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Announcements

• Last work for the class: Project and Final

• For project (due TODAY by 11:59PM, May 7!)

• Final will be same format as midterm (available May 11 and due by 
11:59PM, May 18!) and you will do a GWAS analysis with a 
linear regression with and without covariates AND a 
logistic regression with and without covariates (!!)



Quantitative Genomics and Genetics - Spring 2024

BIOCB 4830/6830; PBSB 5201.01

Final exam available: Sat., May 11

Final exam due: 11:59PM, Sat., May 18

PLEASE NOTE THE FOLLOWING INSTRUCTIONS:

1. YOU ARE TO COMPLETE THIS EXAM ALONE! The exam is open book, so you
are allowed to use any books or information available online (even ChatGPT or similar!), your
own notes and your previously constructed code, etc. HOWEVER YOU ARE NOT
ALLOWED TO COMMUNICATE OR IN ANY WAY ASK ANYONE FOR
ASSISTANCE WITH THIS EXAM IN ANY FORM e.g., DO NOT POST PUB-
LIC MESSAGES ON ED DISCUSSION! (the only exceptions are Beulah, Sam, and
Dr. Mezey, e.g., you MAY send us a private message on Canvas). As a non-exhaustive list
this includes asking classmates or ANYONE else for advice or where to look for answers
concerning problems, you are not allowed to ask anyone for access to their notes or to even
look at their code whether constructed before the exam or not, etc. You are therefore only
allowed to look at your own materials and materials you can access on your own. In short,
work on your own! Please note that you will be violating Cornell’s honor code if you act
otherwise.

2. Please pay attention to instructions and complete ALL requirements for ALL questions, e.g.
some questions ask for R code, plots, AND written answers. We will give partial credit so it
is to your advantage to attempt every part of every question.

3. A complete answer to this exam will include R code answers, where you will submit your
.Rmd script and the results of running your code in an associated .pdf file (plus an additional
.pdf files if you have separate files for your written answers and code output). Note there will
be penalties for scripts that fail to compile (!!). Also, as always, you do not need to repeat
code for each part (i.e., if you write a single block of code that generates the answers for some
or all of the parts, that is fine, but do please label your output that answers each question!!).

4. The exam must be uploaded on Canvas before 11:59PM (!!) (ET) Sat, May 18. It is your
responsibility to make sure that it is in uploaded by then and no excuses will be accepted
(power outages, computer problems, Cornell’s internet slowed to a crawl, etc.). Remember:
you are welcome to upload early! We will deduct points for being late for exams received
after this deadline (even if it is by minutes!!).
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Summary of lecture 28: Classic 
Quantitative Genetics

• Today, we will (briefly) introduce the three fields that are now 
completely integrated within modern field of Quantitative 
Genomics / Genetics (Medical Genetics,  Agricultural 
Genetics, and Evolutionary Genetics) and (some) of the 
methods used by these fields before the introduction of 
genome-wide genetic data (=GWAS)!



The impact of Genomic Data on 
genetic analysis

• Before the “Genomic Era” genetic analysis was part of three different 
fields that used different analysis techniques: Medical Genetics,  
Agricultural Genetics, and Evolutionary Genetics

• The reason was they were analyzing different systems / interested in 
different questions AND they did not have the data available to do what 
they really wanted to do: identify which differences in a genome (genotypes) 
were responsible for differences in phenotypes of interest (!!)

• Once genomic data (i.e., data on the entire genome) became available the 
starting analysis of all of these fields became the same (i.e., analyzing which 
differences impacted phenotypes) and they started using the same set of 
methods (!!) = effectively unifying these fields into modern “Quantitative 
Genetics / Genomics”

• This is the reason the Quantitative Genetics literature before the 
Genomic Era is so difficult to follow / seems so diffuse… but after this 
class you will understand how to go back and figure out this literature (!!)



A few definitions I
• Association analysis - any analysis involving a statistical assessment of 

a relation between genotype and phenotype, e.g. a hypothesis test involving 
a multiple regression model

• Mapping analysis - an association analysis

• Linkage disequilibrium (LD) mapping - an association analysis 

• Segregating - any locus where there is more than one allele in the 
population

• Genetic marker - any segregating polymorphism we have measured in 
a GWAS, i.e. SNPs genotyped in a GWAS

• Tag SNP - a SNP correlated with a causal polymorphism

• Locus or Genetic Locus - a position in the genome (which may refer 
to a single polymorphism or an entire genomic segment, e.g. that contains 
the coding region of a gene



A few definitions II

• Mendelian trait - any phenotype largely affected by one 
or at most two loci where environment does not have a 
large effect on the phenotype

• Complex trait - any phenotype affected by more than 
one or two loci and/or where environmental effects account 
for most of the variation we observe in a population

• Quantitative trait - a complex trait 



A few definitions III

• Quantitative Trait Locus (QTL) - a causal 
polymorphism (or the locus containing the polymorphism) 
OR a large section of the the genome containing a causal 
(or several!) polymorphisms

• expression Quantitative Trait Locus (eQTL) - a 
QTL for a gene expression phenotype, i.e. a quantitative 
measurement of transcription level of a gene in a tissue

• xQTL - a QTL for a next-generation sequencing 
technology measured phenotype, e.g. methylation, CHiP-Seq

• Quantitative trait nucleotide (QTN) - a SNP that is 
a causal polymorphism (QTR for any polymorphism)



(Medical Genetics) Association analysis 
when samples are from a pedigree

• The “ideal” GWAS experiment is a sampling experiment where we assume 
that the individuals meet our i.i.d. assumption

• There are many ways (!!) that a sampling experiment does not conform to 
this assumption, where we need to take these possibilities into account 
(what is model we have applied in this type of case?)

• Relatedness among the individuals in our sample is one such case

• This is sometimes a nuisance that we want to account for in our GWAS 
analysis (what is an example of a technique used if this is the case?)

• It is also possible that we have sampled related individuals ON PURPOSE 
because we can leverage this information (if we know how the individuals 
are related...) using specialized analysis techniques (which have a GWAS 
analysis at their core!)

• Analysis of pedigrees is one such example, where inbred lines (a special 
class of pedigrees!) is another



• pedigree - a sample of individuals for which we have information 
on individual relationships

• Note that this can cover a large number of designs (!!), i.e. family 
relationships, controlled breeding designs, more distant relationships, 
etc.

• Standard representation of a family pedigree (females are circles, 
males are squares):

What is a pedigree?

AABB
aabb

AaBb
aabb

AaBb aabb Aabb aaBb

Figure 1. One three-generation pedigree.

The grandfather has two haplotypes AB/AB, grandmother has two haplotype ab/ab. The

Father has two haplotypes AB/ab which are non-informative. Because we do not know the

haplotype AB (ab) is a recombinant of not. The first son has one haplotype ab from mother

and one haplotype AB from father. Haplotype ab is non-informative and the haplotype AB

from father is fully informative, since we are certain that AB is a non-recombinant.

We consider a simple case, that is, all the informative haplotypes are fully informative

as the third generation of the pedigree given in Figure 1. Let q denote the total number of

the informative haplotypes; X denote the number of recombinants. Then [ � E(q> �)> i.e.

S ([ = n) =

Ã
q

n

!
�n(1� �)q3n=

Then the likelihood function up to a constant is given by

O(�) = �[(1� �)q3[ =
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• Use of pedigrees has a long history in genetics, where the use of 
family pedigrees stretch back ~100 years, i.e. before genetic markers 
(!!)

• The observation that lead people to analyze pedigrees was that 
Mendelian diseases (= phenotype determined by a single locus 
where genotype is highly predictive of phenotype) tend to run in 
families

• The genetics of such diseases could therefore be studies by 
analyzing a family pedigree

• Given the disease focus, it is perhaps not surprisingly that family 
pedigree analysis was the main tool of medical genetics

Pedigrees in genetics I



• When the first genetic markers appeared, it was natural to use 
these to identify positions in the genome that may have the causal 
polymorphisms responsible for the Mendelian disease

• In fact, analysis of pedigrees in combination with just a few markers 
was the first step in identifying the causal polymorphisms for many 
Mendelian diseases, i.e. they could identify the general position in a 
chromosome, which could be investigator further with additional 
markers, tec.

• In the late 70’s - 90’s a large number of Mendelian causal disease 
polymorphisms were found using such techniques

• Pedigree analysis therefore dominates the medical genetics 
literature (where now this field is wrapped into the more diffusely 
field of quantitative genomics!)

Pedigrees in genetics II



• segregation analysis - inference concerning whether a phenotype 
(disease) is consistent with a Mendelian disease given a pedigree (no 
genetic data!)

• identity by descent (ibd) - inference concerning whether two 
individuals (or more) individuals share alleles because they inherited them 
from a common ancestor (note: such analyses can be performed without 
markers but more recently, markers have allowed finer ibd inference and 
ibd inference without a pedigree!)

• linkage analysis - use of a genetic markers on a pedigree to map the 
position of causal polymorphisms affecting a phenotype (which may be 
Mendelian or complex)

• family based testing - the use of genetic markers and many small 
pedigrees to map the position of causal polymorphisms (again Mendelian 
or complex)

• Note that there are others (!!) and that we will provide simple example to 
the illustrate linkage analysiis

Types of pedigree analysis



• The reason that we do not focus on pedigree analysis in this class is the 
having high-coverage marker data makes many of the pedigree analyses 
unnecessary

• As an example, pedigree (linkage) analysis was useful when we only had a 
few markers because we could use the pedigree to infer the states of 
unseen markers

• Once we can measure all the markers there is no need to use a pedigree

• In fact, we can easily map the positions of Mendelian disease causal 
polymorphisms without a pedigree (and we now do this all the time)

• What’s worse, using pedigree (linkage) analysis to map causal 
polymorphisms to complex phenotypes are turning out to have produced 
more (=not useful) inferences (!!)

• However, understanding the basic intuition of these methods is critical for 
understanding the literature in quantitative genetics, for cases where the 
sample has to be from a pedigree (e.g., for a rare genetic disease in just a 
few families) and for derived pedigree methods that are used in GWAS

Importance of pedigree analysis now



• Both linkage analysis and association analysis have the same goal: identify 
positions in the genome where there are causal polymorphisms using 
genetic markers

• Recall that we are modeling the following in association analysis:

• We are not concerned that the marker we are testing is not the causal 
marker, but we would prefer to test the causal marker (if we could!)

• Note that if we could model the relationship of the unmeasured causal 
polymorphism Xcp and observed genetic marker X, we could use this 
information:

• This is what we do in linkage analysis (!!)

Connection between linkage / 
association analysis I

Brief Article

The Author

November 16, 2012

Pr(Y |X) (1)

Pr(Y |Xcp)Pr(Xcp|X) (2)

1
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• Note that the first of these two terms is called the penetrance model (and there 
are many ways to model penetrance!) and the second term is modeled based on 
the structure of an observed pedigree, which allows us to infer the conditional 
relationship of the causal polymorphism and observed genetic marker by inferring 
a recombination probability parameter r (confusingly, this is often symbolized as      
in the literature!):

• We can therefore use the same statistical (inference) tools we have used before 
but our models will be a little more complex and we will be inferring not only 
parameters that relate the genotype and phenotype (e.g. regression     ‘s) but also 
the parameter r (!!)

• If we are dealing with a Mendelian trait (which is the case for many linkage 
analyses), the causal polymorphism perfectly describes the phenotype so we do 
not need to be concerned with the penetrance model:

Connection between linkage / 
association analysis II
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• In the literature, we often symbolize the combination of Xcp and X as a single g (for the 
genotype involving both of these polymorphisms) so we may re-write this equation as the 
probability of a vector of a sample of n of these genotypes:

• To convert this probability model into a more standard pedigree notation, note that 
we can write out the genotypes of the n individuals in the sample

• Using the pedigree information, we can write the following conditional relationships 
relating parents (father = gf, mother = gm) to their offspring (where individuals without 
parents in the pedigree are called founders):

• Finally, for inference, we need to consider all possible genotype configurations that 
could occur for these n individuals (=classic pedigree equation):

Connection between linkage / association 
analysis III
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• Consider the following pedigree where we have observed a marker allele 
with two states (A and a) and the phenotype healthy (clear) and disease 
(dark) where we know this is a Mendelian disease where the disease 
causing allele D is dominant to the healthy allele (i.e. individuals who are 
DD or Dd have the disease, individuals who are dd are healthy) and is very 
rare (such that we only expect one of these alleles in this family):

Simple linkage analysis example I

where jm>i and jm>p are the ordered genotypes of lth individual’s father and mother, respec-

tively. As an example, consider the pedigree in Figure 2.

Figure 2.

The mother and daughter are a�ected. Suppose that this is a rare Mendelian dominant

disease decided by a biallelic locus with alleles D and d. So, we can assume the genotypes

of father, mother, son and daughter at disease locus are dd, Dd, dd and Dd, respectively.

Now, denote the recombination rate between the marker and the disease locus by �= To test

if the marker has linkage with the disease locus or not is equivalent to test null hypothesis

K0 : � = 0=5 yv K1 : � ? 0=5=

To construct the likelihood test, we need to calculate the likelihood function: (Let s and

t denote the allele frequencies of A and D)

S (\ ) =
X

j

S (ji)S (jp)S (j1|ji > |p)S (j2|ji > jp)

where j = (ji > jp> j1> j2) = (dg@dg>DG@dg> dg@dg>DG@dg) or (dg@dg>Dg@dG> dg@dg>DG@dg)=

Fro each (ji > jp)> we have

S (ji)S (jp) = 4sj(1� s)3(1� t)3

and

S (dg@dg|dg@dg>DG@dg)= (1� �)@2

S (DG@dg|dg@dg>DG@dg)= (1� �)@2

S (dg@dg|dg@dg>Dg@dG)= �@2

S (DG@dg|dg@dg>Dg@dG)= �@2=

7



• For this example, the probability model is as follows:

• Given what we know about the system, there are two possible genotype 
configurations (why?):

• If we assign p1(A) = frequency of A, p2(D) = frequency of D, and we assume 
Hardy-Weinberg frequencies for the founders (which we often do in pedigree 
analyses!) we get:

• Note there are two possible configurations for the genotypes of the offspring:

• Putting this together, we get the following probability model for this case:

Simple linkage analysis example II
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• Note that this probability model defines a likelihood (!!) such that we can 
perform a likelihood ratio test for whether the marker is in LD with the 
disease (causal) polymorphism (we can also do this in a Bayesian 
framework!)

• The actual hypothesis we would test in this simple Mendelian case is that 
H0: r = 0.5 with HA: r any value between 0 and 0.5 (why is this?)

• For complex phenotypes, we could also have a regression (glm!) model as 
part of our likelihood and therefore likelihood ratio test

• Note that calculating likelihood (or posteriors!) for complex pedigrees 
gets very complicated (think of all the genotype configurations!) requiring 
algorithms, many of which are classics (and implemented in pedigree 
analysis software), i.e. peeling algorithm, etc.

• Also note, that many of these programs consider models with more than 
one marker at a time, i.e. multi-point analysis

Simple linkage analysis example III



• Again, note that in general, linkage analysis provides useful information 
when you have a Mendelian phenotype and low marker coverage

• If you have a more complex phenotype or higher marker coverage, it is 
better just to test each marker one at a time, since the additional model 
complexities in linkage analysis tend to reduce the efficacy of the inference

• A downside of using pedigrees designs for mapping with high marker 
coverage is they have high LD (why?) so resolution is low

• An upside is the individuals in the sample can be enriched for a disease 
(particularly important if the disease is rare) and by considering individuals 
in a pedigree, this provides some control of genetic background (e.g. 
epistasis) and other issues!

• This latter control is why family-based tests are also still used

Linkage analysis wrap-up



• There are a large number of family based testing methods for mapping 
causal polymorphisms

• While each of these work in slightly different ways, each calculates a 
statistic based on the association of a genetic marker with a disease 
phenotype for sets of small families (=the family, not the individual is the 
unit), i.e. trios, nuclear families, etc.

• These statistics are then used to assess whether the marker is being 
transmitted in each family with the disease in a hypothesis testing 
framework (null hypothesis = no co-transmission), where rejection of the 
null indicates that the marker is in LD with a causal polymorphism

• An advantage of using family based tests is treating the family as a unit 
controls for covariates (e.g. population structure) although the downside is 
smaller sample size n because individuals are grouped into families (why is 
this a downside?)

• If you have a design which allows family based testing, a good rule is to 
apply both family based tests and standard association tests (that we have 
learned in this class!)

Family based tests I



• As an example, there are many family based tests in the Transmission-
Disequilibrium Testing (TDT) class

• These generally use trios (parents and an offspring) counting the cases 
where which chromosome is transmitted from a parent is clear and 
whether the case was affected or unaffected:

• The test statistic is the a z-test (look it up on wikipedia!)

Family based tests II

X

⇥g

Pr(gf )Pr(gm)Pr(g1|gf , gm)Pr(g2|gf , gm) = p1p2(1� p1)
3(1� p2)

3[(1� r)2 + r2] (16)

ZTDT =
b� cp
b+ c

(17)
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• inbred line design - a sampling experiment where the 
individuals in the sample have a known relationship that is 
a consequence of controlled breeding

• Note that the relationships may be know exactly (e.g. all 
individuals have the same grandparents) or are known 
within a set of rules (e.g. the individuals were produced by 
brother-sister breeding for k generations)

• Note that inbred line designs are a form of pedigrees 
(= a sample of individuals for which we have information 
on relationships among individuals)

(Agricultural Genetics) Analysis of 
inbred lines



• Inbred lines have played a critical role in agricultural 
genetics (actually, both inbred lines and pedigrees have 
been important)

• This is particularly true for crop species, where people 
have been producing inbred lines throughout history and 
(more recently) for the explicit purposes of genetic 
analysis

• In genetic analysis, these have played an important 
historical role, leading to the identification of some of the 
first causal polymorphisms for complex (non-Mendelian!) 
phenotypes

Historical importance of inbred lines



• Inbred lines continue to play a critical role in both agriculture (most 
plants we eat are inbred!) and in genetics

• The reason they continue to be important in genetic analysis is we can 
control the genetic background (e.g. epistasis!) and, once we know 
causal polymorphisms, we can integrate the section of genome 
containing the causal polymorphism through inbreeding designs or 
now through “exact” approaches like CRISPR (or TALEN) (!!)

• Where they used to be critically important in Quantitative Genetics 
was when we had access to many fewer genetic markers, inbreeding 
designs allowed “strong” inference for the markers in between

• This usage is less important now, but for understanding the Quant Gen 
literature (e.g. the specialized mapping methods applied to these line) 
we will consider several specialized designs and how we analyze them

• How should I analyze (high density) marker data for inbred lines?        
= do a GWAS analysis one market a time (!!) (use a mixed model to 
account for inbred line structure…)

Importance of inbred lines



• A few main examples (non-exhaustive!):

• B1 (Backcross) - cross between two inbred lines where offspring are crossed 
back to one or both parents

• F2 - cross between two inbred lines where offspring are crossed to each other 
to produce the mapping population

• NILs (Near Isogenic Lines) - cross between two inbred lines, followed by 
repeated backcrossing to one of the parent populations, followed by inbreeding

• RILs (Recombinant Inbred Lines) an F2 cross followed by inbreeding of the 
offspring

• Isofemale lines - offspring of a single female from an outbred (=non-inbred!) 
population are inbred 

• We will discuss NILs and briefly mention the F2 design to provide a foundation for 
the major concepts in the literature

Types of inbred line designs 
(important in genetic analysis)



• The reason that inbred line designs are useful is we can infer 
the unobserved markers (with low error!) even with very few 
markers

• The reason is inbred lines designs result in homozygosity of 
the resulting lines (although they may be homozygous for 
different genotype!)

• Therefore, inbreeding, in combination with uncontrolled 
random sampling (=genetic drift) results in lines that are 
homozygous for one of the genotypes of the parents 

Consequences of inbreeding



Example 1: NILs 1
Inbred line A 

(homozygous)
Inbred line B 

(homozygous)

X

Inbred line A 
(homozygous)

Backcross 1 
(from 1st cross)

X

Inbred line A 
(homozygous)

Backcross 2 
(from 2nd cross)

X

Additional 
backcrosses

Inbreeding of 
resulting offspring 

(after final 
backcross) 

Result:
Many lines that are homozygous, 
mostly (isogenic) red, each with a 

(different) blue homozygous 
regions (=near isogenic)

etc.



Example 1: NILs II
• For a “panel” (=NILs produced from the same design) since one 

marker allele from the “blue” lines within a blue region is to 
know the genotypes of the entirety of the region (i.e. it is from 
the blue lines), by individual marker testing, we can identify a 
polymorphism down to the size of the overlapping 
(“introgressed”) blue regions

• e.g. for a marker indicated by the arrow where a regression 
model indicates the “blue” marker allele is associated with a 
larger phenotype on average than the “red” marker allele:



Example 2: interval mapping (F2)
• A limitation of NILs is the resolution is the size of the smallest 

“introgressed” region

• The goal of “interval mapping” is to take advantage of different 
designs but with many possible recombination events, so we could 
map to a smaller region with a pedigree analysis approach

• Recall the general structure of the pedigree likelihood equation (note 
we could also use a Bayesian approach!):

• For interval mapping, we will use a version of this equation (what 
assumptions!?) to infer the state of unmeasured polymorphism “Q” 
that is in the proximity of markers we have measured:

• The first of these equations is just our glm (!!) or similar penetrance 
model, where we will consider an example of one type of inbreeding 
design (F2) to show the structure of the second
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Inbred line A 
(homozygous)

Inbred line B 
(homozygous)

X

F1
(cross these to each 

other)

F2

Example 2: interval mapping (F2)



F2 Design 
A1 

B1 

Q1 

A1 

B1 

Q1 X 

A2 

B2 

Q2 

A2 

B2 

Q2 

A1 

B1 

Q1 

A2 

B2 

Q2 

F1 Gametes: 

A1 

B1 

Q1 

A2 

B2 

Q2 

A1 

B2 

Q2 

A2 

B1 

Q1 

A1 

B2 

Q1 

A2 

B1 

Q2 

A1 

B1 

Q2 

A2 

B2 

Q1 

Example 2: interval mapping (F2)



F2 Design 
A1 

B1 

Q1 

F2: 

A1 

B1 

Q1 

A1 

B1 

Q1 

Example 2: interval mapping (F2)



• We can therefore substitute these conditional probabilities into our 
main equation and calculate the likelihood over possible values of r 

• In practice we perform a LRT comparing the null of no causal 
polymorphism for an alternative where there is a causal polymorphism 
in the marker defined region, where if we reject, we consider there to 
be a causal polymorphism in the region 

• Note that the LRT is sometimes expressed as a “LOD” score (just LRT 
base 10!), which is just LRT times a constant (!!)

• Note that once we have rejected the null for a region, we can identify 
the position within the interval by finding the position where a given 
value of r maximizes the likelihood, i.e. hence “interval mapping”

• We can translate this to a relative position if we have a physical map and 
recombination map (another complex subject!)
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Value of interval mapping
• Similar to the case of using a linkage (pedigree) analysis to map causal 

polymorphisms for complex (non-Mendelian) phenotypes, in practice, 
interval mapping turns out to be not very useful

• The reason is the same as in interval mapping (for complex 
phenotypes) that fitting a complex model does not provide very 
exact inferences

• This is not to say inbred line designs are not useful (remember: the 
control of genetic background, etc.) but the best approach for 
analyzing these data is to test one marker at a time, i.e. just like in a 
GWAS!

• Given that we can now easily produce many markers across a region, 
we would get the same result as the ideal interval mapping result (!!)

• Interval mapping (and the many variants) is therefore (should) no 
longer used but understanding this technique is important for 
interpreting the literature (!!)



(Evolutionary Genetics) heritability and 
additive genetic variance

• We can understand the major concepts in classic quantitative genomics 
using our glm framework (!!) 

• We will focus on phenotypes with normal error (= linear regression) 
but the concepts generalize

• The most important concept for understanding classic quantitative 
genetics is understanding narrow sense heritability (often just referred 
to as heritability), which is a property of a phenotype we measure:

• Note that this is a fraction with additive genetic variance (VA) in the 
numerator and phenotypic variance (VP) in the denominator

• The strange notation comes from a derivation by Sewall Wright (there 
are several derivations of heritability!) using path analysis, a type of 
probabilistic graphical model called a structural equation model

for a single polymorphism by fitting the following equation to our data:

h2 =
VA

VP
(6)

�↵ (7)

�a,�d (8)

�µ,�↵ (9)

�a (10)

�d (11)

Y = �µ +Xa�↵ + ✏ (12)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (13)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (14)

where we leave it to you to figure out why this is so.

Now, additive genetic variance is not particularly intuitive. We are basically considering
the variation among predicted genotypic values that we get by not using enough param-
eters in our regression equation to fit all three genotypic values (since we only have two
parameters: �µ and ↵). This was the very thing we wanted to avoid in association map-
ping, so why define additive variance in this way? It turns out that additive variance has
a direct relationship to (at least) two important concepts: relationship among individuals
and phenotypic evolution. However, before we discuss these relationships, let’s try to dis-
cuss a (somewhat) intuitive definition of what ↵ (and therefore VA) is capturing and what
determines VA.

4 Intuitive definition and dependencies of VA

Intuitively, we may define ↵ as follows:

↵ ⌘ the average e↵ect of an allelic substitution in a given population regardless of the
genotype in which the allele occurs.

4



• RA Fisher used it to resolve the Mendelian versus Biometry argument that 
had gone on for ~30 years (with one paper!!) showing that a single genetic 
model could explain both patterns of inheritance

• RA Fisher also used heritability to demonstrate why Darwin’s evolution by 
natural selection was not only possible but occurred under extremely 
plausible conditions (“Fisher’s fundamental theorem”):

• More generally for evolution, heritability determines whether a phenotype 
changes under selection or genetic drift: 

• We can use parts of heritability (additive genetic variance) to predict the 
relative offspring phenotype values from breeding two individuals (= 
breeding values)

• One of the most robust observations in biology: all reasonable phenotypes 
have non-zero heritability (!!), implying at least one causal polymorphism 
affects every phenotype (what else does it imply!?)

Why heritability is important

of a, d, ..., etc. indicates polymorphism (to the left indicates individual). With this in hand
we can calculate the variance in a phenotype:

Var(Y ) = Var(P ) = Var(
mX

k

Xa,k�a,k +
mX

k

Xd,k�d,k +
XX

...) + �2
✏ (3)

which follows since Var(�µ)=0 (i.e. the variance of a constant) and Var(✏) = Var(E).
Note that this relationship only holds if Cov(G,E) = 0 an assumption that is equivalent
to assuming there are no genotype by environment e↵ects (G by E of GxE), also called
genotype by environment interactions (GEI) and by various other names that include ‘by’
or ‘interaction’ as connectors for terms referring to genetics and environment. Note that
we often make this assumption in our genetic analyses and that it is possible to estimate
GxE e↵ects by including measurements that account for di↵erent environmental states and
appropriate interaction terms that have the same basic form as the terms we use to model
epistasis (a topic that we will not consider further in this course).

Let’s assume for the moment that we are considering a population or sample that has
allele frequencies that are in Hardy-Weinberg equilibrium. In such a case, it follows from
the orthogonal codings of our X dummy variables (a concept that we have not discussed)
that:

Var(Y ) = Var(P ) = Var(
mX

k

Xa,k�a,k) + Var(
mX

k

Xd,k�d,k) + Var(
XX

...) + �2
✏ (4)

but again note this is only true under Hardy-Weinberg equilibrium! We stated at the
beginning of the lecture that we are going to define additive genetic variance, which we are
going to symbolize as VA. You are probably guessing that from our decomposition in the
last equation that the variance term involving Xa and �a is the additive genetic variance.
However, except in very restricted cases (which we will discuss) it is the case that:

VA 6= Var(
mX

k

Xa,k�a,k) (5)

In fact, the reason we have gone through the e↵ort of this discussion so far is to make this
critical point! Although from the name, you would imagine that additive genetic variance
would directly map onto a term involving Xa and �a, in general it does not. Recognizing
this fact will save you a lot of trouble when you consider literature which deals with addi-
tive genetic variance.

So what is the equation for additive genetic variance? Let’s do this first for a single quanti-
tative polymorphism and then extend the definition. We can produce an exact formulation
for a single polymorphism by fitting the following equation to our data:

�w̄ = h2wVP (6)

3
�Ȳ = h2s (7)

h2 =
VA

VP
(8)

�↵ (9)

�a,�d (10)
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Y = �µ +Xa�↵ + ✏ (14)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (15)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:
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2 (16)

where we leave it to you to figure out why this is so.

Now, additive genetic variance is not particularly intuitive. We are basically considering
the variation among predicted genotypic values that we get by not using enough param-
eters in our regression equation to fit all three genotypic values (since we only have two
parameters: �µ and ↵). This was the very thing we wanted to avoid in association map-
ping, so why define additive variance in this way? It turns out that additive variance has
a direct relationship to (at least) two important concepts: relationship among individuals
and phenotypic evolution. However, before we discuss these relationships, let’s try to dis-
cuss a (somewhat) intuitive definition of what ↵ (and therefore VA) is capturing and what
determines VA.

4 Intuitive definition and dependencies of VA

Intuitively, we may define ↵ as follows:

↵ ⌘ the average e↵ect of an allelic substitution in a given population regardless of the
genotype in which the allele occurs.
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The components of heritability

• Recall that heritability is a fraction of two terms:

• The denominator is the total variance for the phenotype (VP), which we 
can calculate for the entire population as follows (or estimate using a 
sample):

• The numerator is the additive genetic variance (VA) in the phenotype, 
which can be calculated for any phenotype (regardless of the complexity 
of the genetics!)

• However, this is easiest to understand when assuming there is a single 
causal polymorphism for the phenotype

• In this case, the VA is the following where the parameter is from our linear 
regression term only fitting the “additive” term (not dominance term!!):
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of a, d, ..., etc. indicates polymorphism (to the left indicates individual). With this in hand
we can calculate the variance in a phenotype:

Var(Y ) = Var(P ) = Var(
mX

k

Xa,k�a,k +
mX

k

Xd,k�d,k +
XX

...) + �2
✏ (3)

which follows since Var(�µ)=0 (i.e. the variance of a constant) and Var(✏) = Var(E).
Note that this relationship only holds if Cov(G,E) = 0 an assumption that is equivalent
to assuming there are no genotype by environment e↵ects (G by E of GxE), also called
genotype by environment interactions (GEI) and by various other names that include ‘by’
or ‘interaction’ as connectors for terms referring to genetics and environment. Note that
we often make this assumption in our genetic analyses and that it is possible to estimate
GxE e↵ects by including measurements that account for di↵erent environmental states and
appropriate interaction terms that have the same basic form as the terms we use to model
epistasis (a topic that we will not consider further in this course).

Let’s assume for the moment that we are considering a population or sample that has
allele frequencies that are in Hardy-Weinberg equilibrium. In such a case, it follows from
the orthogonal codings of our X dummy variables (a concept that we have not discussed)
that:

Var(Y ) = Var(P ) = Var(
mX

k

Xa,k�a,k) + Var(
mX

k

Xd,k�d,k) + Var(
XX

...) + �2
✏ (4)

but again note this is only true under Hardy-Weinberg equilibrium! We stated at the
beginning of the lecture that we are going to define additive genetic variance, which we are
going to symbolize as VA. You are probably guessing that from our decomposition in the
last equation that the variance term involving Xa and �a is the additive genetic variance.
However, except in very restricted cases (which we will discuss) it is the case that:

VA 6= Var(
mX

k

Xa,k�a,k) (5)

In fact, the reason we have gone through the e↵ort of this discussion so far is to make this
critical point! Although from the name, you would imagine that additive genetic variance
would directly map onto a term involving Xa and �a, in general it does not. Recognizing
this fact will save you a lot of trouble when you consider literature which deals with addi-
tive genetic variance.

So what is the equation for additive genetic variance? Let’s do this first for a single quanti-
tative polymorphism and then extend the definition. We can produce an exact formulation
for a single polymorphism by fitting the following equation to our data:

VA = 2MAF (1�MAF )�2
↵ = 2p(1� p)�2

↵ (6)
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Additive genetic variance I
• Recall that in our original regression (for a single causal polymorphism and 

assume we are fitting this model for the actual causal polymorphism, not a 
marker in LD!), we had two dummy variables and two parameters:

• For additive genetic variance, we will only define one dummy variable 
(even if there is dominance in the system!):

• Given this model, it should be clear that the effects of dominance end up 
in the error term (!!) just as for the case with un-modeled covariates

• We can then derive the additive genetic variance as follows:
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but again note this is only true under Hardy-Weinberg equilibrium! We stated at the
beginning of the lecture that we are going to define additive genetic variance, which we are
going to symbolize as VA. You are probably guessing that from our decomposition in the
last equation that the variance term involving Xa and �a is the additive genetic variance.
However, except in very restricted cases (which we will discuss) it is the case that:

VA 6= Var(
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Xa,k�a,k) (5)

In fact, the reason we have gone through the e↵ort of this discussion so far is to make this
critical point! Although from the name, you would imagine that additive genetic variance
would directly map onto a term involving Xa and �a, in general it does not. Recognizing
this fact will save you a lot of trouble when you consider literature which deals with addi-
tive genetic variance.

So what is the equation for additive genetic variance? Let’s do this first for a single quanti-
tative polymorphism and then extend the definition. We can produce an exact formulation
for a single polymorphism by fitting the following equation to our data:

Xa(A1A1) = �1, Xa(A1A2) = 0, Xa(A2A2) = 1 (6)

3
Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (7)

Y = �µ +Xa�a +Xd�d + ✏ (8)

VA = 2MAF (1�MAF )�2
↵ = 2p(1� p)�2
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�µ,�↵ (17)

�a (18)

�d (19)

Y = �µ +Xa�↵ + ✏ (20)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (21)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (22)

where we leave it to you to figure out why this is so.

Now, additive genetic variance is not particularly intuitive. We are basically considering
the variation among predicted genotypic values that we get by not using enough param-
eters in our regression equation to fit all three genotypic values (since we only have two
parameters: �µ and ↵). This was the very thing we wanted to avoid in association map-
ping, so why define additive variance in this way? It turns out that additive variance has
a direct relationship to (at least) two important concepts: relationship among individuals
and phenotypic evolution. However, before we discuss these relationships, let’s try to dis-
cuss a (somewhat) intuitive definition of what ↵ (and therefore VA) is capturing and what
determines VA.
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Additive genetic variance II
• There is a consequence of whether we fit two or one “slope” 

parameters in our regression model

• If we consider two slope parameters           (as we have done all 
semester!) the true values of the parameters are the same 
regardless of the allele frequency (MAF) of the causal 
polymorphism

• If we consider one regression parameter       the true value of 
this parameter depends on the allele frequency (MAF) of the 
causal polymorphism

• The latter means that the true parameter value will change with 
changes in allele frequencies (!!)

• Stated another way, if we were to estimate this additive genetic 
regression parameter, there would be a different correct answer 
depending on the allele frequency in the population (!!)
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Example how the parameter 
changes with MAF I

• Consider a case where there is dominance but we only fit the 
following model:

• Remember (!!) this is not the case if we fit two parameters: 

MAF=0.5, larger MAF=0.1, smaller 

of a, d, ..., etc. indicates polymorphism (to the left indicates individual). With this in hand
we can calculate the variance in a phenotype:
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which follows since Var(�µ)=0 (i.e. the variance of a constant) and Var(✏) = Var(E).
Note that this relationship only holds if Cov(G,E) = 0 an assumption that is equivalent
to assuming there are no genotype by environment e↵ects (G by E of GxE), also called
genotype by environment interactions (GEI) and by various other names that include ‘by’
or ‘interaction’ as connectors for terms referring to genetics and environment. Note that
we often make this assumption in our genetic analyses and that it is possible to estimate
GxE e↵ects by including measurements that account for di↵erent environmental states and
appropriate interaction terms that have the same basic form as the terms we use to model
epistasis (a topic that we will not consider further in this course).

Let’s assume for the moment that we are considering a population or sample that has
allele frequencies that are in Hardy-Weinberg equilibrium. In such a case, it follows from
the orthogonal codings of our X dummy variables (a concept that we have not discussed)
that:
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In fact, the reason we have gone through the e↵ort of this discussion so far is to make this
critical point! Although from the name, you would imagine that additive genetic variance
would directly map onto a term involving Xa and �a, in general it does not. Recognizing
this fact will save you a lot of trouble when you consider literature which deals with addi-
tive genetic variance.

So what is the equation for additive genetic variance? Let’s do this first for a single quanti-
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epistasis (a topic that we will not consider further in this course).

Let’s assume for the moment that we are considering a population or sample that has
allele frequencies that are in Hardy-Weinberg equilibrium. In such a case, it follows from
the orthogonal codings of our X dummy variables (a concept that we have not discussed)
that:

Var(Y ) = Var(P ) = Var(
mX

k

Xa,k�a,k) + Var(
mX

k

Xd,k�d,k) + Var(
XX

...) + �2
✏ (4)

but again note this is only true under Hardy-Weinberg equilibrium! We stated at the
beginning of the lecture that we are going to define additive genetic variance, which we are
going to symbolize as VA. You are probably guessing that from our decomposition in the
last equation that the variance term involving Xa and �a is the additive genetic variance.
However, except in very restricted cases (which we will discuss) it is the case that:

VA 6= Var(
mX

k

Xa,k�a,k) (5)

In fact, the reason we have gone through the e↵ort of this discussion so far is to make this
critical point! Although from the name, you would imagine that additive genetic variance
would directly map onto a term involving Xa and �a, in general it does not. Recognizing
this fact will save you a lot of trouble when you consider literature which deals with addi-
tive genetic variance.

So what is the equation for additive genetic variance? Let’s do this first for a single quanti-
tative polymorphism and then extend the definition. We can produce an exact formulation
for a single polymorphism by fitting the following equation to our data:
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�d (9)

Y = �µ +Xa↵+ ✏ (10)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (11)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (12)

where we leave it to you to figure out why this is so.

Now, additive genetic variance is not particularly intuitive. We are basically considering
the variation among predicted genotypic values that we get by not using enough param-
eters in our regression equation to fit all three genotypic values (since we only have two
parameters: �µ and ↵). This was the very thing we wanted to avoid in association map-
ping, so why define additive variance in this way? It turns out that additive variance has
a direct relationship to (at least) two important concepts: relationship among individuals
and phenotypic evolution. However, before we discuss these relationships, let’s try to dis-
cuss a (somewhat) intuitive definition of what ↵ (and therefore VA) is capturing and what
determines VA.

4 Intuitive definition and dependencies of VA

Intuitively, we may define ↵ as follows:

↵ ⌘ the average e↵ect of an allelic substitution in a given population regardless of the
genotype in which the allele occurs.

Basically, ↵ is what we get when we consider every possible e↵ect of a direct experi-
mental substitution of A1 for A2 in a population for every single A1 in every individual
and then we take the average. With this intuition, you can start to see that ↵ is capturing
something we might want to know, i.e. if I take a random individual without considering
the genotype and substitute an allele, what is the expected e↵ect on the phenotype? The
definition is also symmetric so if ↵ is the average e↵ect of substituting A1 for A2, then �↵
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• In a case of over-dominance (or under-dominance) with the right 
allele frequency, the true value of the parameter can be zero (!!):

Example how the parameter 
changes with MAF I



• In a purely additive case (no dominance) the parameter         does 
not change, regardless of MAF:

• This makes sense since we only need the parameters               to 
completely fit the system

Example how the parameter 
changes with MAF III

of a, d, ..., etc. indicates polymorphism (to the left indicates individual). With this in hand
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Change in additive genetic variance 
with MAF

• Remember that additive genetic variance is a function of MAF:

• Additive genetic variance may therefore change (!!) with allele 
frequency, since the parameter        may change 

• The additive genetic variance is also a function of allele 
frequencies (MAF) so it may change due to allele frequencies 
through this term as well

of a, d, ..., etc. indicates polymorphism (to the left indicates individual). With this in hand
we can calculate the variance in a phenotype:

Var(Y ) = Var(P ) = Var(
mX

k

Xa,k�a,k +
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k

Xd,k�d,k +
XX

...) + �2
✏ (3)

which follows since Var(�µ)=0 (i.e. the variance of a constant) and Var(✏) = Var(E).
Note that this relationship only holds if Cov(G,E) = 0 an assumption that is equivalent
to assuming there are no genotype by environment e↵ects (G by E of GxE), also called
genotype by environment interactions (GEI) and by various other names that include ‘by’
or ‘interaction’ as connectors for terms referring to genetics and environment. Note that
we often make this assumption in our genetic analyses and that it is possible to estimate
GxE e↵ects by including measurements that account for di↵erent environmental states and
appropriate interaction terms that have the same basic form as the terms we use to model
epistasis (a topic that we will not consider further in this course).

Let’s assume for the moment that we are considering a population or sample that has
allele frequencies that are in Hardy-Weinberg equilibrium. In such a case, it follows from
the orthogonal codings of our X dummy variables (a concept that we have not discussed)
that:
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but again note this is only true under Hardy-Weinberg equilibrium! We stated at the
beginning of the lecture that we are going to define additive genetic variance, which we are
going to symbolize as VA. You are probably guessing that from our decomposition in the
last equation that the variance term involving Xa and �a is the additive genetic variance.
However, except in very restricted cases (which we will discuss) it is the case that:

VA 6= Var(
mX

k

Xa,k�a,k) (5)

In fact, the reason we have gone through the e↵ort of this discussion so far is to make this
critical point! Although from the name, you would imagine that additive genetic variance
would directly map onto a term involving Xa and �a, in general it does not. Recognizing
this fact will save you a lot of trouble when you consider literature which deals with addi-
tive genetic variance.

So what is the equation for additive genetic variance? Let’s do this first for a single quanti-
tative polymorphism and then extend the definition. We can produce an exact formulation
for a single polymorphism by fitting the following equation to our data:

VA = 2MAF (1�MAF )�2
↵ = 2p(1� p)�2
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X↵(A1A1) = �1, X↵(A1A2) = 0, X↵(A2A2) = 1 (9)

Y = �µ +X↵�↵ + ✏ (10)
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Y = �µ +Xa�↵ + ✏ (23)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (24)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (25)

where we leave it to you to figure out why this is so.

Now, additive genetic variance is not particularly intuitive. We are basically considering
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Change in heritability with MAF

• Since additive genetic variance can change, it should be no 
surprise that heritability can change as well:

• Note that both the VA and VP can change with allele frequency 
since VP includes the variance attributable to VA (!!)

• Thus, heritability of a phenotype depends on the allele 
frequency in the population (!!)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (7)

Y = �µ +Xa�a +Xd�d + ✏ (8)

X↵(A1A1) = �1, X↵(A1A2) = 0, X↵(A2A2) = 1 (9)

Y = �µ +X↵�↵ + ✏ (10)

VA = 2MAF (1�MAF )�2
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�a (22)
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Y = �µ +Xa�↵ + ✏ (24)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (25)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (26)
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Heritability concepts 1

• For multiple loci that are not in LD and when there is no epistasis, 
the additive genetic variance is:

• The equations get more complex for LD and epistasis (and for 
more alleles, etc.

• Note that even if the equations for VA are complex for such cases, 
we can still estimate VA for genetic systems (!!)

Xd(A1A1) = �1, Xd(A1A2) = 1, Xd(A2A2) = �1 (7)

Y = �µ +Xa�a +Xd�d + ✏ (8)

X↵(A1A1) = �1, X↵(A1A2) = 0, X↵(A2A2) = 1 (9)
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Y = �µ +Xa�↵ + ✏ (25)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (26)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (27)
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Heritability concepts II
• We can estimate heritability using the resemblance between relatives, for 

example a parent-offspring regression (this was the origin of regression 
btw!)

• When regressing offspring phenotype values on the average value of their 
parents, the slope of the regression line is the heritability (under certain 
assumptions...) so an estimate of the slope is an estimate of heritability:

• There are many relationships that can be leveraged for this and the 
estimation procedures can involve many complex details (!!), e.g. pedigree 
analyses, mixed models, etc.
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Heritability concepts III

• In agricultural genetics, we are often interested in value for 
an individual that reflects the value for which it will tend to 
increase or decrease the phenotype from the mean

• e.g. if will breeding one bull to cows increase milk 
production compared to the results of breeding a different 
bull to these same cows?

• The breeding value (more specifically an estimate of the 
breeding value!) is used for this purpose, which we can 
derive from heritability (this concept requires more time 
than we have here) 



Heritability concepts IV
• In classic quantitative genetics, we often see the following equation:

• We can divide this into total phenotypic variance, genetic variance, and 
environmental variance:

• The total genetic variance divides into additive genetic variance and 
everything else:

• This leads to definitions of narrow sense heritability and broad sense 
heritability
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Heritability concepts V

• Another classic parameterization of genetic effects is the following

• We can convert these to our regression parameters by solving the 
following equations and making appropriate substitutions:

• Note one last important relationship!:

Now, even with this definition, it may not be completely obvious what VA is capturing.
The uninformative way to think about this is that it is the variance due to average a↵ect
of allelic substitutions in a population. However, the more accurate way to think about
it is that VA is the variance of the predicted phenotypic values of genotypes based on the
regression using just ↵, i.e. the variance of all individuals in the population considering
their predicted phenotypes Ŷ = �µ + Xa↵. The concept is also tricky because ↵ and
therefore VA can change as allele frequencies change. That is, the regression parameter
↵ can change even with though we are considering the same values Ŷ = �µ + Xa↵ for
each individual (note that this is not the case if we also fit a dominance term, where when
Ŷ = �µ + Xa�a + Xd�d, the true regression parameters stay the same regardless of the
allele frequencies in the sample). This can be seen from the following definition that relates
the value of the regression coe�cient ↵ to the regression coe�cients when we fit both the
additive and dominance term:

↵ = (�a + �d)
⇣
1 +

�d

2
(p1 � p2)

⌘
(35)

(on a side note, you often see this equation written as ↵ = a

⇣
1 + d(p1 � p2)

⌘
, where they

have set the genotypic value of GA1A1 = 0, GA1A2 = a+ d, GA2A2 = 2a where if you solve
the following three equations: 0 = �µ � �a � �d, a + d = �µ + �d, and 2a = �µ + �a � �d

you will recover the formula in equation 9).

Now, remember from above that VA = 2p1p2↵2. If there is no dominance (i.e. �d = 0),
then we have VA = 2p1p2�2

a, such that the variance changes with allele frequencies, where
there is the maximum additive genetic variance at p1 = 0.5 and there is no additive ge-
netic variance when p1 = 0, where both of these results make intuitive sense (see class for
diagram and discussion). If there is dominance (i.e. �d 6= 0) then the equation for ↵ and
therefore additive genetic variance, is considerably more complicated. However, we can see
what is going on by considering how the slope of the regression line, which is defined by
↵ changes as the allele frequencies, and therefore the genotypic frequencies change. For
example, if we take a case of pure dominance (e.g. �µ = 0.5, �a = 1, and �d = 0.5), if
p1 = 0.5 (assuming Hardy-Weinberg equilibrium), we have equal frequencies of A1A1 and
A2A2 genotypes (with twice the number of A1A2 genotypes) and the line defined by ↵ is
at an angle (see class for a diagram). The reason is this is a ‘best fit least-squares line’
(i.e. a line that minimizes the squared distance between each observation and the line).
As the frequency of p1 decreases, the frequency of the A1A1 genotype decreases and the
best fit line now gets more ‘flat’ intersecting the A1A2 and A2A2 genotypic classes because
there are only a few observations in the A1A1 class, i.e. the squared distance is minimized
by a line that is more flat (see class for a diagram). The ↵ is therefore decreasing and
since 2p1p2 is also decreasing, the overall additive genetic variance is decreasing, i.e. since
VA = 2p1p2↵2. Note that if p1 = 0) then 2p1p2 = 0 and VA = 0 (i.e. there is no additive
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X1, X2..., X1001, X1002

X1 ⇠ Bern(0.2), X2 ⇠ Bern(0.45), ..., X1001 ⇠ Bern(0.4), X1002 ⇠ Bern(0.4)

✓̂ or H0 : ✓ = c

Pr(T (X) , Pr(T (X|✓) , Pr(T (X|H0 : ✓ = c)

L(✓|x) =
 

1p
2⇡

!
n

e

P
n

i=1
�(xi�µ)2

2 (4)

⌦ = { Possible Individuals }
⌦ = {⌦g \ ⌦P } (5)

�↵ = �a

 
1 +

�d

2
(p1 � p2)

!
(6)

⌦g = {A1A1, A1A2, A2A2} (7)

�µ = 0.3,�a = �0.2,�d = 1.1,�2
✏ = 1.1 (8)

�µ,�a,�d,�
2
✏ (9)

� (10)

✏ (11)

Pr(Y |X) ⇠ N(�µ +Xa�a +Xd�d,�
2
✏ ) (12)

2.1 = 0.3 + (0)(�0.2), (1)1.1 + 0.7 (13)

Xa(A1A2) = 0, Xd(A1A2) = 1 (14)

✏i = 0.7 (15)

⌦g (16)

⌦P (17)

F{g,P} (18)

Pr(F{g,P}) (19)

Pr{g, P} (20)

Pr(Y \X) = Pr(Y,X) 6= Pr(Y )Pr(X) (21)

H0 : Pr(Y,X) = Pr(Y )Pr(X) (22)
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• Change over time depends on the additive genetic 
variance and the selection gradient:

• Genetic drift depends on the heritability and the effective 
population size:

• No heritability means there is no evolution!

Heritability concepts VI

�Ȳ = h2s (7)

h2 =
VA

VP
(8)

�↵ (9)

�a,�d (10)

�µ,�↵ (11)

�a (12)

�d (13)

Y = �µ +Xa�↵ + ✏ (14)

i.e. the same coding for Xa but we DO NOT fit a dominance term and note that ↵ = �a
without fitting a dominance term (e.g. we use ↵ to make this distinction). We now have
the following relationship:

VA = Var(Xa↵) (15)

i.e. additive genetic variance is the variance associated with the parameter of a linear
regression (not a multiple regression!). If we remember f(A1) = p1 where A1 is the minor
allele, and define f(A2) = 1� p1 = p2 we have:

VA = 2p1p2)↵
2 (16)

where we leave it to you to figure out why this is so.

Now, additive genetic variance is not particularly intuitive. We are basically considering
the variation among predicted genotypic values that we get by not using enough param-
eters in our regression equation to fit all three genotypic values (since we only have two
parameters: �µ and ↵). This was the very thing we wanted to avoid in association map-
ping, so why define additive variance in this way? It turns out that additive variance has
a direct relationship to (at least) two important concepts: relationship among individuals
and phenotypic evolution. However, before we discuss these relationships, let’s try to dis-
cuss a (somewhat) intuitive definition of what ↵ (and therefore VA) is capturing and what
determines VA.

4 Intuitive definition and dependencies of VA

Intuitively, we may define ↵ as follows:

↵ ⌘ the average e↵ect of an allelic substitution in a given population regardless of the
genotype in which the allele occurs.
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• Yes!  It’s an important concept for thinking about evolution, the 
structure of variation in populations, etc.

• It is often important for determining our chances of using a GWAS 
to map the locations of causal polymorphims (why is this?)

• We often use marginal heritabilities, i.e. the heritability due to a 
single marker to provide a quantification of effects (note that we 
use different concepts such as relative risks and related concepts 
when dealing with case / control data):

• In short, heritability is an important concept, but now you have the 
tools to understand heritability in terms of regressions (!!) and this 
will provide a framework for understanding related concepts

Do we still use heritability in 
quantitative genomics?
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Pep Talk: keep learning (!!)
• How to learn stats, math, coding, etc. (my suggestion):

• Figure out what you are passionate about (it will involve quantitative aspects!) and 
build your understanding by hooking it into your passion

• If you spend more than a few hours / day trying to understand something and can’t it 
means you are missing a critical component that you have not learned = put it down 
and come back to it at a later date (you’ll be surprised how you’ll learn something 
later that suddenly makes it clear…)

• Don’t memorize theorems, constantly study, etc. = know what you do understand, 
keep adding to this (prioritize intuition!!), and learn it over time by hooking it into 
your passion

• Don’t be intimidated by others or yourself 

• Anyone trying to make you feel bad because they “know math” and you don’t is 
confused (knowing math someone else has developed does not mean you’re smart…)

• I’m too old to learn this, I don’t understand what people are saying / the material in 
the class so I’m not smart enough to learn it, etc. = NOT TRUE

• You can stop learning this for extended periods and lose faith in yourself for years - 
you can always come back and keep learning and you WILL LEARN IT (trust me)



That’s it for today

• That’s it!  Best wishes to you all!


