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Announcements

For those in NYC (!!) Thurs lecture (May 2) WILL BE BY ZOOM, i.e., we do
not have a room (lthaca classroom available as always)

Reminder: last computer lab this week is optional (!!) we will show you
examples of an EM algorithm for mixed models and MCMC algorithm for
Bayesian inference (see lecture Thurs)!

Last work for the class: Project and Final
® For project (due by |1:59PM, May 7!)

® Final will be same format as midterm (available May | | and due by
| 1:59PM, May [8!) and you will do a GWAS analysis with a
linear regression with and without covariates AND a
logistic regression with and without covariates (!!)



Quantitative Genomics and Genetics - Spring 2024
BIOCB 4830/6830; PBSB 5201.01

Final exam available: Sat., May 11

Final exam due: 11:59PM, Sat., May 18

PLEASE NOTE THE FOLLOWING INSTRUCTIONS:

1. YOU ARE TO COMPLETE THIS EXAM ALONE! The exam is open book, so you
are allowed to use any books or information available online (even ChatGPT or similar!), your
own notes and your previously constructed code, etc. HOWEVER YOU ARE NOT
ALLOWED TO COMMUNICATE OR IN ANY WAY ASK ANYONE FOR
ASSISTANCE WITH THIS EXAM IN ANY FORM e.g., DO NOT POST PUB-
LIC MESSAGES ON ED DISCUSSION! (the only exceptions are Beulah, Sam, and
Dr. Mezey, e.g., you MAY send us a private message on Canvas). As a non-exhaustive list
this includes asking classmates or ANYONE else for advice or where to look for answers
concerning problems, you are not allowed to ask anyone for access to their notes or to even
look at their code whether constructed before the exam or not, etc. You are therefore only
allowed to look at your own materials and materials you can access on your own. In short,
work on your own! Please note that you will be violating Cornell’s honor code if you act
otherwise.

2. Please pay attention to instructions and complete ALL requirements for ALL questions, e.g.
some questions ask for R code, plots, AND written answers. We will give partial credit so it
is to your advantage to attempt every part of every question.

3. A complete answer to this exam will include R code answers, where you will submit your
.Rmd script and the results of running your code in an associated .pdf file (plus an additional
.pdf files if you have separate files for your written answers and code output). Note there will
be penalties for scripts that fail to compile (I!). Also, as always, you do not need to repeat
code for each part (i.e., if you write a single block of code that generates the answers for some
or all of the parts, that is fine, but do please label your output that answers each question!!).

4. The exam must be uploaded on Canvas before 11:59PM (!!) (ET) Sat, May 18. It is your
responsibility to make sure that it is in uploaded by then and no excuses will be accepted
(power outages, computer problems, Cornell’s internet slowed to a crawl, etc.). Remember:
you are welcome to upload early! We will deduct points for being late for exams received
after this deadline (even if it is by minutes!!).



Summary of lecture 26: Bayesian
Statistics |

Last lecture, we completed our (brief) discussion of mixed
models (and EM algorithms)

Today, we will continue our (very brief) introduction to
Bayesian Statistics!



Review: Introduction to Bayesian
analysis |

Up to this point, we have considered statistical analysis (and
inference) using a Frequentist formalism

There is an alternative formalism called Bayesian that we will now
introduce in a very brief manner

Note that there is an important conceptual split between
statisticians who consider themselves Frequentist of Bayesian but
for GWAS analysis (and for most applications where we are
concerned with analyzing data) we do not have a preference, i.e. we
only care about getting the “right” biological answer so any (or
both) frameworks that get us to this goal are useful

In GWAS (and mapping) analysis, you will see both frequentist (i.e.
the framework we have built up to this point!) and Bayesian
approaches applied



Review: Intro to Bayesian analysis |

® In both frequentist and Bayesian analyses, we have the same probabilistic
framework (sample spaces, random variables, probability models, etc.) and
when assuming our probability model falls in a family of parameterized
distributions, we assume that a single fixed parameter value(s) describes the
true model that produced our sample

® However, in a Bayesian framework, we now allow the parameter to have it’s
own probability distribution (we DO NOT do this in a frequentist analysis),
such that we treat it as a random variable

® This may seem strange - how can we consider a parameter to have a
probability distribution if it is fixed?

® However, we can if we have some prior assumptions about what values the
parameter value will take for our system compared to others and we can
make this prior assumption rigorous by assuming there is a probability
distribution associated with the parameter

® |t turns out, this assumption produces major differences between the two
analysis procedures (in how they consider probability, how they perform
inference, etc.



Review Intro to Bayesian analysis ||

® TJo introduce Bayesian statistics, we need to begin by introducing
Bayes theorem

® Consider a set of events (remember events!?) A = A;...A; ofa
sample space §) (where k may be infinite), which form a partition of
the sample space, i.e. |7 A; = Q and A; N A; = 0 for all i # j

® For another event B C ) (which may be () itself) define the Law
of total probability:

k k
Pr(B) = ZPT(B NA;) = ZPT(B\A@-)PT(/L;)

® Now we can state Bayes theorem:

Pr(A; N B) _ Pr(B|A;)Pr(A;) Pr(B|A;)Pr(A)

Pr(A;|B) = Pr(B) Pr(B) - SF L Pr(B|A;)Pr(A;)




Introduction to Bayesian analysis IV

Remember that in a Bayesian (not frequentist!) framework, our parameter(s)
have a probability distribution associated with them that reflects our belief in
the values that might be the true value of the parameter

Since we are treating the parameter as a random variable, we can consider the
joint distribution of the parameter AND a sample Y produced under a
probability model:

Pr(6NY)

Fo inference, we are interested in the probability the parameter takes a
certain value given a sample:

Pr(f]y)

Using Bayes theorem, we can write:
Pr(y|0)Pr(0)

Pr(y)

Also note that since the sample is fixed (i.e. we are considering a single
sample) Pr(y) = c. we can rewrite this as follows:

Pr(0|y) o< Pr(yl|0)Pr(0)

Pr(fly) =




Introduction to Bayesian analysis V

® |et’s consider the structure of our main equation in Bayesian statistics:
Pr(0ly) o< Pr(yl|0)Pr(0)
® Note that the left hand side is called the posterior probability:
Pr(f]y)

® The first term of the right hand side is something we have seen before, i.e. the
likelihood (!!):

Pr(y|0) = L(0]y)
® The second term of the right hand side is new and is called the prior:
Pr(0)

® Note that the prior is how we incorporate our assumptions concerning the
values the true parameter value may take

® In a Bayesian framework, we are making two assumptions (unlike a frequentist
where we make one assumption): |. the probability distribution that generated
the sample, 2. the probability distribution of the parameter



Probability in a Bayesian framework

® By allowing for the parameter to have an prior probability distribution, we
produce a change in how we consider probability in a Bayesian versus
Frequentist perspective

® For example, consider a coin flip, with Bern(p)

® |n a Frequentist framework, we consider a conception of probability that
we use for inference to reflect the outcomes as if we flipped the coin an
infinite number of times, i.e. if we flipped the coin 100 times and it was
“heads” each time, we do not use this information to change how we
consider a new experiment with this same coin if we flipped it again

® |n a Bayesian framework, we consider a conception of probability can
incorporate previous observations, i.e. if we flipped a coin 100 times and it
was “heads” each time, we might want to incorporate this information in
to our inferences from a new experiment with this same coin if we flipped

it again

® Note that this philosophic distinction is very deep (=we have only scratched
the surface with this one example)



Debating the Frequentist versus
Bayesian frameworks

® Frequentists often argue that because they “do not” take previous experience into
account when performing their inference concerning the value of a parameter,
such that they do not introduce biases into their inference framework

® In response, Bayesians often argue:
® Previous experience is used to specify the probability model in the first place

® By not incorporating previous experience in the inference procedure, prior
assumptions are still being used (which can introduce logical inconsistencies!)

® The idea of considering an infinite number of observations is not particular
realistic (and can be a non-sensical abstraction for the real world)

® The impact of prior assumptions in Bayesian inference disappear as the sample
size goes to infinite

® Again, note that we have only scratched the surface of this debate!



Types of priors in Bayesian analysis

Up to this point, we have discussed priors in an abstract manner

To start making this concept more clear, let’s consider one of our original examples
where we are interested in the knowing the mean human height in the US (what are
the components of the statistical framework for this example!? Note the basic
components are the same in Frequentist / Bayesian!)

If we assume a normal probability model of human height (what parameter are we
interested in inferring in this case and why?) in a Bayesian framework, we will at least

need to define a prior:
Pr(p)

One possible approach is to make the probability of each possible value of the
parameter the same (what distribution are we assuming and what is a problem with
this approach), which defines an improper prior:

Pr(p) =c

Another possible approach is to incorporate our previous observations that heights
are seldom infinite, etc. where one choice for incorporating this observations is my
defining a prior that has the same distribution as our probability model, which defines
a conjugate prior (which is also a proper prior):

Pr(p) ~ N(k,¢°)



Constructing the posterior probability

® |et’s put this all together for our “heights in the US” example

® First recall that our assumption is the probability model is normal (so what is the
form of the likelihood?):

Y ~ N(u,0%)
® Second, assume a normal prior for the parameter we are interested in:

Pr(u) ~ N(x,¢%)

® From the Bayesian equation, we can now put this together as follows:

Pr(0|y) o< Pr(y|0)Pr(0)

n 2 2
1 —( ~imp)” ) 1 —(p—r)~
Prply) o< [ ]] =2 e 20
Pl 27T(7 \/ 27T p?

® Note that with a little rearrangement, this can be written in the following form:

(H+Z) 1 n
EEEy A )

Pr(ply) ~ N<



Bayesian inference: estimation |

® Inference in a Bayesian framework differs from a frequentist
framework in both estimation and hypothesis testing

® For example, for estimation in a Bayesian framework, we always
construct estimators using the posterior probability distribution,
for example:

0 = mean(0|y) = /9P7‘(9|y)d9 or é — median(‘QW)

® Estimates in a Bayesian framework can be different than in a
likelihood (Frequentist) framework since estimator construction
is fundamentally different (!!)



Bayesian inference: estimation ||

® For example, for estimation in a Bayesian framework, we always
construct estimators using the posterior probability distribution, for
example:

0 = mean(f)y) = /«9Pr(«9\y)d9 or 0= median(0|y)
® For example, in our “heights in the US” example our estimator is:
-+ 2D

(32 + 22

o= median(p|ly) = mean(uly) =

® Notice that the impact of the prior disappears as the sample size goes
to infinite (=same as MLE under this condition):




Bayesian inference: hypothesis testing

® For hypothesis testing in a Bayesian analysis, we use the same null and alternative
hypothesis framework:
Hy:0 €0

Hjp:0 €0y

® However, the approach to hypothesis testing is completely different than in a
frequentist framework, where we use a Bayes factor to indicate the relative
support for one hypothesis versus the other:

fee@o Pr(yl|0)Pr(6)do
fee@A Pr(yl|0)Pr(0)do

® Note that a downside to using a Bayes factor to assess hypotheses is that it can be
difficult to assign priors for hypotheses that have completely different ranges of
support (e.g. the null is a point and alternative is a range of values)

Bayes =

® As a consequence, people often use an alternative “psuedo-Bayesian” approach to
hypothesis testing that makes use of credible intervals (which is what we will use in
this course)



Bayesian credible intervals (versus
frequentist confidence intervals)

® Recall that in a Frequentist framework that we can estimate a confidence interval
at some level (say 0.95), which is an interval that will include the value of the
parameter 0.95 of the times we performed the experiment an infinite number of
times, calculating the confidence interval each time (note: a strange definition...)

® |n a Bayesian interval, the parallel concept is a credible interval that has a
completely different interpretation: this interval has a given probability of including the
parameter value (!!)

® The definition of a credible interval is as follows:
Ca
c.i.(0) = / Pr(0ly)dd =1— «
—Ce

® Note that we can assess a null hypothesis using a credible interval by determining
if this interval includes the value of the parameter under the null hypothesis (!!)



Bayesian inference: genetic model |

® We are now ready to tackle Bayesian inference for our genetic model
(note that we will focus on the linear regression model but we can
perform Bayesian inference for any GLM!):

Y =8, + XoBq + Xafa + ¢
e ~ N(0,02)
® Recall for a sample generated under this model, we can write:
y=x0+e¢
e ~ multiN(0,I0?)
® |n this case, we are interested in the following hypotheses:

Hy: 3, =0NB3=0 Hyp: Ba #0U By # 0

® VWe are therefore interested in the marginal posterior probability of these
two parameters



Bayesian inference: genetic model

® TJo calculate these probabilities, we need to assign a joint probability
distribution for the prior

PT(BM, Baa Bda O-?)

® One possible choice is as follows (are these proper or improper!?):

Pr(ﬁuaﬁaaﬁdag?) — PT(BM)PT(Ba)PT(ﬁd)PT(U?)

Pr(Bu) = Pr(fa) = Pr(fa) =c
Pr(c?) =c

® Under this prior the complete posterior distribution is multivariate
normal (!!):

Pr(ﬁuaﬁaaﬁda 0-62|Y) X PT(Y‘BM?BCMﬁd?O?)

n (y—XB)TQ(y—xm

Pr(0y) (02)_56 20¢

€




Bayesian inference: genetic model Il

® For the linear model with sample:
y =X0+¢€
e ~ multiN(0,10?)
® The complete posterior probability for the genetic model is:

Pr(ﬁuvﬁaaﬁdagg‘Y) X Pr(yyﬁ,uaﬁaaﬁd)OE)PT(ﬁuaﬁaaﬁdaag)

® With a uniform prior is:

Pr(ﬁuvﬁaaﬁdaagbf) X PT(Y|5M75a7ﬁd7O‘€2)

® The marginal posterior probability of the parameters we are
interested in is:

Pr(Ba. Buly) — /O /_ Pr(By, Bas Bas 02|y ) dBydo?



Bayesian inference: genetic model IV

® Assuming uniform (improper!) priors, the marginal distribution is:

Pr(Bq, Baly) = / / Pr(Bu, Ba, Ba, 02y)dBudo? ~ multi-t-distribution
—oo J0

® With the following parameter values:

AT XiX, XiX
_ T a “*a a “>d
mean(Pr(ﬁa’ Bd|Y>) — |:/8a, /Bd_ — C 1 [Xaa Xd] Yy C = [XEXG X}‘Xd]

(y — [Xa, Xq] [Ba,ﬁd}T)T(y — [Xq, X4] {@,@}T)

C—l
n—=>6

COU —

df (multi—t) =n — 4

® With these estimates (equations) we can now construct a credible
interval for our genetic null hypothesis and test a marker for a

phenotype association and we can perform a GWAS by doing this for
each marker (!!)



Bayesian inference: genetic model V

PT(BCL?ﬁC”Y)

credible interval
p—

Cannot reject
HO!

0
Ba
P”I“(ﬂa, 5d‘Y)

0.95

credible interval

p—

Reject HO!



(X4

Bayesian inference for more
complex” posterior distributions

For a linear regression, with a simple (uniform) prior, we have a
simple closed form of the overall posterior

This is not always (=often not the case), since we may often choose
to put together more complex priors with our likelihood or
consider a more complicated likelihood equation (e.g. for a logistic
regression!)

To perform hypothesis testing with these more complex cases, we
still need to determine the credible interval from the posterior (or
marginal) probability distribution so we need to determine the form
of this distribution

To do this we will need an algorithm and we will introduce the
Markov chain Monte Carlo (MCMC) algorithm for this purpose



Stochastic processes

To introduce the MCMC algorithm for our purpose, we need
to consider models from another branch of probability
(remember, probability is a field much larger than the
components that we use for statistics / inference!): Stochastic
processes

Stochastic process (intuitive def) - a collection of random
vectors (variables) with defined conditional relationships, often
indexed by an ordered set t

We will be interested in one particular class of models within
this probability sub-field: Markov processes (or more specifically
Markov chains)

Our MCMC will be a Markov chain (probability model)



Markov processes

A Markov chain can be thought of as a random vector (or more
accurately, a set of random vectors), which we will index with t:

Xty X1y X2y eeees Xptk
Xt7 Xt—la Xt—27 seeey Xt—k

Markov chain - a stochastic process that satisfies the Markov
property:

PT(Xt, |Xt—17 Xt—27 RERE Xt—k) — PT(Xt, ‘Xt—l)

While we often assume each of the random variables in a Markov
chain are in the same class of random variables (e.g. Bernoulli,
normal, etc.) we allow the parameters of these random variables
to be different, e.g. at time t and t+1

How does this differ from a random vector of an iid sample!?



That’s it for today

® Next OPTIONAL lectures: Bayesian Statistics Il (!!)



