
it is close if we do not stop the algorithm to early!),e.g. git+1] gl

® There are many stopping rules, using change in Deviance is one way to
construct a rule (note the issue with In(0)!!:

AD=|D[t+1]—-DJ[t]| AD< 106

Yi 1 - yz
=2 ylln( ) +(1 — yi)ln( - — - )
Z |: ( /[for[tJrl + zaﬁ [t]or[t+1] ‘I’ Tig Bd or t+1]) 1— 7_1(625]0 [t+1] gy aﬁa [t+1] + 3 g 603 o t+1]) :|
- yi 1—y
1 — Y
D =2 E [?len( ,3[ JorfeH1],—ollorle1],STHorli+1] )—i—(l—yi)ln( B[ JorfiH1],,—olorle 1] THort+1] )]
'Lzl 15 arra Z d 1 . 2 lva a 7’ d
or 1 or 1 or 1 or 1 or 1 or 1
1—|—65/[f] . ]+wi,aﬁ’c[f] T 4, ﬁt[zt] o 1+e’81[f] . ]+f%,a/36[f] b+l y T%,d 55] o



Inference

Recall that our goal with using logistic regression was to model the probability
distribution of a case / control phenotype when there is a causal polymorphism

To use this for a GWAS, we need to test the null hypothesis that a genotype is not
a causal polymorphism (or more accurately that the genetic marker we are testing
is not in LD with a causal polymorphism!):

/B'LL — C /Ba — O /Bd — O T O O

Hy:Ba=0Npa=0 - (00

A1/A1  A1/A2  A2/A2

To assess this null hypothesis, we will use the same approach as in linear

regression, i.e. we will construct a LRT = likelihood ratio test (recall that an F-test
is an LRT!)

We will need MLE for the parameters of the logistic regression for the LRT



Logistic hypothesis testing |

® Recall that our null and alternative hypotheses are:
Ho: B, =0NpG3=0
Hap:Ba #0UBg #0

® We will use the LRT for the null (0) and alternative (1):

LRT = —2In\ = —2ln—— LRT = —2inA = 21(0,|y) — 21(6o|y)

® For our case, we need the following:
[(61]y) = 1By Bas Baly)
[(Boly) = (B, 0,0y)



Logistic hypothesis testing ||

® For the alternative, we use our MLE estimates of our
logistic regression parameters we get from our IRLS
algorithm and plug these into the log-like equation

L(br]y) = Z {yiln(v_l(ﬁu + TiaBa + i.dBa)) + (1 — y)in(l =7 (By + iafa + %‘,d@d))}
=1 . eButTiafatziafa
Y (Bu + Tiafa + xiaba) =

1 + eButiabatzidfa

® For the null, we plug in the following parameter estimates
into this same equation
l(90|y) = Z {yiln(’y_l(ﬁmo +Zio*04+2,4%0)) + (1 —y;)ln(l - 7_1(Bu,0 + 20 x 0+ 2 q % O))}
1=1
® where we use the same IRLS algorithm to provide estimates
of by running the algorithm EXACTLY the same with 5,
EXCEPT we set 5. = 0,54 = 0 and we do not update these!



Logistic hypot

hesis testing Il

® TJo calculate our p-value, we need to know the
distribution of our LRT statistic under the null hypothesis

® There is no simple form for this distribution for any given

n (contrast with F-statistic
to infinite, we know the di

s!!) but we know that as n goes
stribution is i.e. (17 — 00):

LRT = —2InA = 21(d1]y) — 21(do|y)

LRT

— Xaf

® What’s more, it is a reasonably good assumption that

under our (not all!!) null, t
chi-square distribution wit

his LRT is (approximately!) a
n 2 degrees of freedom (d.f.)

assuming n is not too small!



Logistic Regression p-value

® To calculate our p-value, we need to know the
distribution of our LRT statistic under the null hypothesis

® There is no simple form for this distribution for any given
n (contrast with F-statistics!!) but we know that as n goes
to infinite, we know the distribution is i.e. (17 — OQ):

LRT = —2InA = 21(6:]y) — 21(6o|y)
LRT — X?Zf‘




Modeling logistic covariates |

® Therefore, if we have a factor that is correlated with our
phenotype and we do not handle it in some manner in our
analysis, we risk producing false positives AND/OR reduce
the power of our tests!

® The good news is that, assuming we have measured the
factor (i.e.it is part of our GWAS dataset) then we can
incorporate the factor in our model as a covariate:

Y =97 (Bu + XaBa + XaBa + X.5:)

® The effect of this is that we will estimate the covariate
model parameter and this will account for the correlation of
the factor with phenotype (such that we can test for our
marker correlation without false positives / lower power!)



Modeling logistic covariates ||

® For our a logistic regression, our LRT (logistic) we have the same
equations:

LRT = —2inA = 21(6:|y) — 21(do|y)

l<é1|}’) = Z {yiln<7_1(5u + xi,aBa + xi,dBd + xz,sz)) + (1 - yz>ln(1 - 7_1<Bu + xi,aBa + szz',ale + xz,sz))

1=1
n

[(Boly) =) [yiln(vl(ﬁu +3i20:)) + (1= yi)In(1 — 771 (B + x@-,zéz»]

1=1
® Using the following estimates for the null hypothesis and the alternative
making use of the IRLS algorithm (just add an additional parameter!):

éO — {B,LHBCL — O)Bd — OaBZ}
él — {B/MBCL?deéz}

® Under the null hypothesis, the LRT is still distributed as a Chi-square with
2 degree of freedom (why?):

LRT — X3—s



Summary |:logistic (no covariates)
® Test the null hypothesis: Hy: B, =0NGg =0 vs Hp:B, 00Uy #0

® Step l:use IRLS algorithm to get MLE(S) = Bu which is the MLE under HO (i.e., éo) by
using X matrix with one column that is all ones!)

® Step 2:substitute this MLE into:

1(Bly) = Zn: [yln( QBUB ) +(1 —yi)<1 __ )]

1 1+ ePu 1+ ePu

® Step 3:use IRLS algorithm to get MLE(B) = [By, Ba, Ba) which is the MLE under HA
(i.e., 1) by using x matrix with first column that is all ones, second column with Z; ¢ ’s and
third column with the x; 4’s )

® Step 4:substitute these MLE into:

n Bu‘i‘l’z aBa+xi dBd, Bu‘i‘xz aBa"‘xi d,Bd
A e ; ; e ; ;
(br]y) =D [yzln< ) +(1—yz')(1— )]

i—1 14+ eéu‘FﬂZi,aBa‘in,dBd 1+ 63u+$i,a3a+:vi,d[§d

® Step 5:use results from step 2 and step 4 to calculate:

LRT = —2InA = 21(6:|y) — 21(6oly)

® Use LRT and appropriate function in R (which?) to calculate p-value under chi-square df = 2!



Summary 2: logistic (covariates)
® Test the null hypothesis: Hy: B, =0NGg =0 vs Hp:B, 00Uy #0

® Step |:use IRLS algorithm to get M LE(f) = [$,, 3.] which is the MLE under HO (i.e., éo) by
using X matrix with one column that is all ones!)

® Step 2:substitute this MLE into:

n Bu"‘mi sz z Bu"‘xi sz z
A e 12121, e 12191,
[(0 = n A . +(1—y)1-— . -
( 0|y> ; [y'l (1 _|_ €6u+wi,zﬁi,z ) ( yZ) ( 1 + G/Bu‘i‘xi,zﬁi,z )]

® Step 3:use IRLS algorithm to get MLE(B) = [B,L, Ba, Ba, B-] which is the MLE under HA
(i.e., 01) by using x matrix with first column that is all ones, second column with Z; 4 ’s and
third column with the x; 4’s )

® Step 4:substitute these MLE into:

; n 6Bu+xz’,a/éa+xi,d6d+xi,z3i,z eéu"‘xi,aéa+xi,d/éd+$i,zléi,z
[ = In . ~ . . +(1—y;) | 1— . . . .
( ! ‘Y) ; [yz (1 i eButziaBatziafatxi,.Pi,z > ( yz) ( 1+ eButxiaBatziafatxi -Pi,z )]

® Step 5:use results from step 2 and step 4 to calculate:

LRT = —2InA = 21(6:|y) — 21(6oly)

® Use LRT and appropriate function in R (which?) to calculate p-value under chi-square df = 2!



That’s it for today

® Next lecture we will finish our discussion of GLMs and begin our
discussion of mixed models!



