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Summary of lecture 25: Mixed
Models

Last lecture, we completed our discussion of logistic
regression

Today, we will (briefly) introduce Mixed Models!

We will also begin our (very brief) introduction to Bayesian
Statistics!



(Brief) introduction to mixed
models |

® A mixed model describes a class of models that have played an
important role in early quantitative genetic (and other types) of
statistical analysis before genomics (if you are interested, look up
variance component estimation)

® These models are now used extensively in GWAS analysis as a tool
for model covariates (often population structure!)

® These models considered effects as either “fixed” (they types of
regression coefficients we have discussed in the class) and “random”
(which just indicates a different model assumption) where the
appropriateness of modeling covariates as fixed or random depends

on the context (fuzzy rules!) - you will generally not have to deal
with these issues in GWAS



Introduction to mixed models |l

® Recall that for a linear regression of sample size n, we model the
distributions of n total yi phenotypes using a linear regression
model with normal error:

Yi = B,u =+ Xi,aﬁa + Xi,dﬁd +€ G N(()? 062)

® A reminder about how to think about / visualize multivariate
(bivariate) normal distributions and marginal normal distributions:
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® VWe can therefore consider the entire sample of yi and their
associated error in an equivalent multivariate setting:

y = XB + € € ~ multiN(O,Ia?)



Introduction to mixed models lll

® Recall our linear regression model has the following structure:
Yi — 5,u - Xi,aﬁa + Xz',dﬁd + € €~ N(()? (7?)

® For example, for n=2:

Y1 = B+ X1,084 + X1.484 + €1

€2 7
Yz — 5,u -+ X2,a6a =+ X2,d6d + €2
® What if we introduced a correlation?
y1 = By + X1,08a + X184 + a1 0
9

Yo = B, + X2 4B + X2 4Bq + a2




Introduction to mixed models |V

® The formal structure of a mixed model is as follows:

y = Xﬁ -+ Za —+ €
e ~ multiN(0,Ic?) a ~ multiN (0, Acy)

Y1 1 Xia Xia 1 0 0 0 0f |ag €1
Y2 I Xia Xig By 0 1 0 0 0] |ag €9
ys| = |1 Xia Xia| [B,| +]|0 0 1 0 0] |az| 4 |€3
: S : Ld] S : : :
| Yn | _1 Xz',a Xi,d_ _O 1_ | Anp | | €n |

® Note that X is called the “design” matrix (as with a GLM), Z is
called the “incidence” matrix, the a is the vector of random effects
and note that the A matrix determines the correlation among the
ai values where the structure of A is provided from external
information (!!)



Introduction to mixed modelsV

® The matrix A is an nxn covariance matrix (what is the form of
a covariance matrix?)

® Where does A come from?! This depends on the modeling
application...

® |n GWAS, the random effect is usually used to account for
population structure OR relatedness among individuals

® For population structure, a matrix is constructed from the
covariance (or similarity) among individuals based on their
genotypes

® For relatedness, we use estimates of identity by descent,
which can be estimated from a pedigree or genotype data



Introduction to mixed models VI

® We perform inference (estimation and hypothesis testing)
for the mixed model just as we would for a linear
regression (!!)

2
a

® Note that in some applications, people might be o2, o
interested in estimating the variance components
but for GWAS, we are generally interested in regression
parameters for our genotype (as before!): 5. 3,

® For a GWAS, we will therefore determine the MLE of the
genotype association parameters and use a LRT for the
hypothesis test, where we will compare a null and
alternative model (what is the difference between these
models?)



Mixed models: inference |

® TJo estimate parameters, we will use the MLE, so we are
concerned with the form of the likelihood equation

O
L(ﬁaCTgaU?‘Y) :/ PT(Y‘B,a’ J?)Pr(a‘Agg)da
— 00
—Ly —XB—-7Z T —XB—-Z 1 TA—l
L(B, 02, o2ly) = [To2| b 22 XOZally=XB-2a] \ o} —5za ATa
! 1

® Unfortunately, there is no closed form for the MLE since they
have the following form:

A

MLEB) = (XV ' XT)"1XTv 'y
MLE(V) = f(X, V.Y, A)
V = 02A + 01



Mixed models: inference |l

® \We therefore need an algorithm to find the MLE for the
mixed model

® We will discuss the use of an EM (Expectation-
Maximization) algorithm for this purpose, which is an
algorithm with good theoretical and practical
properties, e.g. hill-climbing algorithm, guaranteed to

converge to a (local) maximum, it is a stable algorithm,
etc.

® We do not have time to introduce these properties in
detail so we will just show the steps / equations you
need to implement this algorithm (such that you can
implement it yourself = see computer lab this week!)



Algorithm Basics

e algorithm - a sequence of instructions for taking an input and
producing an output

® We often use algorithms in estimation of parameters where the
structure of the estimation equation (e.g., the log-likelihood) is so
complicated that we cannot

® Derive a simple (closed) form equation for the estimator

® Cannot easily determine the value the estimator should take by
other means (e.g., by graphical visualization)

® We will use algorithms to “search” for the parameter values that
correspond to the estimator of interest

® |n general: algorithms are not guaranteed to produce the correct value
of the estimator (!!), because the algorithm may “converge” (=return)
the wrong answer (e.g., converges to a “local” maximum or does not
converge!) and because the compute time to converge to exactly the
same answer is impractical for applications



Mixed models: EM algorithm

1. At step [t] for t = 0, assign values to the parameters: 5% = [BM : o] : [0]} : 02’[0], o0,

These need to be selected such that they are possible values of the parameters (e.g.
no negative values for the variance parameters).

2. Calculate the expectation step for [t]:

2011y -1
all = (ZTZ + AJm) z"(y — xpl)

1] T LodINT [t—1]
Va =|Z"Z + A m o.’
Oaq

3. Calculate the maximization step for [t]:

5[1&] _ (XTX)—le(y o Za[t])

s _ L {a[t]A—la[t] _'_tT(A—lvit])}

1
o2l — 2 [ _ x4 Zaﬂ [ _xglt — Za[t] +ir(ZTZV

n
where tr is a trace function, which is equal to the sum of the diagonal elements of a
matrix.

4. Iterate steps 2, 3 until (5[1*],02’[“,03’[“) ~ (6[t+1],02’[t+1],062’[t+1]) (or alternatively

InLlt ~ InL 1),



Mixed Model hypothesis testing |

® Recall that our null and alternative hypotheses are:
Ho: B, =0NpG3=0
Hap:Ba #0UBg #0

® We will use the LRT for the null (0) and alternative (1):

L6 ) )
LRT — —QZTLA — —2ln (AOIY) LRT = —QZTLA = 2[((91’}7) — 2l(90|y)
L(61]y)

® To do this, run the EM algorithm twice, once for the null
hypothesis (again what is this?) and once for the alternative
(i.e. all parameters unrestricted) and then substitute the

parameter values into the log-likelihood equations and
calculate the LRT



Mixed Model p-value

® To calculate our p-value, we need to know the
distribution of our LRT statistic under the null hypothesis

® There is no simple form for this distribution for any given
n (contrast with F-statistics!!) but we know that as n goes
to infinite, we know the distribution is i.e. (17 — OQ):

LRT = —2InA = 21(6:]y) — 21(6o|y)
LRT — X?Zf‘




Mixed models: inferenceV

® |n general,a mixed model is an advanced methodology for
GWAS analysis but is proving to be an extremely useful
technique for covariate modeling

® There is software for performing a mixed model analysis (e.g.
R-packages, EMMAX, GEMMA, etc.)

® Mastering mixed models will take more time than we have to
devote to the subject in this class, but what we have covered
provides a foundation for understanding the topic



Construction of A matrix |

® The matrix A is an nxn covariance matrix (what is the form of
a covariance matrix?)

® Where does A come from?! This depends on the modeling
application...

® |n GWAS, the random effect is usually used to account for
population structure OR relatedness among individuals

® For relatedness, we use estimates of identity by descent,
which can be estimated from a pedigree or genotype data

® For population structure, a matrix is constructed from the
covariance (or similarity) among individuals based on their
genotypes



Construction of A matrix Il

211 .- 21k Y11 -~ Yim | 11 ... TIN
Data =

Znl - Znk Ynl -+ Ynm | 11 .- TnN|

® Calculate the nxn (n=sample size) covariance matrix for the
individuals in your sample across all genotypes - this is a
reasonable A matrix!

® There is software for calculating A and for performing a
mixed model analysis (e.g. EMMAX, FAST-LMM, etc.)

® Mastering mixed models will take more time than we have to
devote to the subject in this class, but what we have covered
provides a foundation for understanding the topic



Introduction to Bayesian analysis |

® Up to this point, we have considered statistical analysis (and
inference) using a Frequentist formalism

® There is an alternative formalism called Bayesian that we will now
introduce in a very brief manner

® Note that there is an important conceptual split between
statisticians who consider themselves Frequentist of Bayesian but
for GWAS analysis (and for most applications where we are
concerned with analyzing data) we do not have a preference, i.e. we
only care about getting the “right” biological answer so any (or
both) frameworks that get us to this goal are useful

® |In GWAS (and mapping) analysis, you will see both frequentist (i.e.
the framework we have built up to this point!) and Bayesian
approaches applied



Introduction to Bayesian analysis |

In both frequentist and Bayesian analyses, we have the same probabilistic
framework (sample spaces, random variables, probability models, etc.) and
when assuming our probability model falls in a family of parameterized
distributions, we assume that a single fixed parameter value(s) describes the
true model that produced our sample

However, in a Bayesian framework, we now allow the parameter to have it’s
own probability distribution (we DO NOT do this in a frequentist analysis),
such that we treat it as a random variable

This may seem strange - how can we consider a parameter to have a
probability distribution if it is fixed?

However, we can if we have some prior assumptions about what values the
parameter value will take for our system compared to others and we can
make this prior assumption rigorous by assuming there is a probability
distribution associated with the parameter

It turns out, this assumption produces major differences between the two
analysis procedures (in how they consider probability, how they perform
inference, etc.



Introduction to Bayesian analysis Il

® TJo introduce Bayesian statistics, we need to begin by introducing
Bayes theorem

® Consider a set of events (remember events!?) A = A;...A; ofa
sample space §) (where k may be infinite), which form a partition of
the sample space, i.e. |7 A; = Q and A; N A; = 0 for all i # j

® For another event B C ) (which may be () itself) define the Law
of total probability:

k k
Pr(B) = ZPT(B NA;) = ZPT(B\A@-)PT(/L;)

® Now we can state Bayes theorem:

Pr(A; N B) _ Pr(B|A;)Pr(A;) Pr(B|A;)Pr(A)

Pr(A;|B) = Pr(B) Pr(B) - SF L Pr(B|A;)Pr(A;)




Introduction to Bayesian analysis IV

Remember that in a Bayesian (not frequentist!) framework, our parameter(s)
have a probability distribution associated with them that reflects our belief in
the values that might be the true value of the parameter

Since we are treating the parameter as a random variable, we can consider the
joint distribution of the parameter AND a sample Y produced under a
probability model:

Pr(6NY)

Fo inference, we are interested in the probability the parameter takes a
certain value given a sample:

Pr(f]y)

Using Bayes theorem, we can write:
Pr(y|0)Pr(0)

Pr(y)

Also note that since the sample is fixed (i.e. we are considering a single
sample) Pr(y) = c. we can rewrite this as follows:

Pr(0|y) o< Pr(yl|0)Pr(0)

Pr(fly) =




Introduction to Bayesian analysis V

® |et’s consider the structure of our main equation in Bayesian statistics:
Pr(0ly) o< Pr(yl|0)Pr(0)
® Note that the left hand side is called the posterior probability:
Pr(f]y)

® The first term of the right hand side is something we have seen before, i.e. the
likelihood (!!):

Pr(y|0) = L(0]y)
® The second term of the right hand side is new and is called the prior:
Pr(0)

® Note that the prior is how we incorporate our assumptions concerning the
values the true parameter value may take

® In a Bayesian framework, we are making two assumptions (unlike a frequentist
where we make one assumption): |. the probability distribution that generated
the sample, 2. the probability distribution of the parameter



That’s it for today

® Next OPTIONAL lectures: more Bayesian Statistics (!!)



