
Quantitative Genomics and 
Genetics 

BTRY 4830/6830; PBSB.5201.03

Jason Mezey
April 23, 2024 (T) 8:40-9:55

Lecture 24: Intro to Logistic 
Regression IV



Announcements

• All homeworks and midterm have been graded (!!)

• Last work for the class: Project and Final

• For project (due by 11:59PM, May 7!) typo in instructions: “SNP_info.csv” 
has three columns not four

• Final will be same format as midterm (available May 11 and due by 
11:59PM, May 18!) and you will do a GWAS analysis with a linear 
regression with and without covariates AND a logistic regression with 
and without covariates (!!)

• Reminder: last two computer labs are optional

• This week: more logistic regression with and without covariates 
(probably worth attending!)

• Next week: examples of EM algorithm for mixed models and MCMC 
algorithm for Bayesian inference



Summary of lecture 24: Logistic 
Regression III

• Last lecture, we continued our discussion of the last major 
(non-optional!) topic: logistic regression

• Today we will complete our discussion!



Review: Case / Control 
Phenotypes I

• While a linear regression may provide a reasonable model for 
many phenotypes, we are commonly interested in analyzing 
phenotypes where this is NOT a good model

• As an example, we are often in situations where we are 
interested in identifying causal polymorphisms (loci) that 
contribute to the risk for developing a disease, e.g. heart disease, 
diabetes, etc.

• In this case, the phenotype we are measuring is often “has 
disease” or “does not have disease” or more precisely “case” or 
“control”

• Recall that such phenotypes are properties of measured 
individuals and therefore elements of a sample space, such that 
we can define a random variable such as Y(case) = 1 and 
Y(control) = 0 



Review: Logistic regression I

• Instead, we’re going to consider a logistic regression model



Review: Logistic regression II

• It may not be immediately obvious why we choose regression 
“line” function of this “shape”

• The reason is mathematical convenience, i.e. this function can be 
considered (along with linear regression) within a broader class 
of models called Generalized Linear Models (GLM) which we will 
discuss next lecture

• However, beyond a few differences (the error term and the 
regression function) we will see that the structure and out 
approach to inference is the same with this model!



Review: Logistic regression III
• To begin, let’s consider the structure of a regression model:

• We code the “X’s” the same (!!) although a major difference here is 
the “logistic” function as yet undefined

• However, the expected value of  Y has the same structure as we 
have seen before in a  regression:

• We can similarly write for a population using matrix notation 
(where the X matrix has the same form as we have been 
considering!):

• In fact the two major differences are in the form of the error and 
the logistic function

phenotypes, and any statistical test that accomplishes this goal is a reasonable approach.

For the moment, we will consider a logistic regression approach to modeling case-control

phenotypes. Logistic regression (and related models) provide the most versatile approach

to case-control analysis.

As the general framework is the same as we have discussed before, we are still dealing

with a sample space S = {Sg, SP }, which contains genotype Sg and phenotype SP sub-

sets. We will define the same genotypic random variables as before X : (Sg, ⇤) ! R
using the same codings: Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 and Xd(A1A1) =

�1, Xd(A1A2) = �1, Xa(A2A2) = �1. We will also define a phenotypic random variable

Y : (⇤, SP ) ! R which has the following structure: Y (case) = 1, Y (control) = 0. You’ll no-

tice that plotting phenotype versus the three genotype classes in this case is a little di↵erent

than for a continuous, normal phenotype because we only have six possible combinations of

genotype and phenotype. We will therefore use a slightly di↵erent ‘circle’ notation to repre-

sent the frequency of observations in each of these categories (see class notes for a diagram).

As with our continuous, normal random variable, we will define a probability model

for Y under the assumption Pr(Y |X). Now we could in theory continue to use a lin-

ear regression to model the relationship between genotype and phenotype and, in fact,

you sometimes see this approach (although I would encourage you not to use this strat-

egy). However, the distribution of the phenotype has clearly violated a major assumption

of the linear regression model, that the distribution of Y |AjAk ⇠ N(E(Y |AjAk),�
2
✏ ) =

N((�µ + Xa�a + Xd�d),�
2
✏ ) = N(G(Y ),�

2
✏ ), i.e. this violates the assumption that the

phenotype is normally distributed around the expected (genotypic) value of each geno-

type. This error cannot be normal if the phenotype only takes two states: zero and one.

What’s more, a linear regression model can lead to genotypic values greater or less than

one, which tends not to match our intuition about how we should model genotypic values

of case-control phenotypes (as we will see). We therefore need a di↵erent approach and a

logistic regression is the model we will consider.

Let’s first consider the structure of a logistic regression:

Y = logistic(�µ +Xa�a +Xd�d) + ✏l (1)

You’ll note this has the same structure as a linear regression with the addition of the, as

of yet, undefined function logistic(). The logistic function results in fitting a function to

the data that is close to flat at zero, increases in the middle, and flattens out again near

one (see class notes for a diagram). However, just as E(Y |X) = �µ +Xa�a +Xd�d for a

linear regression:

E(Y |X) = logistic(�µ +Xa�a +Xd�d) (2)

2

and we can similarly write for an individual i :

E(Yi|Xi) = logistic(�µ +Xi,a�a +Xi,d�d) (3)

That is, in our genotype-phenotype plot, if we were to find the value of the logistic function

on the Y-axis at the point on the X-axis corresponding to A1A1, this is the expected value

of the phenotype Y for genotype A1A1, etc. Note that this number will be between zero

and one. We can similarly write a equation for a sample of size n using vector notation:

E(Y|X) = logistic(X�) (4)

where Y, X, and the vector � have the same definition as previously.

There is one other di↵erence between equation (1) and a linear regression: the distri-

bution of the error random variable ✏. For a given value of the logistic regression for a

genotype AjAk, this random variable has to make up the di↵erence between a value of

Y , which is zero or one, and the value of this function. For a given genotype AjAk, this

random variable has to take one of two values. For a genotype AjAk, the value of the

phenotype Y = 1:

✏ = �E(Y |X) = �E(Y |AiAj) = �logistic(�µ +Xa�a +Xd�d) (5)

or if for this same genotype AjAk, the value of the phenotype Y = 0, then:

✏ = 1� E(Y |X) = 1� E(Y |AiAj) = 1� logistic(�µ +Xa�a +Xd�d) (6)

The random variable ✏ therefore takes one of two values, which is the di↵erence between

the value of the function at a genotype and one or zero (see class notes for a diagram).

As ✏ only has two states, this random variable has a Bernoulli distribution. Note that

a Bernoulli distribution is parameterized by a single parameter: ✏ ⇠ bern(p), where the

parameter p is the probability that the random variable will take the value ‘one’. So what

is the parameter p? This takes the following value:

p = logistic(�µ +Xa�a +Xd�d) (7)

where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),
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Review: Logistic regression
• For the error on an individual i, we therefore have to construct 

an error that takes either the value of “1” or “0” depending on 
the value of the expected value of the genotype

• For Y = 0

• For Y = 1 

• For a distribution that takes two such values, a reasonable 
distribution is therefore the Bernoulli distribution with the 
following parameter

and we can similarly write for an individual i :

E(Yi|Xi) = logistic(�µ +Xi,a�a +Xi,d�d) (3)

That is, in our genotype-phenotype plot, if we were to find the value of the logistic function

on the Y-axis at the point on the X-axis corresponding to A1A1, this is the expected value

of the phenotype Y for genotype A1A1, etc. Note that this number will be between zero

and one. We can similarly write a equation for a sample of size n using vector notation:

E(Y|X) = logistic(X�) (4)

where Y, X, and the vector � have the same definition as previously.

There is one other di↵erence between equation (1) and a linear regression: the distri-

bution of the error random variable ✏. For a given value of the logistic regression for a

genotype AjAk, this random variable has to make up the di↵erence between a value of

Y , which is zero or one, and the value of this function. For a given genotype AjAk, this

random variable has to take one of two values. For a genotype AjAk, the value of the

phenotype Y = 1:

✏ = �E(Y |X) = �E(Y |AiAj) = �logistic(�µ +Xa�a +Xd�d) (5)

or if for this same genotype AjAk, the value of the phenotype Y = 0, then:

✏ = 1� E(Y |X) = 1� E(Y |AiAj) = 1� logistic(�µ +Xa�a +Xd�d) (6)

✏i,l = �E(Yi|Xi) = �E(Y |AiAj) = �logistic(�µ +Xi,a�a +Xi,d�d) (7)

or if for this same genotype AjAk, the value of the phenotype Y = 0, then:

✏i,l = 1� E(Yi|Xi) = 1� E(Yi|Xi) = �E(Y |AiAj) = �logistic(�µ +Xi,a�a +Xi,d�d) (8)

The random variable ✏ therefore takes one of two values, which is the di↵erence between

the value of the function at a genotype and one or zero (see class notes for a diagram).

As ✏ only has two states, this random variable has a Bernoulli distribution. Note that

a Bernoulli distribution is parameterized by a single parameter:

✏i,l ⇠ bern(p|X)

where the parameter p is the probability that the random variable will take the value

‘one’. So what is the parameter p? This takes the following value:

p = logistic(�µ +Xa�a +Xd�d) (9)

3

H0 : Cov(Xa, Y ) = 0 \ Cov(Xd, Y ) = 0 (35)

HA : Cov(Xa, Y ) 6= 0 [ Cov(Xd, Y ) 6= 0 (36)

H0 : �a = 0 \ �d = 0 (37)

HA : �a 6= 0 [ �d 6= 0 (38)

F�statistic = f(⇤) (39)

�µ = 0,�a = 4,�d = �1,�2
✏ = 1 (40)

�̂
0
a = 0, �̂0

d
= 0 (41)

�̂
0
a = �a, �̂

0
d
= �d (42)

Pr(A1, A1) = Pr(A1)Pr(A1) = p
2 (43)

Pr(A1, A2) = Pr(A1)Pr(A2) = 2pq (44)

Pr(A2, A2) = Pr(A2)Pr(A2) = q
2 (45)

) (Corr(Xa,A, Xa,B) = 0) \ (Corr(Xa,A, Xd,B) = 0) (46)

\(Corr(Xd,A, Xa,B) = 0) \ (Corr(Xd,A, Xd,B) = 0) (47)

) (Corr(Xa,A, Xa,B) 6= 0) [ (Corr(Xa,A, Xd,B) 6= 0) (48)

[(Corr(Xd,A, Xa,B) 6= 0) [ (Corr(Xd,A, Xd,B) 6= 0) (49)

Pr(AiBk, AjBl) = Pr(AiAj)Pr(BkBl) (50)

Pr(AiBk, AjBl) = Pr(AiBk)Pr(AjBl) (51)

= Pr(Ai)Pr(Aj)Pr(Bk)Pr(Bl) = Pr(AiAj)Pr(BkBl) (52)

XAi : XAi(A1) = 1, XAi(A2) = 0 (53)

XBj : XBj (B1) = 1, XBi(B2) = 0 (54)

r =
Pr(Ai, Bk)� Pr(Ai)Pr(Bk)p

Pr(Ai)(1� Pr(Ai)
p
Pr(Bk)(1� Pr(Bk)

(55)

r
2 =

(Pr(Ai, Bk)� Pr(Ai)Pr(Bk))2

(Pr(Ai)(1� Pr(Ai))(Pr(Bk)(1� Pr(Bk))
(56)

D = Pr(Ai, Bk)� Pr(Ai)Pr(Bk) (57)

D
0 =

D

min(Pr(A1B2), P r(A2, B1))
ifD > 0 (58)

D
0 =

D

min(Pr(A1B1), P r(A2, B2))
ifD < 0 (59)

✏i = �E(Yi|Xi) = �E(Y |AiAj) = �logistic(�µ +Xi,a�a +Xi,d�d) (60)

✏i = 1� E(Yi|Xi) = 1� E(Y |AiAj) = 1� logistic(�µ +Xi,a�a +Xi,d�d) (61)

✏i = Z � E(Yi|Xi) (62)

Pr(Z) ⇠ bern(p) (63)
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Review: Logistic regression
• Next, we have to consider the function for the regression line of 

a logistic regression (remember below we are plotting just versus 
Xa but this really is a plot versus Xa AND Xd!!):

Y

Xa

We can therefore write for an individual i:

E(Yi|Xi) =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

(13)

and for the observed values of individual i:

E(yi|xi) =
e
�µ+xi,a�a+xi,d�d

1 + e
�µ+xi,a�a+xi,d�d

(14)

Note that equation (12) describes a sample of size n using vector notation. We can write

this out as follows:

E(y|x) = �
�1

(x�) =

2

6664

e�µ+x1,a�a+x1,d�d

1+e�µ+x1,a�a+x1,d�d

.

.

.

e�µ+xn,a�a+xn,d�d

1+e�µ+xn,a�a+xn,d�d

3

7775

Note that the logit link function is not the only link function that we could use for analyzing

case-control data (there are in fact, quite a number of functions we could use). However,

the logit link (logistic inverse) has some nice properties that have to do with ‘su�ciency’

of the parameter estimates. As a consequence, the logit link is called the ‘canonical’ link

function for this case and tends to be the most widely used.

4 Estimation of logistic regression parameters

Now that we have all the components of a logistic regression, we can consider inference
with this model. For GWAS applications, our goal will be hypothesis testing and, as

with the case when applying a linear regression, we will perform our hypothesis test using

a likelihood ratio test (LRT), which requires that we have maximum likelihood estimates
(MLE) of the � parameters in the model, i.e. MLE(�̂). To derive the MLE(�̂) for the

� parameters of a logistic regression model, we will use the standard approach for finding

MLE’s, i.e. solve for where the derivative of the (log-)likelihood function dl(�)/d� equals

zero and solve for the parameters (and use the second derivative to assess whether we are

considering a maximum). So, we first need to consider the log-likelihood (ln(L(�|Y))) for

the logistic regression model. For a sample of size n this is:

l(�) =

nX

i=1

⇥
yiln(�

�1
(�µ + xi,a�a + xi,d�d)) + (1� yi)ln(�

�1
(�µ + xi,a�a + xi,d�d))

⇤
(15)

Now taking the first and second derivative of this equation is straightforward. However,

unlike the case with a linear regression, where we could solve for the parameters and pro-

duce a simple equation, the resulting function in the logistic case is a function of the �
0
s,

which is a problem, since we are attempting to solve for the �’s. We therefore cannot take

5

and we can similarly write for an individual i :

E(Yi|Xi) = logistic(�µ +Xi,a�a +Xi,d�d) (3)

That is, in our genotype-phenotype plot, if we were to find the value of the logistic function

on the Y-axis at the point on the X-axis corresponding to A1A1, this is the expected value

of the phenotype Y for genotype A1A1, etc. Note that this number will be between zero

and one. We can similarly write a equation for a sample of size n using vector notation:

E(Y|X) = logistic(X�) (4)

where Y, X, and the vector � have the same definition as previously.

There is one other di↵erence between equation (1) and a linear regression: the distri-

bution of the error random variable ✏. For a given value of the logistic regression for a

genotype AjAk, this random variable has to make up the di↵erence between a value of

Y , which is zero or one, and the value of this function. For a given genotype AjAk, this

random variable has to take one of two values. For a genotype AjAk, the value of the

phenotype Y = 1:

✏ = �E(Y |X) = �E(Y |AiAj) = �logistic(�µ +Xa�a +Xd�d) (5)

or if for this same genotype AjAk, the value of the phenotype Y = 0, then:

✏ = 1� E(Y |X) = 1� E(Y |AiAj) = 1� logistic(�µ +Xa�a +Xd�d) (6)

The random variable ✏ therefore takes one of two values, which is the di↵erence between

the value of the function at a genotype and one or zero (see class notes for a diagram).

As ✏ only has two states, this random variable has a Bernoulli distribution. Note that

a Bernoulli distribution is parameterized by a single parameter: ✏ ⇠ bern(p), where the

parameter p is the probability that the random variable will take the value ‘one’. So what

is the parameter p? This takes the following value:

p = logistic(�µ +Xa�a +Xd�d) (7)

where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),

3



Review: Notation (for R coding)

• Remember that while we are plotting this versus just Xa, the true 
plot is versus BOTH Xa and Xd (harder to see what is going on)

• For an entire sample, we can use matrix notation as follows:

We can therefore write for an individual i:

E(Yi|Xi) =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

(13)

E(Yi|Xi) = �
�1

(Yi|Xi) =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

(14)

and for the observed values of individual i:

E(yi|xi) =
e
�µ+xi,a�a+xi,d�d

1 + e
�µ+xi,a�a+xi,d�d

(15)

Note that equation (12) describes a sample of size n using vector notation. We can write

this out as follows:

E(y|x) = �
�1

(x�) =

2

6664

e�µ+x1,a�a+x1,d�d

1+e�µ+x1,a�a+x1,d�d

.

.

.

e�µ+xn,a�a+xn,d�d

1+e�µ+xn,a�a+xn,d�d

3

7775

Note that the logit link function is not the only link function that we could use for analyzing

case-control data (there are in fact, quite a number of functions we could use). However,

the logit link (logistic inverse) has some nice properties that have to do with ‘su�ciency’

of the parameter estimates. As a consequence, the logit link is called the ‘canonical’ link

function for this case and tends to be the most widely used.

4 Estimation of logistic regression parameters

Now that we have all the components of a logistic regression, we can consider inference
with this model. For GWAS applications, our goal will be hypothesis testing and, as

with the case when applying a linear regression, we will perform our hypothesis test using

a likelihood ratio test (LRT), which requires that we have maximum likelihood estimates
(MLE) of the � parameters in the model, i.e. MLE(�̂). To derive the MLE(�̂) for the

� parameters of a logistic regression model, we will use the standard approach for finding

MLE’s, i.e. solve for where the derivative of the (log-)likelihood function dl(�)/d� equals

zero and solve for the parameters (and use the second derivative to assess whether we are

considering a maximum). So, we first need to consider the log-likelihood (ln(L(�|Y))) for

the logistic regression model. For a sample of size n this is:

l(�) =

nX

i=1

⇥
yiln(�

�1
(�µ + xi,a�a + xi,d�d)) + (1� yi)ln(�

�1
(�µ + xi,a�a + xi,d�d))

⇤
(16)

Now taking the first and second derivative of this equation is straightforward. However,

unlike the case with a linear regression, where we could solve for the parameters and pro-

duce a simple equation, the resulting function in the logistic case is a function of the �
0
s,
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where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),

the expected value of the phenotype is low, and the probability of being zero is greater

(and vice versa). Thus, the value of the logistic regression is directly related to the proba-

bility of being in one phenotypic state (one) or the other (zero). This also provides a clear

biological interpretation of the genotypic value for a case-control phenotype: this is the

probability of being a case or control (sick or healthy) conditional on the genotype of an

individual.

3 The link function for a logistic regression

So far we have used the (non-formal) notation ‘logistic’ to indicate the form of a logistic

regression. For the actual form of the logistic regression equations, we need to consider

a link function � which relates our genotypic random variables X and parameters � to

the expected value of our phenotypic random variable Y. Now, we have already discussed

the concept of a function in intuitive (non-rigorous) terms as a mathematical operation

that takes an input and produces an output. We have not yet considered the concept of

the inverse of a function, but this is relatively intuitive as well. If we have a function

Y = f(X), this function takes an input X and returns an output value Y . The inverse of

this function takes Y as an input and returns as output the value X, where we write the

inverse of a function as f
�1

(Y ) = X. Note that functions and inverses have the following

relationship:

f
�1

(Y ) = f
�1

(f(X)) (10)

Now, we have to be a little careful when discussing inverses of functions in general. These

do not always exist or have a simple form. However, the link function(s) we are going to

consider are always increasing ‘monotonic’ so they do in fact have an inverse and these

have a simple form.

The link function we are going to consider for a logistic regression is the logit function,

which has the form:

�(E(Y|X)) = ln

 
X�

1 +X�

!
(11)

and the inverse of the logistic link function is the logistic function, i.e. �
�1

= logistic:

E(Y|X) = �
�1

(X�) =
e
X�

1 + eX�
=

1

1 + e�X�
(12)
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MLE of logistic regression parameters
• Recall that an MLE is simply a statistic (a function that takes the sample 

as an input and outputs the estimate of the parameters)!

• In this case, we want to construct the following MLE:

• To do this, we need to maximize the log-likelihood function for the 
logistic regression, which has the following form (sample size n):

• Unlike the case of linear regression, where we had a “closed-form” 
equation that allows us to plug in the Y’s and X’s and returns the beta 
values that maximize the log-likelihood, there is no such simple 
equation for a logistic regression

• We will therefore need an algorithm to calculate the MLE

We can therefore write for an individual i:

E(Yi|Xi) =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

(31)

E(Yi|Xi) = �
�1

(Yi|Xi) =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

(32)

and for the observed values of individual i:

E(yi|xi) =
e
�µ+xi,a�a+xi,d�d

1 + e
�µ+xi,a�a+xi,d�d

(33)

Note that equation (12) describes a sample of size n using vector notation. We can write

this out as follows:

E(y|x) = �
�1

(x�) =

2

6664

e�µ+x1,a�a+x1,d�d

1+e�µ+x1,a�a+x1,d�d

.

.

.

e�µ+xn,a�a+xn,d�d

1+e�µ+xn,a�a+xn,d�d

3

7775

Note that the logit link function is not the only link function that we could use for analyzing

case-control data (there are in fact, quite a number of functions we could use). However,

the logit link (logistic inverse) has some nice properties that have to do with ‘su�ciency’

of the parameter estimates. As a consequence, the logit link is called the ‘canonical’ link

function for this case and tends to be the most widely used.

4 Estimation of logistic regression parameters

Now that we have all the components of a logistic regression, we can consider inference
with this model. For GWAS applications, our goal will be hypothesis testing and, as with

the case when applying a linear regression, we will perform our hypothesis test using a like-
lihood ratio test (LRT), which requires that we have maximum likelihood estimates (MLE)

of the � parameters in the model, i.e.

MLE(�̂) = MLE(�̂µ, �̂a, �̂d)

To derive the MLE(�̂) for the � parameters of a logistic regression model, we will use

the standard approach for finding MLE’s, i.e. solve for where the derivative of the (log-

)likelihood function dl(�)/d� equals zero and solve for the parameters (and use the second

derivative to assess whether we are considering a maximum). So, we first need to consider

the log-likelihood (ln(L(�|Y))) for the logistic regression model. For a sample of size n

this is:

l(�) =

nX

i=1

⇥
yiln(�

�1
(�µ + xi,a�a + xi,d�d)) + (1� yi)ln(�

�1
(�µ + xi,a�a + xi,d�d))

⇤
(34)
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the log-likelihood (ln(L(�|Y))) for the logistic regression model. For a sample of size n
this is:

l(�) =
n⇤

i=1

�
yiln(⇥

�1(�µ + xi,a�a + xi,d�d)) + (1� yi)ln(1� ⇥�1(�µ + xi,a�a + xi,d�d))
⇥

(35)
Now taking the first and second derivative of this equation is straightforward. However,
unlike the case with a linear regression, where we could solve for the parameters and pro-
duce a simple equation, the resulting function in the logistic case is a function of the �⇥s,
which is a problem, since we are attempting to solve for the �’s. We therefore cannot take
a sample, plug it into the resulting equation and get the values for the �’s that are our
MLE. There is however a set of values of �’s for a given sample that are the MLE(�̂), but
to find them, we need an algorithm.

This is the first time we considered the topic of algorithms in this course, so let’s be-
gin by providing a simple (and intuitive) definition of algorithms in general:

algorithm ⇥ a sequence of instructions for taking an input and producing an output.

For our purposes, we want an algorithm that takes our sample (of genotypes and pheno-
types) as an input and produces the maximum likelihood estimates of the �’s as an output.

For our purposes, we are going to consider an Iterative Re-weighted Least Squares (IRLS)
algorithm for finding the MLE(�̂) for our logistic regression model. There are other algo-
rithms we can use for estimating parameters with GLM’s but IRLS algorithms have good
properties and also have a deep connection to the structure of GLM’s (i.e. it is possible
to construct an IRLS algorithm for any GLM). Below, we will consider the intuition for
how an IRLS algorithm is derived, it’s relationship to other algorithms such as a Newton-
Raphson algorithm (for our particular logistic regression case, they are the same), and
some properties of these algorithms (convergence, etc.) but for now, let’s write down the
steps of the IRLS algorithm:

1. Choose starting values for the �’s. Since we have a vector of three �’s in our case,
we assign these numbers and call the resulting vector �[0].

2. Using the re-weighting equation (described next slide), update the �[t] vector.

3. At each step t > 0 check if �[t+1] ⇤ �[t] (i.e. if these are approximately equal) using
an appropriate function. If the value is below a defined threshold, stop. If not, repeat
steps 2,3.

We treat the values of the �’s in the vector �[t] after the algorithm stops as the maximum
likelihood estimates of the �’s. Now, in practice, if �[t+1] ⌅= �[t], the values will not be

7



Algorithm Basics
• algorithm - a sequence of instructions for taking an input and 

producing an output

• We often use algorithms in estimation of parameters where the 
structure of the estimation equation (e.g., the log-likelihood) is so 
complicated that we cannot

• Derive a simple (closed) form equation for the estimator

• Cannot easily determine the value the estimator should take by 
other means (e.g., by graphical visualization)

• We will use algorithms to “search” for the parameter values that 
correspond to the estimator of interest

• Algorithms are not guaranteed to produce the correct value of the 
estimator (!!), because the algorithm may “converge” (=return) the 
wrong answer (e.g., converges to a “local” maximum or does not 
converge!) and because the compute time to converge to exactly the 
same answer is impractical for applications   



IRLS algorithm I
• For logistic regression (and GLM’s in general!) we will construct an 

algorithm to find the parameters that correspond to the maximum 
of the log-likelihood:

• For logistic regression (and GLM’s in general!) we will construct an 
Iterative Re-weighted Least Squares (IRLS) algorithm, which has the 
following structure:

Now taking the first and second derivative of this equation is straightforward. However,

unlike the case with a linear regression, where we could solve for the parameters and pro-

duce a simple equation, the resulting function in the logistic case is a function of the �
0
s,

which is a problem, since we are attempting to solve for the �’s. We therefore cannot take

a sample, plug it into the resulting equation and get the values for the �’s that are our

MLE. There is however a set of values of �’s for a given sample that are the MLE(�̂), but

to find them, we need an algorithm.

This is the first time we considered the topic of algorithms in this course, so let’s be-

gin by providing a simple (and intuitive) definition of algorithms in general:

algorithm ⌘ a sequence of instructions for taking an input and producing an output.

For our purposes, we want an algorithm that takes our sample (of genotypes and pheno-

types) as an input and produces the maximum likelihood estimates of the �’s as an output.

For our purposes, we are going to consider an Iterative Re-weighted Least Squares (IRLS)

algorithm for finding the MLE(�̂) for our logistic regression model. There are other algo-

rithms we can use for estimating parameters with GLM’s but IRLS algorithms have good

properties and also have a deep connection to the structure of GLM’s (i.e. it is possible

to construct an IRLS algorithm for any GLM). Below, we will consider the intuition for

how an IRLS algorithm is derived, it’s relationship to other algorithms such as a Newton-

Raphson algorithm (for our particular logistic regression case, they are the same), and

some properties of these algorithms (convergence, etc.) but for now, let’s write down the

steps of the IRLS algorithm:

1. Choose starting values for the �’s. Since we have a vector of three �’s in our case,

we assign these numbers and call the resulting vector �
[0]
.

2. Using the re-weighting equation (described next slide), update the �
[t]

vector.

3. At each step t > 0 check if �
[t+1] ⇡ �

[t]
(i.e. if these are approximately equal) using

an appropriate function. If the value is below a defined threshold, stop. If not, repeat

steps 2,3.

We treat the values of the �’s in the vector �
[t]

after the algorithm stops as the maximum

likelihood estimates of the �’s. Now, in practice, if �
[t+1] 6= �

[t]
, the values will not be

the exact MLE(�̂), but they will be very close if �
[t+1] ⇡ �

[t]
. It turns out that for this

particular problem, the function we are optimizing is ‘convex’ so if we considered an infinite

number of updates, the algorithm would return the MLE(�̂) (this convex property does

not apply in all cases).
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the log-likelihood (ln(L(�|Y))) for the logistic regression model. For a sample of size n
this is:

l(�) =
n⇤

i=1

�
yiln(⇥

�1(�µ + xi,a�a + xi,d�d)) + (1� yi)ln(1� ⇥�1(�µ + xi,a�a + xi,d�d))
⇥

(35)
Now taking the first and second derivative of this equation is straightforward. However,
unlike the case with a linear regression, where we could solve for the parameters and pro-
duce a simple equation, the resulting function in the logistic case is a function of the �⇥s,
which is a problem, since we are attempting to solve for the �’s. We therefore cannot take
a sample, plug it into the resulting equation and get the values for the �’s that are our
MLE. There is however a set of values of �’s for a given sample that are the MLE(�̂), but
to find them, we need an algorithm.

This is the first time we considered the topic of algorithms in this course, so let’s be-
gin by providing a simple (and intuitive) definition of algorithms in general:

algorithm ⇥ a sequence of instructions for taking an input and producing an output.

For our purposes, we want an algorithm that takes our sample (of genotypes and pheno-
types) as an input and produces the maximum likelihood estimates of the �’s as an output.

For our purposes, we are going to consider an Iterative Re-weighted Least Squares (IRLS)
algorithm for finding the MLE(�̂) for our logistic regression model. There are other algo-
rithms we can use for estimating parameters with GLM’s but IRLS algorithms have good
properties and also have a deep connection to the structure of GLM’s (i.e. it is possible
to construct an IRLS algorithm for any GLM). Below, we will consider the intuition for
how an IRLS algorithm is derived, it’s relationship to other algorithms such as a Newton-
Raphson algorithm (for our particular logistic regression case, they are the same), and
some properties of these algorithms (convergence, etc.) but for now, let’s write down the
steps of the IRLS algorithm:

1. Choose starting values for the �’s. Since we have a vector of three �’s in our case,
we assign these numbers and call the resulting vector �[0].

2. Using the re-weighting equation (described next slide), update the �[t] vector.

3. At each step t > 0 check if �[t+1] ⇤ �[t] (i.e. if these are approximately equal) using
an appropriate function. If the value is below a defined threshold, stop. If not, repeat
steps 2,3.

We treat the values of the �’s in the vector �[t] after the algorithm stops as the maximum
likelihood estimates of the �’s. Now, in practice, if �[t+1] ⌅= �[t], the values will not be
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Step 1: IRLS algorithm

• These are simply values of the vector that we assign (!!)

• In one sense, these can be anything we want (!!) although for 
algorithms in general there are usually some restrictions and / or 
certain starting values that are “better” than others in the sense that 
the algorithm will converge faster, find a more “optimal” solution etc.

• In our case, we can assign our starting values as follows:

Let’s consider the equations we need for each of these steps. For step (1), it largely

doesn’t matter what values we choose because of the convex nature of the algorithm and

the speed that these tend to converge. We could for example choose:

�
[0]

=

2

4
0

0

0

3

5

However, in general, we do have to be careful that we pick values for these parameters that

are possible and there are some tricks to choosing reasonable starting values (a subject for

an algorithms class).

For step (2), we will update the parameter �
[t]

(starting with �
[0]
) using the following

equation:

�
[t+1]

= �
[t]
+
⇥
xTWx

⇤�1
xT

(y� �
�1

(x�)) (35)

Note that we have seen all of the components of this equation before except for W (we

have used y and x in our linear regression equations and �
�1

(x�) is defined above). The

matrix W is an n by n (square) matrix that has zero’s for all of the o↵ diagonal elements

(Wij = 0 for i 6= j) and each of the diagonal elements is equal to:

Wii = �
�1

(�µ + xi,a�a + xi,d�d)(1� �
�1

(�µ + xi,a�a + xi,d�d) (36)

i.e. the variance term for ✏i for an individual i. Note that if we define:

z = x�[t]
+W�1

(y� �
�1

(x�)) (37)

we can rewrite equation (27) as follows:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (38)

The form of this should look somewhat familiar. Without the matrix W this would simply

be the MLE(�̂) for the linear regression model. As you’ll recall, this is also the (ordinary)

least-squares estimate of �. If we consider the matrix W a ‘re-weighting’ matrix, then we

see the origin of the name of the IRLS algorithm.

For step (3), we need to determine when �
[t+1] ⇡ �

[t]
is ‘close enough’. Now since �

[t]

is a vector, it is di�cult to assess this issue considering each of the values independently,

e.g. what if one value is extremely close to zero but another is further away? A reasonable

way of defining a stopping rule is to define a function of the values in the � vector that

provides a single value, which measures how close all of the values are when comparing

step t+ 1 to t. The deviance is one such measure:

D = 2

nX

i=1


yiln

yi

��1(�µ + xi,a�a + xi,d�d)
+ (1� yi)ln

1� yi

1� ��1(�µ + xi,a�a + xi,d�d)

�

(39)
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Step 2 (Update Step): IRLS algorithm

• At step 2, we will update (= produce a new value of the vector) using 
the following equation (then do this again and again until we stop!):

Using matrix notation, matrix multiplication, and matrix addition, we can re-write this as:

2

6664

y1

y2
...
yn

3

7775
=

2

6664

1 x1,a x1,d

1 x2,a x2,d
...

...
. . .

1 xn,a xn,d

3

7775

2

4
�µ

�a

�d

3

5+

2

6664

✏1

✏2
...
✏n

3

7775

which we can write using the following compact matrix notation:

y = x� + ✏ (14)

for a specific sample and
Y = X� + ✏ (15)

for an arbitrary sample, where the � and ✏ here are vectors.

Recall that there are true values of � = [�µ,�a,�d] that describe the true relationship
between genotype and phenotype (specifically the true genotypic values), which in turn
describe the variation in Y in a given sample of size n, given genotype states X. Just as
with our general estimation framework, we are interested in defining a statistic (a function
on a sample) that takes a sample as input and returns a vector, where the elements of the
vector provide an estimate of �, i.e. we will define a statistic

T (y,xa,xd) = �̂ = [�̂µ, �̂a, �̂d]

T (y,xa,xd|H0 : �a = 0 \ �d = 0)

Pr(T (y,xa,xd|H0 : �a = 0 \ �d = 0))

Pr(T (y,xa,xd|H0)

More specifically we will define a maximum likelihood estimate (MLE) of these parameters
(again, recall that for all the complexity of how MLE’s are calculated, they are simply
statistics that take a sample as an input and provide an estimator as an output). We will
not discuss the derivation of the MLE for the � parameters of a multiple regression model
(although it is not that di�cult to derive), but will rather just provide the form of the MLE.
Note that this MLE has a simple form, such that we do not have to go through the process
of maximizing a likelihood, rather, we can write down a simple formula that provides an
expression that we know is the (single) maximum of the likelihood of the regression model.
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which we can write using the following compact matrix notation:
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Let’s consider the equations we need for each of these steps. For step (1), it largely

doesn’t matter what values we choose because of the convex nature of the algorithm and

the speed that these tend to converge. We could for example choose:

�
[0]

=

2

4
0

0

0

3

5

However, in general, we do have to be careful that we pick values for these parameters that

are possible and there are some tricks to choosing reasonable starting values (a subject for

an algorithms class).

For step (2), we will update the parameter �
[t]

(starting with �
[0]
) using the following

equation:

�
[t+1]

= �
[t]
+
⇥
xTWx

⇤�1
xT

(y� �
�1

(x�)) (35)

Note that we have seen all of the components of this equation before except for W (we

have used y and x in our linear regression equations and �
�1

(x�) is defined above). The

matrix W is an n by n (square) matrix that has zero’s for all of the o↵ diagonal elements

(Wij = 0 for i 6= j) and each of the diagonal elements is equal to:

Wii = �
�1

(�µ + xi,a�a + xi,d�d)(1� �
�1

(�µ + xi,a�a + xi,d�d) (36)

i.e. the variance term for ✏i for an individual i. Note that if we define:

z = x�[t]
+W�1

(y� �
�1

(x�)) (37)

we can rewrite equation (27) as follows:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (38)

The form of this should look somewhat familiar. Without the matrix W this would simply

be the MLE(�̂) for the linear regression model. As you’ll recall, this is also the (ordinary)

least-squares estimate of �. If we consider the matrix W a ‘re-weighting’ matrix, then we

see the origin of the name of the IRLS algorithm.

For step (3), we need to determine when �
[t+1] ⇡ �

[t]
is ‘close enough’. Now since �

[t]

is a vector, it is di�cult to assess this issue considering each of the values independently,

e.g. what if one value is extremely close to zero but another is further away? A reasonable

way of defining a stopping rule is to define a function of the values in the � vector that

provides a single value, which measures how close all of the values are when comparing

step t+ 1 to t. The deviance is one such measure:

D = 2

nX

i=1


yiln

yi

��1(�µ + xi,a�a + xi,d�d)
+ (1� yi)ln

1� yi

1� ��1(�µ + xi,a�a + xi,d�d)

�

(39)
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l(⇤̂1|y) = l(�̂µ, �̂a, �̂d|y) (83)

l(⇤̂0|y) = l(�̂µ, 0, 0|y) (84)
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⇤i = 1� E(Yi|Xi) = 1� E(Y |AiAj) = 1� logistic(�µ +Xi,a�a +Xi,d�d) (61)

⇤i = Z � E(Yi|Xi) (62)

Yi = E(Yi|Xi) + ⇤i (63)

Yi = ⇥�1(Yi|Xi) + ⇤i (64)

Yi =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d
+ ⇤i (65)

Pr(Z) ⇥ bern(p) (66)

�[t+1] = �[t] + [xTWx]�1xT(y� ⇥�1(x�[t]) (67)

⇥�1(�µ + xi,a�a + xi,d�d) =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d
(68)

⇥�1(x�) =
ex�

1 + ex�
(69)

⇤i = �0.6 (70)

⇤i = 0.4 (71)

⇤i|(Yi = 0) = �E(Yi|Xi) (72)

⇤i|(Yi = 1) = 1� E(Yi|Xi) (73)
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(74)

⇥�1(x�[t]) =
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1 + ex�[t]
(75)

D = 2
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(78)
Wii = ⇥�1(�µ + xi,a�a + xi,d�d)(1� ⇥�1(�µ + xi,a�a + xi,d�d)) (79)
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⇥
(80)
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Step 3: IRLS algorithm

• At step 3, we “check” to see if we should stop the algorithm and, if we 
decide not to stop, we go back to step 2

• If we decide to stop, we will assume the final values of the vector are 
the MLE (it may not be exactly the true MLE, but we will assume that 
it is close if we do not stop the algorithm to early!), e.g. 

• There are many stopping rules, using change in Deviance is one way to 
construct a rule (note the issue with ln(0)!!:

where the values of � are the values at an iteration t. Deviance is also used to assess GLM
‘fit’ to data and has a close relationships with LRT statistics. With this function, we can
stop the algorithm when:

⇥D = |D [t+ 1]�D [t] | (40)

is small. While there is no hard and fast rule concerning ‘how small’ is small enough, using
⇥D < 10�6 for the implementations we will consider in this class is reasonable.

5 Derivation of the logistic IRLS algorithm

Let’s first consider the structure of the Newton-Raphson algorithm, which is derived by
taking a Taylor series expansion of the log-likelihood. In general, in order to estimate � we
want to find a maximum of ⌃(�) and we know we have reached a maximum when ⌃⇥(�) = 0.
Lets consider a Taylor expansion of ⌃⇥:

⌃⇥(�[t+1]) = ⌃⇥(�[t]) + ⌃⇥⇥(�[t])[�[t+1] � �[t]] = 0 (41)

If we have a current esimate of � called �[t] we can get an updated estimate by solving the
above equation for �[t+1] Using some algebra we can see that the updated estimate is:

�[t+1] = �[t) � ⌃⇥(�[t])

⌃⇥⇥(�[t])
(42)

We can express this using matrix notation:

�([t+]) = �[t] �
� ⌅2⌃

⌅�⌅�T

⇥�1 ⌅⌃

⌅�
(43)

This equation defines an iterative algorithm that produces successively better estimates of
�. Therefore, if we start with �[0] = 0 we can apply this algorithm to find the maximum
likelihood estimate of �.

Next, let’s consider the log-likelihood function for a logistic model and use some algebra
to simplify

⌃(�) =
⇤

i

[yi ln(⇥
�1(xi�)) + (1� yi) ln(1� ⇥�1(xi�))] (44)

=
⇤

i

[yixi� � ln(1 + exi�)] (45)
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where the values of � are the values at an iteration t. Deviance is also used to assess GLM

‘fit’ to data and has a close relationships with LRT statistics. With this function, we can

stop the algorithm when:

4D = |D [t+ 1]�D [t] | (40)

is small. While there is no hard and fast rule concerning ‘how small’ is small enough, using

4D < 10
�6

for the implementations we will consider in this class is reasonable.

5 Derivation of the logistic IRLS algorithm

Let’s first consider the structure of the Newton-Raphson algorithm, which is derived by

taking a Taylor series expansion of the log-likelihood. In general, in order to estimate � we

want to find a maximum of `(�) and we know we have reached a maximum when `
0
(�) = 0.

Lets consider a Taylor expansion of `
0
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This equation defines an iterative algorithm that produces successively better estimates of

�. Therefore, if we start with �
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= 0 we can apply this algorithm to find the maximum

likelihood estimate of �.

Next, let’s consider the log-likelihood function for a logistic model and use some algebra

to simplify

`(�) =

X

i

[yi ln(�
�1

(xi�)) + (1� yi) ln(1� �
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Let’s consider the equations we need for each of these steps. For step (1), it largely

doesn’t matter what values we choose because of the convex nature of the algorithm and

the speed that these tend to converge. We could for example choose:
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However, in general, we do have to be careful that we pick values for these parameters that

are possible and there are some tricks to choosing reasonable starting values (a subject for

an algorithms class).

For step (2), we will update the parameter �
[t]

(starting with �
[0]
) using the following

equation:

�
[t+1]

= �
[t]
+
⇥
xTWx

⇤�1
xT

(y� �
�1

(x�)) (35)

Note that we have seen all of the components of this equation before except for W (we

have used y and x in our linear regression equations and �
�1

(x�) is defined above). The

matrix W is an n by n (square) matrix that has zero’s for all of the o↵ diagonal elements

(Wij = 0 for i 6= j) and each of the diagonal elements is equal to:

Wii = �
�1

(�µ + xi,a�a + xi,d�d)(1� �
�1

(�µ + xi,a�a + xi,d�d) (36)

i.e. the variance term for ✏i for an individual i. Note that if we define:

z = x�[t]
+W�1

(y� �
�1

(x�)) (37)

we can rewrite equation (27) as follows:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (38)

The form of this should look somewhat familiar. Without the matrix W this would simply

be the MLE(�̂) for the linear regression model. As you’ll recall, this is also the (ordinary)

least-squares estimate of �. If we consider the matrix W a ‘re-weighting’ matrix, then we

see the origin of the name of the IRLS algorithm.

For step (3), we need to determine when �
[t+1] ⇡ �

[t]
is ‘close enough’. Now since �

[t]

is a vector, it is di�cult to assess this issue considering each of the values independently,

e.g. what if one value is extremely close to zero but another is further away? A reasonable

way of defining a stopping rule is to define a function of the values in the � vector that

provides a single value, which measures how close all of the values are when comparing

step t+ 1 to t. The deviance is one such measure:

D = 2

nX

i=1


yiln

yi

��1(�µ + xi,a�a + xi,d�d)
+ (1� yi)ln

1� yi

1� ��1(�µ + xi,a�a + xi,d�d)

�

(39)
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⇤i = 1� E(Yi|Xi) = 1� E(Y |AiAj) = 1� logistic(�µ +Xi,a�a +Xi,d�d) (61)

⇤i = Z � E(Yi|Xi) (62)

Yi = E(Yi|Xi) + ⇤i (63)

Yi = ⇥�1(Yi|Xi) + ⇤i (64)

Yi =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d
+ ⇤i (65)

Pr(Z) ⇥ bern(p) (66)

�[t+1] = �[t] + [xTWx]�1xT(y� ⇥�1(x�[t]) (67)

⇥�1(�µ + xi,a�a + xi,d�d) =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d
(68)

⇥�1(x�) =
ex�

1 + ex�
(69)

⇤i = �0.6 (70)

⇤i = 0.4 (71)

⇤i|(Yi = 0) = �E(Yi|Xi) (72)

⇤i|(Yi = 1) = 1� E(Yi|Xi) (73)

⇥�1(�[t]
µ + xi,a�

[t]
a + xi,d�

[t]
d ) =

e�
[t]
µ +xi,a�

[t]
a +xi,d�

[t]
d

1 + e�
[t]
µ +xi,a�

[t]
a +xi,d�

[t]
d

(74)

⇥�1(x�[t]) =
ex�

[t]

1 + ex�[t]
(75)

D = 2
n⇤

i=1

⌅
yiln

�
yi

⇥�1(�[t]or[t+1]
µ + xi,a�

[t]or[t+1]
a + xi,d�

[t]or[t+1]
d )

⇥
(76)

+(1� yi)ln

�
1� yi

1� ⇥�1(�[t]or[t+1]
µ + xi,a�

[t]or[t+1]
a + xi,d�

[t]or[t+1]
d )

⇥⇧
(77)

D = 2
n⇤

i=1

⌅
yiln

�
yi

e�
[t]or[t+1]
µ +xi,a�

[t]or[t+1]
a +xi,d�

[t]or[t+1]
d

1+e�
[t]or[t+1]
µ +xi,a�

[t]or[t+1]
a +xi,d�

[t]or[t+1]
d

⇥
+(1�yi)ln

�
1� yi

1� e�
[t]or[t+1]
µ +xi,a�

[t]or[t+1]
a +xi,d�

[t]or[t+1]
d

1+e�
[t]or[t+1]
µ +xi,a�

[t]or[t+1]
a +xi,d�

[t]or[t+1]
d

⇥⇧

(78)
Wii = ⇥�1(�µ + xi,a�a + xi,d�d)(1� ⇥�1(�µ + xi,a�a + xi,d�d)) (79)

Wii =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d

�
1� e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d

⇥
(80)
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Inference
• Recall that our goal with using logistic regression was to model the probability 

distribution of a case / control phenotype when there is a causal polymorphism

• To use this for a GWAS, we need to test the null hypothesis that a genotype is not 
a causal polymorphism (or more accurately that the genetic marker we are testing 
is not in LD with a causal polymorphism!):

• To assess this null hypothesis, we will use the same approach as in linear 
regression, i.e. we will construct a LRT = likelihood ratio test (recall that an F-test 
is an LRT!)

• We will need MLE for the parameters of the logistic regression for the LRT

and we can similarly write for an individual i :

E(Yi|Xi) = logistic(�µ +Xi,a�a +Xi,d�d) (3)

Yi = E(Yi|Xi) + ✏i,l (4)

Yi = �
�1

(Yi|Xi) + ✏i,l (5)

Yi =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

+ ✏i,l (6)

Yi =
e
�µ+Xi,a�a+Xi,d�d

1 + e
�µ+Xi,a�a+Xi,d�d

+ ✏i,l (7)

�µ = 0.2 �a = 2.2 �d = 0.2 (8)

�µ = c �a = 0 �d = 0 (9)

0 =
e
0.2+(�1)2.2+(�1)0.2

1 + e0.2+(�1)(2.2)+(�1)(0.2)
+ ✏i,l (10)

0 = 0.1� 0.1 (11)

1 =
e
0.2+(�1)2.2+(�1)0.2

1 + e0.2+(�1)(2.2)+(�1)(0.2)
+ ✏i,l (12)

1 = 0.1 + 0.9 (13)

0 =
e
0.2+(0)2.2+(1)0.2

1 + e0.2+(0)(2.2)+(1)(0.2)
+ ✏i,l (14)

0 = 0.6� 0.6 (15)

0 =
e
0.2+(1)2.2+(�1)0.2

1 + e0.2+(1)(2.2)+(�1)(0.2)
+ ✏i,l (16)

0 = 0.9� 0.9 (17)

That is, in our genotype-phenotype plot, if we were to find the value of the logistic function

on the Y-axis at the point on the X-axis corresponding to A1A1, this is the expected value

of the phenotype Y for genotype A1A1, etc. Note that this number will be between zero

and one. We can similarly write a equation for a sample of size n using vector notation:

E(Y|X) = logistic(X�) (18)

where Y, X, and the vector � have the same definition as previously.

There is one other di↵erence between equation (1) and a linear regression: the distri-

bution of the error random variable ✏. For a given value of the logistic regression for a

genotype AjAk, this random variable has to make up the di↵erence between a value of

3

Now consider the first and second derivatives

@`

@�
=

X

i

[yixi �
e
xi�

1 + exi�
xi] (46)

=

X

i

[yi � �
�1

(xi�)]xi (47)

= xT
[y � �

�1
(xi�)] (48)

@
2
`

@�@�T
= �

X

i

xix
T
i �

�1
(xi�)[1� �

�1
(xi�)] (49)

= �xTWx where Wii =
�
�
�1

(xi�)[1� �
�1

(xi�)]
�

(50)

Now plug the first and second derivatives into the Newton-Raphson update equation and

do some algebra:

�
(t+1)

= �
(t) �

⇣
@
2
`

@�@�T

⌘�1 @`

@�
(51)

= �
(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)] (52)

= (xTWx)�1
(xTWx)(�(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)]) (53)

= (xTWx)�1
(xTWx�(t)

+ xT
[y� �

�1
(x�(t)

)]) (54)

= (xTWx)�1xTW(x�(t)
+W�1

[y� �
�1

(x�(t)
)]) (55)

= (xTWx)�1xTWz where z = x�(t)
+W�1

[y� �
�1

(x�(t)
)] (56)

Using the standard Newton-Raphson update equation we now have an iterative system to

update our estimates of �:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (57)

where z = x�[t]
+W�1

(y� �
�1

(x�)) and is called the vector of ’working responses’.

Thinking back to regression with continuous phenotyopes, you will remember that �̂ =⇥
xTx

⇤�1
xTy. This closed form solution for the regression coe�cients for a linear model

looks a lot like the iteritive system for estimation in a logistic model. In fact, they are the

same if W = I and z = y.

6 Hypothesis testing for logistic regression

Recall that when we perform a GWAS using a linear regression model, we assess the

following hypotheses for each genetic marker:

H0 : �a = 0 \ �d = 0 (58)
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• First, determine the predicted value of the phenotype of each 
individual under the null hypothesis (how do we set up x?):

• Second, determine the predicted value of the phenotype of each 
individual under the alternative hypothesis (set up x?):

• Third, calculate the “Error Sum of Squares” for each:   

• Finally, we calculate the F-statistic with degrees of freedom [2, 
n-3] (why two and n-#params degrees of freedom?):

SSM =
nX

i=1

(ŷi � y)2 (8)

where y = 1
n⌃

n
i yi is the mean of the sample. The second is the sum of squares of the error

(SSE):

SSE(✓̂0) =
nX

i=1

(yi � ŷi,✓̂0
)2 (9)

SSE(✓̂1) =
nX

i=1

(yi � ŷi,✓̂1
)2 (10)

We will next use these two expressions to define two corresponding functions: the mean

square model (MSM) and the mean square error (MSE) terms. These later functions
depend on the concept of degrees of freedom (df). Degrees of freedom have a rigorous jus-
tification that you will encounter in an advanced statistics course. In this course, we will
not consider this justification or a deep intuition as to what df represent. For our purposes,
it is enough to be able to calculate the df for our model and for our error. For our model,
we determine df as the total number of � parameters in our model (three in this case: �µ,
�a, and �d) minus one for the estimate of y such that df(M) = 3 � 1 = 2. For our error,
the df is the total sample n minus the one for each of the three � parameters estimated in
the regression model such that df(E) = n� 3. Note that this approach for determining df
works for any model. For example, if we were to consider a regression model with just �µ
and �a (and no �d), we would have df(M) = 2� 1 and df(E) = n� 2.

With these terms for df, we can now define MSM and MSE:

MSM =
SSM

df(M)
=

SSM

2
(11)

MSE =
SSE

df(E)
=

SSE

n� 3
(12)

and with these definitions, we can finally calculate our F-statistic:

F[2,n�3] =
MSM

MSE
(13)

F[2,n�3](y,xa,xd) =
MSM

MSE
(14)

F[2,n�3](y,xa,xd) =
SSE(✓̂0)�SSE(✓̂1)

2

SSE(✓̂1)
n�3

(15)

3
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

Yi = �
�1(X�) + ✏i (36)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(37)

✓̂1 (38)

5

pval(T (x)) =

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)X

Torder(min(T (X))

Pr(T (Torder(i))|✓ = c)

(42)

+

Torder(max(T (X))X

(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)

Pr(T (Torder(i))|✓ = c) (43)

Torder(T (x)) = i|for the ith largest value of T(X) (44)

ŷi,✓̂1
= �̂µ,✓̂1

+ xi,a�̂a,✓̂1
+ xi,d�̂d,✓̂1

+
X

j=1

xi,z,j �̂z,✓̂1,j
(45)
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(Torder(median(T (X))�|Torder((T (x))�Torder((median(T (X))|)

Pr(T (Torder(i))|✓ = c) (43)

Torder(T (x)) = i|for the ith largest value of T(X) (44)

ŷi,✓̂1
= �̂µ,✓̂1

+ xi,a�̂a,✓̂1
+ xi,d�̂d,✓̂1

+
X

j=1

xi,z,j �̂z,✓̂1,j
(45)

ŷi,✓̂0
= �̂µ,✓̂0

+
X

j=1

xi,z,j �̂z,✓̂0,j
(46)
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Logistic hypothesis testing I

• Recall that our null and alternative hypotheses are:

• We will use the LRT for the null (0) and alternative (1):

• For our case, we need the following:

Now consider the first and second derivatives
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@�
=

X

i

[yixi �
e
xi�

1 + exi�
xi] (46)

=

X

i

[yi � �
�1

(xi�)]xi (47)

= xT
[y � �

�1
(xi�)] (48)

@
2
`

@�@�T
= �

X

i

xix
T
i �

�1
(xi�)[1� �

�1
(xi�)] (49)

= �xTWx where Wii =
�
�
�1

(xi�)[1� �
�1

(xi�)]
�

(50)

Now plug the first and second derivatives into the Newton-Raphson update equation and

do some algebra:

�
(t+1)

= �
(t) �

⇣
@
2
`

@�@�T

⌘�1 @`

@�
(51)

= �
(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)] (52)

= (xTWx)�1
(xTWx)(�(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)]) (53)

= (xTWx)�1
(xTWx�(t)

+ xT
[y� �

�1
(x�(t)

)]) (54)

= (xTWx)�1xTW(x�(t)
+W�1

[y� �
�1

(x�(t)
)]) (55)

= (xTWx)�1xTWz where z = x�(t)
+W�1

[y� �
�1

(x�(t)
)] (56)

Using the standard Newton-Raphson update equation we now have an iterative system to

update our estimates of �:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (57)

where z = x�[t]
+W�1

(y� �
�1

(x�)) and is called the vector of ’working responses’.

Thinking back to regression with continuous phenotyopes, you will remember that �̂ =⇥
xTx

⇤�1
xTy. This closed form solution for the regression coe�cients for a linear model

looks a lot like the iteritive system for estimation in a logistic model. In fact, they are the

same if W = I and z = y.

6 Hypothesis testing for logistic regression

Recall that when we perform a GWAS using a linear regression model, we assess the

following hypotheses for each genetic marker:

H0 : �a = 0 \ �d = 0 (58)
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HA : �a 6= 0 [ �d 6= 0 (59)

The way we do this is by calculating a LRT (in this case, an F-test), which is a function

that takes the sample as input and provides a number as output. Since we know the

distribution of the F-statistic assuming H0 is true, we can determine the p-value for our

statistic and if this is less than a specified Type I error ↵, we reject the null hypothesis

(which indicates the marker is in linkage disequilibrium with a causal polymorphism).

When we use a logistic regression for a GWAS analysis, we will take the same approach.

The only di↵erence is that the LRT for a logistic model does not have an exactly charac-

terized form for an arbitrary sample size n, i.e. it is not an F-statistic. However, we can

calculate a LRT for the logistic case and it turns out that in the case where H0 is true,

this statistic does have an exact distribution as the sample size approaches infinite. Specif-

ically, as n ! 1 then LRT ! �
2
df , i.e. the LRT approaches a chi-square distribution with

degrees of freedom (df) that depend on the model and null hypothesis (see below). Now,

we are never in a situation where our sample size is infinite. However, if our sample size

is reasonably large, our hope is that our LRT will be approximately chi-square distributed

(when H0 is true). It turns out that this is often the case in practice, so we can use a

chi-square distribution to calculate the p-value when we obtain a value for the LRT for a

sample.

So, to perform a hypothesis test for a logistic regression model for our null hypothesis,

we need to consider the formula for the LRT, which is the following:

LRT = �2ln⇤ = �2ln
L(✓̂0|y)
L(✓̂1|y)

(60)

where L(✓|y) is the likelihood function, ✓̂0 = argmax✓2⇥0L(✓|y) is the parameter value

that maximizes the likelihood of the sample restricted to set of parameter values described

by the null hypothesis ⇥0, and ✓̂1 = argmax✓2⇥1L(✓|y) is similarly defined,where ⇥1 is

the entire range of values under the null and alternative hypotheses ⇥1 = ⇥A [⇥0. Note

that we can write this equation as:

LRT = �2ln⇤ = 2ln(L(✓̂1|y))� 2ln(L(✓̂0|y)) (61)

So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (62)
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⇤i = 1� E(Yi|Xi) = 1� E(Y |AiAj) = 1� logistic(�µ +Xi,a�a +Xi,d�d) (61)

⇤i = Z � E(Yi|Xi) (62)

Pr(Z) ⇥ bern(p) (63)

⇥�1(�µ + xi,a�a + xi,d�d) =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d
(64)

⇥�1(x�) =
ex�

1 + ex�
(65)

D = 2
n⇤

i=1

⌅
yiln

�
yi

⇥�1(�µ + xi,a�a + xi,d�d)

⇥
+(1�yi)ln

�
1� yi

1� ⇥�1(�µ + xi,a�a + xi,d�d)

⇥⇧

(66)

D = 2
n⇤

i=1

⌅
yiln

�
yi

e�µ+xi,a�a+xi,d�d

1+e�µ+xi,a�a+xi,d�d

⇥
+ (1� yi)ln

�
1� yi

1� e�µ+xi,a�a+xi,d�d

1+e�µ+xi,a�a+xi,d�d

⇥⇧
(67)

Wii = ⇥�1(�µ + xi,a�a + xi,d�d)(1� ⇥�1(�µ + xi,a�a + xi,d�d)) (68)

Wii =
e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d

�
1� e�µ+xi,a�a+xi,d�d

1 + e�µ+xi,a�a+xi,d�d

⇥
(69)

l(⌅̂1|y) = l(�̂µ, �̂a, �̂d|y) (70)

l(⌅̂0|y) = l(�̂µ, 0, 0|y) (71)
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•  For the alternative, we use our MLE estimates of our 
logistic regression parameters we get from our IRLS 
algorithm and plug these into the log-like equation

• For the null, we plug in the following parameter estimates 
into this same equation

• where we use the same IRLS algorithm to provide estimates 
of by running the algorithm EXACTLY the same with 
EXCEPT we set                     and we do not update these!

So we need the formulas for the first and the second term of equation (36). For the
second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ
is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation
estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax�⇥�0L(⇤|y)) =
1

n

n�

i=1

yi (64)

l(⇤̂0|y) =
1

n

n�

i=1

yi (65)

i.e. the mean of the sample. If we multiply this by two, we have the second term of equa-
tion (36) and we are half way there.

For the first term in equation (36) all three parameters are unrestricted so we need the MLE
of all three, i.e. MLE(�̂). However, we know how to calculate the parameter estimates
using our IRLS algorithm. If we then substitute these in to equation (13), we have:

l(⇤̂1|y) =
n�

i=1

⇥
yiln(⇥

�1(�̂µ + xi,a�̂a + xi,d�̂d)) + (1� yi)ln(1� ⇥�1(�̂µ + xi,a�̂a + xi,d�̂d))
⇤

(66)
which we can multiply by -2 to get the first term of equation (36) for a sample.

Now we only need one more component: the degrees of freedom (df). In general, for
any LRT, the way we calculate df is the di�erence in the number of parameters estimated
in the null hypothesis compared to the alternative hypothesis. So, in our case, the df=2.
We can now look up the value we calculate for our statistic in the appropriate chi-square
table to determine a p-value and reject or do not reject our null hypothesis.

12

So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (64)

�̂µ,0 =
1

n

nX

i=1

yi (65)

i.e. the mean of the sample. If we multiply this by two, we have the second term of equa-

tion (36) and we are half way there.

For the first term in equation (36) all three parameters are unrestricted so we need the MLE

of all three, i.e. MLE(�̂). However, we know how to calculate the parameter estimates

using our IRLS algorithm. If we then substitute these in to equation (13), we have:

l(✓̂1|y) =
nX

i=1

h
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�1
(�̂µ + xi,a�̂a + xi,d�̂d)) + (1� yi)ln(1� �

�1
(�̂µ + xi,a�̂a + xi,d�̂d))

i

(66)

l(✓̂0|y) =
nX

i=1

h
yiln(�

�1
(�̂µ,0 + xi,a ⇤ 0 + xi,d ⇤ 0)) + (1� yi)ln(1� �

�1
(�̂µ,0 + xi,a ⇤ 0 + xi,d ⇤ 0))

i

(67)
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Logistic hypothesis testing II

�� = �a

�
a+

�d
2
(p1 � p2)

⇥
(97)

�̂µ,0 (98)
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Union ([) ⌘ an operator on sets which produces a single set containing all elements
of the sets.

Intersection (\) ⌘ an operator on sets which produces a single set containing all ele-
ments common to all of the sets.

Note that we can think of these as ‘or’ and ‘and’. A simple example of applying the union
operator is {50, 50300} [ {50300, 505000} = {50, 50300, 505000} and a simple example of intersection
is {50, 50300} \ {50300, 505000} = {50300}. Note that we can write the following generalizations
of these operators:

�̂a = 0, �̂d = 0 (1)
1[

i=1

Ai = A1 [A2 [ ... (2)

1\

i=1

Ai = A1 \A2 \ ... (3)

where each Ai is a set. Before we leave sets and sample spaces, let’s provide a few other
important definitions:

Element of (2) ⌘ an object within a set, e.g. H 2 {H,T}

Subset (⇢) ⌘ a set that is contained within another set, e.g. {H} ⇢ {H,T}

Complement (Ac) ⌘ the set containing all other elements of a set other than A, e.g.
{H}c = {T}.

Disjoint Sets ⌘ sets with no elements in common.

Empty Set (;) ⌘ the set with no elements (the empty set is unique and is sometimes
and is sometimes represented as { }).

Disjoint Sets ⌘ sets with no elements in common.

Note that for disjoint sets Ai and Aj , the following holds: Ai \Aj = ;.

T (X) , Pr(T (X)|✓)

X = x , Pr(X|✓)

[X1 = x1, ..., Xn = xn] , Pr(X1 = x1, ..., Xn = xn|✓)

6



Logistic hypothesis testing III
• To calculate our p-value, we need to know the 

distribution of our LRT statistic under the null hypothesis

• There is no simple form for this distribution for any given 
n (contrast with F-statistics!!) but we know that as n goes 
to infinite, we know the distribution is i.e. (               ):

• What’s more, it is a reasonably good assumption that 
under our (not all!!) null, this LRT is (approximately!) a 
chi-square distribution with 2 degrees of freedom (d.f.) 
assuming n is not too small!

HA : �a 6= 0 [ �d 6= 0 (59)
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Modeling logistic covariates I
• Therefore, if we have a factor that is correlated with our 

phenotype and we do not handle it in some manner in our 
analysis, we risk producing false positives AND/OR reduce 
the power of our tests!

• The good news is that, assuming we have measured the 
factor (i.e. it is part of our GWAS dataset) then we can 
incorporate the factor in our model as a covariate:

• The effect of this is that we will estimate the covariate 
model parameter and this will account for the correlation of 
the factor with phenotype (such that we can test for our 
marker correlation without false positives / lower power!)

the actual error we are considering is:

✏Xz = Xz�z + ✏ (8)

✏ ⇠ N(0,�2
✏ ) (9)

which is not the correct model, i.e. the true error term is actually a mixture of normals.
Even beyond the problem that we are not applying the correct model, the result in this
case is that the error term will be larger as a consequence of the factor, so the power of
our test will be lower (compared to a case where there was no e↵ect of a factor).

These examples provide two intuitive consequences of factors contributing to our phe-
notype of interest Y , i.e. biological false positives and higher error terms. On a practical
level, there are many such factors that contribute to phenotype variation in GWAS studies,
e.g. environmental factors such as ‘smoking’ or ‘non-smoking’, gender di↵erences, multiple
causal loci, etc. The good news is when we have information about these factors, (e.g.
whether a given individual is a smoker or non-smoker) we can include an additional co-
variate term in our linear (or logistic) equation and an associate parameter to account for
the e↵ects of the factor. We call such an approach (where we have a dummy variable Xz

and parameter �z) a fixed covariate:

Y = �
�1(�µ +Xa�a +Xd�d +Xz�z) (10)

and we use the sample statistical framework (including hypothesis testing) to analyze such
a model. Note that we may code the dummy variable for the covariate as we have with
our genotypes (just a few states) or with many states, e.g. an individual fixed state for
each individual in our sample. Also note that we have arbitrarily designated the genotype
dummy variables to be what we are interested in and all other factors to be covariates but
they are modeled and handled the same way for the purposes of inference.

A few quick comments about fixed covariates. First, in practice, we may not have in-
formation in our GWAS study about an important factor contributing to our phenotype
and in such cases we are simply out of luck. Second, even if we have information on a num-
ber of possible factors that may be contributing to our phenotype, we do not know which
ones are actually covariates, i.e. have true non-zero � terms. In general, the way we handle
such situations is repeat the analysis several times including individual or combinations of
these possible covariates. If the estimates of the �’s are close to zero for given covariates,
we can leave them out of the analysis (where we decide which are close to zero using model
selection procedures). Third, if there are multiple loci contributing to the phenotype, we
could include additional markers in the model to account for these ‘covariates’. However,
this brings up an additional challenge of how to select which markers to include (again, the
problem of model selection), a subject that we will deal with in notes that we will post but
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Modeling logistic covariates II
• For our a logistic regression, our LRT (logistic) we have the same 

equations:

• Using the following estimates for the null hypothesis and the alternative 
making use of the IRLS algorithm (just add an additional parameter!):

• Under the null hypothesis, the LRT is still distributed as a Chi-square with 
2 degree of freedom (why?):

similarly defined,where ⇥1 is the entire range of values under the null and alternative

hypotheses ⇥1 = ⇥A [⇥0. Note that we can write this equation as:

LRT = �2ln⇤ = 2ln(L(✓̂1|y))� 2ln(L(✓̂0|y)) (62)

LRT = �2ln⇤ = 2l(✓̂1|y)� 2l(✓̂0|y) (63)

So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (64)

�̂µ,0 =
1

n

nX

i=1

yi (65)

i.e. the mean of the sample. If we multiply this by two, we have the second term of equa-

tion (36) and we are half way there.

For the first term in equation (36) all three parameters are unrestricted so we need the MLE

of all three, i.e. MLE(�̂). However, we know how to calculate the parameter estimates

using our IRLS algorithm. If we then substitute these in to equation (13), we have:

l(✓̂1|y) =
nX

i=1

h
yiln(�

�1
(�̂µ + xi,a�̂a + xi,d�̂d)) + (1� yi)ln(1� �

�1
(�̂µ + xi,a�̂a + xi,d�̂d))

i

(66)

l(✓̂0|y) =
nX

i=1

h
yiln(�

�1
(�̂µ,0 + xi,a ⇤ 0 + xi,d ⇤ 0)) + (1� yi)ln(1� �

�1
(�̂µ,0 + xi,a ⇤ 0 + xi,d ⇤ 0))

i

(67)

which we can multiply by -2 to get the first term of equation (36) for a sample.

Now we only need one more component: the degrees of freedom (df). In general, for

any LRT, the way we calculate df is the di↵erence in the number of parameters estimated

in the null hypothesis compared to the alternative hypothesis. So, in our case, the df=2.

We can now look up the value we calculate for our statistic in the appropriate chi-square

table to determine a p-value and reject or do not reject our null hypothesis.
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6 Hypothesis testing for logistic regression

Recall that when we perform a GWAS using a linear regression model, we assess the

following hypotheses for each genetic marker:

H0 : �a = 0 \ �d = 0 (59)

HA : �a 6= 0 [ �d 6= 0 (60)

The way we do this is by calculating a LRT (in this case, an F-test), which is a function

that takes the sample as input and provides a number as output. Since we know the

distribution of the F-statistic assuming H0 is true, we can determine the p-value for our

statistic and if this is less than a specified Type I error ↵, we reject the null hypothesis

(which indicates the marker is in linkage disequilibrium with a causal polymorphism).

When we use a logistic regression for a GWAS analysis, we will take the same approach.

The only di↵erence is that the LRT for a logistic model does not have an exactly charac-

terized form for an arbitrary sample size n, i.e. it is not an F-statistic. However, we can

calculate a LRT for the logistic case and it turns out that in the case where H0 is true, this

statistic does have an exact distribution as the sample size approaches infinite. Specifically,

as n ! 1 then

LRT ! �
2
df=2

i.e. the LRT approaches a chi-square distribution with degrees of freedom (df) that depend

on the model and null hypothesis (see below). Now, we are never in a situation where our

sample size is infinite. However, if our sample size is reasonably large, our hope is that

our LRT will be approximately chi-square distributed (when H0 is true). It turns out that

this is often the case in practice, so we can use a chi-square distribution to calculate the

p-value when we obtain a value for the LRT for a sample.

So, to perform a hypothesis test for a logistic regression model for our null hypothesis,

we need to consider the formula for the LRT, which is the following:

LRT = �2ln⇤ = �2ln
L(✓̂0|y)
L(✓̂1|y)

(61)

where L(✓|y) is the likelihood function,

✓̂0 = {�̂µ =
1
n

Pn
i=1 yi, �̂a = 0, �̂d = 0, �̂z}

✓̂A = {�̂µ, �̂a, �̂d, �̂z}
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statistic and if this is less than a specified Type I error �, we reject the null hypothesis
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The only di⇥erence is that the LRT for a logistic model does not have an exactly charac-
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X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

Pr(F) ! Pr(X)

Pr(✓̂)

Pr(T (X)|H0 : ✓ = c)

H0 : ✓ = c

A1 ! A2 ) �Y |Z (211)

Pr(A1, A1) = Pr(A1)Pr(A1) = p
2 (212)

Pr(A1, A2) = 2Pr(A1)Pr(A2) = 2pq (213)

Pr(A2, A2) = Pr(A2)Pr(A2) = q
2 (214)

Pr(AiAj , BkBl) 6= Pr(AiAj)Pr(BkBl) (215)

✏i = 0.9
✏ ⇠ N(0,�2

✏ ) (216)

Y = �
�1(�µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2) (217)

l(✓̂0|y) =
nX

i=1


yiln(�

�1(�̂µ + xi,z�̂z)) + (1� yi)ln(1� �
�1(�̂µ + xi,z�̂z))

�
(218)
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Summary 1: logistic (no covariates)
• Test the null hypothesis:                                             vs

• Step 1: use IRLS algorithm to get                           which is the MLE under H0 (i.e.,     ) by 
using x matrix with one column that is all ones!)

• Step 2: substitute this MLE into:

• Step 3: use IRLS algorithm to get                                     which is the MLE under HA           
(i.e.,     ) by using x matrix with first column that is all ones, second column with        ’s and 
third column with the        ’s )

• Step 4: substitute these MLE into:

• Step 5: use results from step 2 and step 4 to calculate:

• Use LRT and appropriate function in R (which?) to calculate p-value under chi-square df = 2! 

Now consider the first and second derivatives
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= �xTWx where Wii =
�
�
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(xi�)]
�

(50)

Now plug the first and second derivatives into the Newton-Raphson update equation and

do some algebra:
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⌘�1 @`
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(51)
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�1
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)] (52)

= (xTWx)�1
(xTWx)(�(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)]) (53)

= (xTWx)�1
(xTWx�(t)

+ xT
[y� �

�1
(x�(t)

)]) (54)

= (xTWx)�1xTW(x�(t)
+W�1

[y� �
�1

(x�(t)
)]) (55)

= (xTWx)�1xTWz where z = x�(t)
+W�1

[y� �
�1

(x�(t)
)] (56)

Using the standard Newton-Raphson update equation we now have an iterative system to

update our estimates of �:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (57)

where z = x�[t]
+W�1

(y� �
�1

(x�)) and is called the vector of ’working responses’.

Thinking back to regression with continuous phenotyopes, you will remember that �̂ =⇥
xTx

⇤�1
xTy. This closed form solution for the regression coe�cients for a linear model

looks a lot like the iteritive system for estimation in a logistic model. In fact, they are the

same if W = I and z = y.

6 Hypothesis testing for logistic regression

Recall that when we perform a GWAS using a linear regression model, we assess the

following hypotheses for each genetic marker:

H0 : �a = 0 \ �d = 0 (58)
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HA : �a 6= 0 [ �d 6= 0 (59)

The way we do this is by calculating a LRT (in this case, an F-test), which is a function

that takes the sample as input and provides a number as output. Since we know the

distribution of the F-statistic assuming H0 is true, we can determine the p-value for our

statistic and if this is less than a specified Type I error ↵, we reject the null hypothesis

(which indicates the marker is in linkage disequilibrium with a causal polymorphism).

When we use a logistic regression for a GWAS analysis, we will take the same approach.

The only di↵erence is that the LRT for a logistic model does not have an exactly charac-

terized form for an arbitrary sample size n, i.e. it is not an F-statistic. However, we can

calculate a LRT for the logistic case and it turns out that in the case where H0 is true,

this statistic does have an exact distribution as the sample size approaches infinite. Specif-

ically, as n ! 1 then LRT ! �
2
df , i.e. the LRT approaches a chi-square distribution with

degrees of freedom (df) that depend on the model and null hypothesis (see below). Now,

we are never in a situation where our sample size is infinite. However, if our sample size

is reasonably large, our hope is that our LRT will be approximately chi-square distributed

(when H0 is true). It turns out that this is often the case in practice, so we can use a

chi-square distribution to calculate the p-value when we obtain a value for the LRT for a

sample.

So, to perform a hypothesis test for a logistic regression model for our null hypothesis,

we need to consider the formula for the LRT, which is the following:

LRT = �2ln⇤ = �2ln
L(✓̂0|y)
L(✓̂1|y)

(60)

where L(✓|y) is the likelihood function, ✓̂0 = argmax✓2⇥0L(✓|y) is the parameter value

that maximizes the likelihood of the sample restricted to set of parameter values described

by the null hypothesis ⇥0, and ✓̂1 = argmax✓2⇥1L(✓|y) is similarly defined,where ⇥1 is

the entire range of values under the null and alternative hypotheses ⇥1 = ⇥A [⇥0. Note

that we can write this equation as:

LRT = �2ln⇤ = 2ln(L(✓̂1|y))� 2ln(L(✓̂0|y)) (61)

So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (62)
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

6= (36)

Yi = �
�1(X�) + ✏i (37)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)
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✓̂1 (39)
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1 x2,a x2,d
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. . .
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3

7775
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Pr(Xi|Xj) = Pr(Xi) (40)
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Z median(T (X)�|T (x)�median(T (X)|

�1
(42)

MLE(�̂) = �̂µ (43)
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Summary 2: logistic (covariates)
• Test the null hypothesis:                                             vs

• Step 1: use IRLS algorithm to get                              which is the MLE under H0 (i.e.,     ) by 
using x matrix with one column that is all ones!)

• Step 2: substitute this MLE into:

• Step 3: use IRLS algorithm to get                                          which is the MLE under HA     
(i.e.,     ) by using x matrix with first column that is all ones, second column with        ’s and 
third column with the        ’s )

• Step 4: substitute these MLE into:

• Step 5: use results from step 2 and step 4 to calculate:

• Use LRT and appropriate function in R (which?) to calculate p-value under chi-square df = 2! 

Now consider the first and second derivatives

@`

@�
=

X

i

[yixi �
e
xi�

1 + exi�
xi] (46)

=

X

i

[yi � �
�1

(xi�)]xi (47)

= xT
[y � �

�1
(xi�)] (48)

@
2
`

@�@�T
= �

X

i

xix
T
i �

�1
(xi�)[1� �

�1
(xi�)] (49)

= �xTWx where Wii =
�
�
�1

(xi�)[1� �
�1

(xi�)]
�

(50)

Now plug the first and second derivatives into the Newton-Raphson update equation and

do some algebra:

�
(t+1)

= �
(t) �

⇣
@
2
`

@�@�T

⌘�1 @`

@�
(51)

= �
(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)] (52)

= (xTWx)�1
(xTWx)(�(t)

+ (xTWx)�1xT
[y� �

�1
(x�(t)

)]) (53)

= (xTWx)�1
(xTWx�(t)

+ xT
[y� �

�1
(x�(t)

)]) (54)

= (xTWx)�1xTW(x�(t)
+W�1

[y� �
�1

(x�(t)
)]) (55)

= (xTWx)�1xTWz where z = x�(t)
+W�1

[y� �
�1

(x�(t)
)] (56)

Using the standard Newton-Raphson update equation we now have an iterative system to

update our estimates of �:

�
[t+1]

=
⇥
xTWx

⇤�1
xTWz (57)

where z = x�[t]
+W�1

(y� �
�1

(x�)) and is called the vector of ’working responses’.

Thinking back to regression with continuous phenotyopes, you will remember that �̂ =⇥
xTx

⇤�1
xTy. This closed form solution for the regression coe�cients for a linear model

looks a lot like the iteritive system for estimation in a logistic model. In fact, they are the

same if W = I and z = y.

6 Hypothesis testing for logistic regression

Recall that when we perform a GWAS using a linear regression model, we assess the

following hypotheses for each genetic marker:

H0 : �a = 0 \ �d = 0 (58)
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HA : �a 6= 0 [ �d 6= 0 (59)

The way we do this is by calculating a LRT (in this case, an F-test), which is a function

that takes the sample as input and provides a number as output. Since we know the

distribution of the F-statistic assuming H0 is true, we can determine the p-value for our

statistic and if this is less than a specified Type I error ↵, we reject the null hypothesis

(which indicates the marker is in linkage disequilibrium with a causal polymorphism).

When we use a logistic regression for a GWAS analysis, we will take the same approach.

The only di↵erence is that the LRT for a logistic model does not have an exactly charac-

terized form for an arbitrary sample size n, i.e. it is not an F-statistic. However, we can

calculate a LRT for the logistic case and it turns out that in the case where H0 is true,

this statistic does have an exact distribution as the sample size approaches infinite. Specif-

ically, as n ! 1 then LRT ! �
2
df , i.e. the LRT approaches a chi-square distribution with

degrees of freedom (df) that depend on the model and null hypothesis (see below). Now,

we are never in a situation where our sample size is infinite. However, if our sample size

is reasonably large, our hope is that our LRT will be approximately chi-square distributed

(when H0 is true). It turns out that this is often the case in practice, so we can use a

chi-square distribution to calculate the p-value when we obtain a value for the LRT for a

sample.

So, to perform a hypothesis test for a logistic regression model for our null hypothesis,

we need to consider the formula for the LRT, which is the following:

LRT = �2ln⇤ = �2ln
L(✓̂0|y)
L(✓̂1|y)

(60)

where L(✓|y) is the likelihood function, ✓̂0 = argmax✓2⇥0L(✓|y) is the parameter value

that maximizes the likelihood of the sample restricted to set of parameter values described

by the null hypothesis ⇥0, and ✓̂1 = argmax✓2⇥1L(✓|y) is similarly defined,where ⇥1 is

the entire range of values under the null and alternative hypotheses ⇥1 = ⇥A [⇥0. Note

that we can write this equation as:

LRT = �2ln⇤ = 2ln(L(✓̂1|y))� 2ln(L(✓̂0|y)) (61)

So we need the formulas for the first and the second term of equation (36). For the

second term, our null hypothesis corresponds to a case where �a = 0 and �d = 0 but �µ

is unrestricted. We therefore need to calculate the log-likelihood for the logistic equation

estimating MLE(�̂µ) setting �a = 0 and �d = 0. It turns out that this has a simple form:

ln(argmax✓2⇥0L(✓|y)) =
1

n

nX

i=1

yi (62)
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l(✓̂1|y) =
nX

i=1

[yiln(�
�1(�µ + xi,a�a + xi,d�d))+(1�yi)ln(�

�1(�µ + xi,a�a + xi,d�d))] (30)

l(✓̂0|y) =
nX

i=1

[yiln(�
�1(�µ)) + (1� yi)ln(�

�1(�µ))] (31)

l(✓̂1|y) = l(�̂µ, �̂a, �̂d|y) (32)

l(✓̂1|y) = l(�̂µ, 0, 0|y) (33)

✓̂0 = {�̂µ, �̂a = 0, �̂d = 0} (34)

✓̂1 = {�̂µ, �̂a, �̂d} (35)

6= (36)

Yi = �
�1(X�) + ✏i (37)

F[2,n�#(✓̂1)]
(y,xa,xd) =

SSE(✓̂0)�SSE(✓̂1)
2

SSE(✓̂1)

n�#(✓̂1)

(38)

✓̂1 (39)

x =

2

6664

1 x1,a x1,d

1 x2,a x2,d
...

...
. . .

1 xn,a xn,d

3

7775

1 0 -1
0 0 0
-1 0 1

Pr(Xi|Xj) = Pr(Xi) (40)

Pr(Xi \Xj) = Pr(Xi)Pr(Xj) (41)

pval(T (X)) =

Z median(T (X)�|T (x)�median(T (X)|

�1
(42)

MLE(�̂) = �̂µ (43)

✓̂0 (44)
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l(✓̂1|y) =
nX

i=1
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yiln

✓
e
�̂u+xi,a�̂a+xi,d�̂d

1 + e
�̂u+xi,a�̂a+xi,d�̂d

◆
+ (1� yi)

✓
1� e

�̂u+xi,a�̂a+xi,d�̂d

1 + e
�̂u+xi,a�̂a+xi,d�̂d

◆�
(49)

l(✓̂0|y) =
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i=1
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✓
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1 + e�̂u

◆
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Introduction to Generalized 
Linear Models (GLMs) I

• We have introduced linear and logistic regression models for 
GWAS analysis because these are the most versatile framework for 
performing a GWAS (there are many less versatile alternatives!)

• These two models can handle our genetic coding (in fact any genetic 
coding) where we have discrete categories (although they can also 
handle X that can take on a continuous set of values!)

• They can also handle (the sampling distribution) of phenotypes that 
have normal (linear) and Bernoulli error (logistic)

• How about phenotypes with different error (sampling) 
distributions? Linear and logistic regression models are members of 
a broader class called Generalized Linear Models (GLMs), where 
other models in this class can handle additional phenotypes (error 
distributions) 



Introduction to Generalized 
Linear Models (GLMs) II

• To introduce GLMs, we will introduce the overall structure first, and second 
describe how linear and logistic models fit into this framework

• There is some variation in presenting the properties of a GLM, but we will present 
them using three (models that have these properties are considered GLMs):

• The probability distribution of the response variable Y conditional on the 
independent variable X is in the exponential family of distributions

• A link function relating the independent variables and parameters to the 
expected value of the response variable (where we often use the inverse!!)

• The error random variable     has a variance which is a function of ONLY 

1. The probability distribution of the response variable Y , conditional on X is in the
exponential family of distributions, i.e. Pr(Y |X) ⇠ expfamily.

2. A link function relating the independent variables and parameters to the expected
value of the response variable: � : E(Y|X) ! X�, such that:

�(E(Y|X)) = X� (1)

Note we often write this relationship using the inverse of the link function:

E(Y|X) = ��1(X�) (2)

3. The error random variable ✏ has a variance which is a function of only X�.

Note that these three properties are often expanded into 4-5 properties by some authors
but I feel these three provide a compact (and intuitive) description of GLMs. Let’s go over
each of these and demonstrate that the linear and logistic regression models have these
properties.

First, let’s consider what is meant by an exponential family. We have already encoun-
tered families of distributions, e.g. a Normal is a family of distributions, consisting of an
infinite number of distributions indexed by the parameters µ and �2. It turns out that
we can define even broader families of distributions which encompass multiple ‘types’ of
distributions. Exponential families are one such family. A probability distribution which
can be defined using the following function is a member of the exponential family:

Pr(Y ) ⇠ e
Y ✓�b(✓)

� +c(Y,�) (3)

where ✓, �, and b(✓) are functions of only parameters and constants, and c(Y, ✓) is a func-
tion of Y , parameters, and constants (note that I’m using ✓ here to be consistent with
notation you will commonly encounter, but for the rest of the course, we will reserve ✓ to
refer to parameters or vectors of parameters, i.e. only in this lecture sub-section will the
definition di↵er).

Let’s define the components of equation (3) for a normal and binomial distribution. For a
normal, we have:

✓ = µ,� = �2, b(✓) =
✓2

2
, c(Y,�) = �1

2

 
Y 2

�
+ log(2⇡�)

!
(4)

i.e. if we substitute these into equation (3) we will have the pdf of a normal. For a binomial
we have:

✓ = ln
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1� p

!
,� = 1, b(✓) = �nln(1� p), c(Y,�) = ln

✓
n

Y
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Exponential family I

• The exponential family is includes a broad set of probability distributions that can 
be expressed in the following `natural’ form:

• As an example, for the normal distribution, we have the following:

• Note that many continuous and discrete distributions are in this family (normal, 
binomial, poisson, lognormal, multinomial, several categorical distributions, 
exponential, gamma distribution, beta distribution, chi-square) but not all 
(examples that are not!?) and since we can model response variables with these 
distributions, we can model phenotypes with these distributions in a GWAS using 
a GLM (!!)

• Note that the normal distribution is in this family (linear) as is Bernoulli or more 
accurately Binomial (logistic)

1. The probability distribution of the response variable Y , conditional on X is in the
exponential family of distributions, i.e. Pr(Y |X) ⇠ expfamily.

2. A link function relating the independent variables and parameters to the expected
value of the response variable: � : E(Y|X) ! X�, such that:

�(E(Y|X)) = X� (1)

Note we often write this relationship using the inverse of the link function:

E(Y|X) = ��1(X�) (2)

3. The error random variable ✏ has a variance which is a function of only X�.

Note that these three properties are often expanded into 4-5 properties by some authors
but I feel these three provide a compact (and intuitive) description of GLMs. Let’s go over
each of these and demonstrate that the linear and logistic regression models have these
properties.
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Exponential family II

• Instead of the `natural’ form, the exponential family is often expressed in the 
following form:

• To convert from one to the other, make the following substitutions:

• Note that the dispersion parameter is now no longer a direct part of this 
formulation

• Which is used depends on the application (i.e., for glm’s the `natural’ form has an 
easier to use form + the dispersion parameter is useful for model fitting, while the 
form on this slide provides advantages for other types of applications)

and noting the hints in Problem 1 above:

Pr(Y ) ⇠
✓
n

Y

◆
e
ln( p

1�p )
Y

e
ln(1�p)n (14)

Pr(Y ) ⇠
✓
n

Y

◆
e
lnpY

e
ln (1�p)n

(1�p)Y (15)

Pr(Y ) ⇠
✓
n

Y

◆
p
Y (1� p)n�Y (16)

and we are done.

b. Technically, equation (3) is the ‘natural form’ of the equation describing exponential families,
which includes the additional ‘dispersion’ parameter �. You will often see the exponential
family written using another formula:

Pr(Y ) ⇠ h(Y )s(✓)e
Pk

i=1 wi(✓)ti(Y ) (17)

What are the values of k, h(Y ), s(✓), w(✓), t(Y ) needed to express equation (4) in the form of
equation (3), also perform the substitutions and show the steps needed.

Start with the following substitutions:

k = 1, h(Y ) = e
c(Y,�)

, s(✓) = e
� b(✓)

� , w(✓) =
✓

�
, t(Y ) = Y (18)

making the substitutions:

Pr(Y ) ⇠ e
c(Y,�)

e
� b(✓)

� e
w(✓)= ✓

�Y (19)

Pr(Y ) ⇠ e

Y ✓�b(✓)
� +c(Y,�) (20)

and we are done.
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GLM link function
• A “link” function is just a function (!!) that acts on the expected 

value of Y given X:

• This function is defined in such a way such that it has a useful form 
for a GLM although there are some general restrictions on the form 
of this function, the most important is that they need to be 
monotonic such that we can define an inverse:

• For the logistic regression, we have selected the following link 
function, which is a logit function (a “canonical link”) where the 
inverse is the logistic function (but note that others are also used 
for binomial response variables):

• What is the link function for a normal distribution?

where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),

the expected value of the phenotype is low, and the probability of being zero is greater

(and vice versa). Thus, the value of the logistic regression is directly related to the proba-

bility of being in one phenotypic state (one) or the other (zero). This also provides a clear

biological interpretation of the genotypic value for a case-control phenotype: this is the

probability of being a case or control (sick or healthy) conditional on the genotype of an

individual.

3 The link function for a logistic regression

So far we have used the (non-formal) notation ‘logistic’ to indicate the form of a logistic

regression. For the actual form of the logistic regression equations, we need to consider

a link function � which relates our genotypic random variables X and parameters � to

the expected value of our phenotypic random variable Y. Now, we have already discussed

the concept of a function in intuitive (non-rigorous) terms as a mathematical operation

that takes an input and produces an output. We have not yet considered the concept of

the inverse of a function, but this is relatively intuitive as well. If we have a function

Y = f(X), this function takes an input X and returns an output value Y . The inverse of

this function takes Y as an input and returns as output the value X, where we write the

inverse of a function as f
�1

(Y ) = X. Note that functions and inverses have the following

relationship:

f
�1

(Y ) = f
�1

(f(X)) (28)

Now, we have to be a little careful when discussing inverses of functions in general. These

do not always exist or have a simple form. However, the link function(s) we are going to

consider are always increasing ‘monotonic’ so they do in fact have an inverse and these

have a simple form.

The link function we are going to consider for a logistic regression is the logit function,

which has the form:

�(E(Y|X)) = ln

 
X�

1 +X�

!
(29)

and the inverse of the logistic link function is the logistic function, i.e. �
�1

= logistic:

E(Y|X) = �
�1

(X�) =
e
X�

1 + eX�
=

1

1 + e�X�
(30)
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where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),

the expected value of the phenotype is low, and the probability of being zero is greater

(and vice versa). Thus, the value of the logistic regression is directly related to the proba-

bility of being in one phenotypic state (one) or the other (zero). This also provides a clear

biological interpretation of the genotypic value for a case-control phenotype: this is the

probability of being a case or control (sick or healthy) conditional on the genotype of an

individual.

3 The link function for a logistic regression

So far we have used the (non-formal) notation ‘logistic’ to indicate the form of a logistic

regression. For the actual form of the logistic regression equations, we need to consider

a link function � which relates our genotypic random variables X and parameters � to

the expected value of our phenotypic random variable Y. Now, we have already discussed

the concept of a function in intuitive (non-rigorous) terms as a mathematical operation

that takes an input and produces an output. We have not yet considered the concept of

the inverse of a function, but this is relatively intuitive as well. If we have a function

Y = f(X), this function takes an input X and returns an output value Y . The inverse of

this function takes Y as an input and returns as output the value X, where we write the

inverse of a function as f
�1

(Y ) = X. Note that functions and inverses have the following

relationship:

f
�1

(Y ) = f
�1

(f(X)) (28)

Now, we have to be a little careful when discussing inverses of functions in general. These

do not always exist or have a simple form. However, the link function(s) we are going to

consider are always increasing ‘monotonic’ so they do in fact have an inverse and these

have a simple form.

The link function we are going to consider for a logistic regression is the logit function,

which has the form:

�(E(Y|X)) = ln

 
X�

1 +X�

!
(29)

and the inverse of the logistic link function is the logistic function, i.e. �
�1

= logistic:

E(Y|X) = �
�1

(X�) =
e
X�

1 + eX�
=

1

1 + e�X�
(30)

5

where ✏ takes the value 1�logistic(�µ+Xa�a+Xd�d) with probability logistic(�µ+Xa�a+

Xd�d) and the value �logistic(�µ +Xa�a +Xd�d) with probability logistic(�µ +Xa�a +

Xd�d). The error is therefore di↵erent depending on the expected value of the phenotype

(=genotypic value) associated with a specific genotype.

While this may look complicated, this parameter actually allows for a simple interpre-

tation. Note that if the value of the logistic regression function is low (i.e. closer to zero),

the expected value of the phenotype is low, and the probability of being zero is greater

(and vice versa). Thus, the value of the logistic regression is directly related to the proba-

bility of being in one phenotypic state (one) or the other (zero). This also provides a clear

biological interpretation of the genotypic value for a case-control phenotype: this is the

probability of being a case or control (sick or healthy) conditional on the genotype of an

individual.

3 The link function for a logistic regression

So far we have used the (non-formal) notation ‘logistic’ to indicate the form of a logistic

regression. For the actual form of the logistic regression equations, we need to consider

a link function � which relates our genotypic random variables X and parameters � to

the expected value of our phenotypic random variable Y. Now, we have already discussed

the concept of a function in intuitive (non-rigorous) terms as a mathematical operation

that takes an input and produces an output. We have not yet considered the concept of

the inverse of a function, but this is relatively intuitive as well. If we have a function

Y = f(X), this function takes an input X and returns an output value Y . The inverse of

this function takes Y as an input and returns as output the value X, where we write the

inverse of a function as f
�1

(Y ) = X. Note that functions and inverses have the following

relationship:

f
�1

(Y ) = f
�1

(f(X)) (28)

Now, we have to be a little careful when discussing inverses of functions in general. These

do not always exist or have a simple form. However, the link function(s) we are going to

consider are always increasing ‘monotonic’ so they do in fact have an inverse and these

have a simple form.

The link function we are going to consider for a logistic regression is the logit function,

which has the form:

�(E(Y|X)) = ln

 
X�

1 +X�

!
(29)

and the inverse of the logistic link function is the logistic function, i.e. �
�1

= logistic:

E(Y|X) = �
�1

(X�) =
e
X�

1 + eX�
=

1

1 + e�X�
(30)

5

where for a Bernoulli, we set n = 1. Thus, both a normal and Bernoulli distribution are
in the exponential family.

Note that technically, equation (3) is the ‘natural form’ of the equation describing ex-
ponential families, which includes the additional ‘dispersion’ parameter �. You will often
see the exponential family written using another formula:

Pr(Y ) ⇠ h(Y )s(✓)e
Pk

i=1 wi(✓)ti(Y ) (6)

To convert this to equation (9) make the following substitutions:

k = 1, eh(Y ) = c(Y,�), s(✓) = e�
b(✓)
� , w(✓) =

✓

�
, t(Y ) = Y (7)

Finally, note that exponential families have deep connections to many advanced topics in
statistics and, while we will not consider these here, you will likely see these connections
in other courses.

For the second property, let’s consider the forms of the link functions for the linear and
logistic regression. A linear regression has the form:

E(Y|X) = ��1(X�) (8)

and we know that for a linear regression:

E(Y|X) = X� (9)

the inverse link function is therefore the ‘identity’ function in this case, i.e. the function
returns the same output that it takes as an input. Note that the inverse of the identity
function is also the identity function so we have � = ��1 = id where id is the identity
function.

For a logistic regression, we have discussed a particular link function (the logit), which
has the form:

�(E(Y|X)) = ln

 
eX�

1+eX�

1� eX�

1+eX�

!
(10)

and the inverse of the logistic link function is the logistic function:

E(Y|X) = ��1(X�) =
eX�

1 + eX�
=

1

1 + e�X�
(11)

As we noted during our discussion of logistic regression, this is not the only acceptable link
function for performing a logistic regression, but this one has nice properties and is the

3



GLM error function

• The variance of the error term in a GLM must be function of 
ONLY the independent variable and beta parameter vector:

• This is the case for a linear regression (note the variance of the 
error is constant!!):

• As an example, this is the case for the logistic regression (note 
the error changes depending on the value of X!!):

one used most often.

For the third property of GLM’s, we need to consider the distribution of the error random
variable ✏. Note that this random variable has an associated probability distribution in
both linear and logistic regression models and to demonstrate the third property, we need
to show that the variance of this random variable is a function of only X�. For a linear
regression, we have:

✏ ⇠ N(E(Y|X),�2
✏ ) (12)

In this case, the variance is constant so we have:

V ar(✏) = f(X�) = �2
✏ (13)

V ar(✏) = f(X�) (14)

i.e. the variance of ✏ is a constant function of X�, so the third GLM property holds for a
linear regression model.

For a logistic regression, ✏ has a Bernoulli distribution. Recall that the variance of a
random variable Y ⇠ bern(p) is the following function of the parameter p:

V ar(Y ) = p(1� p) (15)

Since we know from equation (7), the parameter p is the logistic (inverse link) function of
X�, for a logistic regression we have:

V ar(✏) = ��1(X�)(1� ��1(X�)) (16)

such that the sampling variance of the error term of an individual i is:

V ar(✏i) = ��1(�µ +Xi,a�a +Xi,d�d)(1� ��1(�µ +Xi,a�a +Xi,d�d) (17)

Now this equation may look complicated, but the critical item to note is that this is simply
a function of X� (and only X�). Thus, the third property of GLM’s is satisfied for a
logistic regression.

3 Haplotypes and haplotype testing

So far, we have considered GWAS analysis using a strategy of testing one genetic marker
(SNP) at a time. We will now consider a strategy where we define new alleles that are func-
tions of multiple SNPs and we will test these alleles for associations. While in one sense,
we are collapsing information by taking such an approach (a potential negative), there are
good reasons to take use such an approach from both statistical and genetic standpoints.
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X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

Pr(F) ! Pr(X)

Pr(✓̂)

Pr(T (X)|H0 : ✓ = c)

H0 : ✓ = c

A1 ! A2 ) �Y |Z (211)

Pr(A1, A1) = Pr(A1)Pr(A1) = p
2 (212)

Pr(A1, A2) = 2Pr(A1)Pr(A2) = 2pq (213)

Pr(A2, A2) = Pr(A2)Pr(A2) = q
2 (214)

Pr(AiAj , BkBl) 6= Pr(AiAj)Pr(BkBl) (215)

✏i = 0.9
✏ ⇠ N(0,�2

✏ ) (216)
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Inference with GLMs

• We perform inference in a GLM framework using the 
same approach, i.e. MLE of the beta parameters using an 
IRLS algorithm (just substitute the appropriate link 
function in the equations, etc.)

• We can also perform a hypothesis test using a LRT 
(where the sampling distribution as the sample size 
goes to infinite is chi-square)

• In short, what you have learned can be applied for most 
types of regression modeling you will likely need to 
apply (!!) 



That’s it for today

• Next lecture we will begin our discussion of mixed models!


