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• I am now only answering Canvas email (!!)

• PLEASE NOTE (!!): Lectures next week and the following week (Feb 6, 
Feb 8, Feb 13, Feb 15):

• We currently do NOT have classrooms in NYC - I will update you by 
Canvas announcement / email if this changes

• All NYC students will join by zoom for these lectures (see next)

• We will have classrooms in Ithaca as per normal

• We are opening a Zoom lecture option:

• This is for everyone in the class = anyone is we welcome to join any 
lecture going forward by zoom (i.e., whether in Ithaca / NYC)

• I would still recommend coming to a classroom for lectures (IF YOU 
CAN!)

Announcements I



• Where to find the lecture zoom link:

•  PLEASE DO NOT SHARE THE ZOOM LINK beyond the class (or we 
may need to shut it down if we have a problem…)

Announcements II



• Homework #1 (!!) will be posted later TODAY (Thurs., Feb 1) on CANVAS (I will Canvas 
announce / email when it is available):

• Due 11:59PM, Fri., Feb 9 and MUST BE UPLOADED TO CANVAS (!!)

• If you upload late (even by a minute…) you will get a penalty (note that no excuses will be 
accepted = you can always upload early…) 

• Homeworks are “open book” and you may work together but hand in your own work (!!)

• You may use ChatGPT (or related) BUT you may not want to…

• Answers must be typed (!!) including all equations - if this is a problem go to computer lab this 
week (= intro to Latex!)

• Problems are divided into “easy”, “medium, and “difficult”

• You can complete the “easy” and “medium” (make sure you give yourself enough time!)

• For the “difficult” at least attempt (but note that you can get an “A” in the class even if you 
do not / cannot complete these problems!)

• The “difficult” problems are NOT extra credit - they are part of the assignment (please 
attempt them!) BUT you can still get an “A” in the class even if you don’t do them!

• Please feel free to attend office hours for help (!!) see next slide 

Announcements III



• I will hold office hours on WEDNESDAYS every week 12-2PM 
starting NEXT week (Feb 7) 

• Please note: if this day and time turns out to be inconvenient for 
many, we may change it…

• Any give week… we may change if needed (I will Canvas announce / 
email any changes)

• We will hold office hours by ZOOM (see next slide)

• We will ALSO (this week ONLY!) have office hours10:30-12:30 on 
FRIDAY (Feb 1) - I will email the link for this later today…

• I will record office hours (and post them on Canvas)

• You may also set up individual sessions with me by appointment

Announcements IV



• Where to find the lecture zoom link:

•  PLEASE DO NOT SHARE THE ZOOM LINK beyond the class (or we 
may need to shut it down if we have a problem…)

Announcements V



Summary of lecture 4: Introduction 
to random variables (and vectors)

• Last class, we introduced conditional probability (and independence!)

• Today we will discuss random variables (and random vectors)
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Review: Experiments and 
Outcomes

• Experiment - a manipulation or measurement of a system 
that produces an outcome we can observe

• Experiment Outcome - a possible result of the experiment

• Example (Experiment / Outcomes):

• Coin flip /  “Heads” or “Tails”

• Two coin flips / HH,  HT,  TH,  TT

• Measure heights in this class / 1.5m, 1.71m, 1.85m, …



Review: Sample Spaces
• Sample Space (   ) - set comprising all possible outcomes associated 

with an experiment

• (Note: we have not defined a Sample - we will do this later!)

• Examples (Experiment / Sample Space):

• “Single coin flip” / {H, T}

• “Two coin flips” / {HH, HT, TH, TT}

• “Measure Heights” / any actual measurement OR we could use 

• Events - a subset of the sample space

• Examples (Sample Space / Examples of Events):

• “Single coin flip” /   , {H}, {H, T}

• “Two coin flips” / {TH}, {HH, TH}, {HT, TH, TT}

• “Measure Heights” / {1.7m}, {1.5m, ..., 2.2m} OR [1.7m], (1.5m,1.8m)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(S) : S ! R (10)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ S, Pr(A) > 0.

2. Pr(S) = 1.

3. For A1,A2, ... 2 S, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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To see how this is accomplished in a permutation analysis, let’s first describe a permutation.
If we write our data in a matrix as follows:

Data =

2

64
z11 ... z1k y11 ... y1m x11 ... x1N
...

...
...

...
...

...
...

...
...

zn1 ... znk yn1 ... ynm x11 ... xnN

3

75

where the latter columns are the genotypes, a permutation is produced by randomizing the
phenotype samples y keeping the genotypes in the same order, e.g.:

Y = �µ +Xa�a +Xd�d +Xz,1�z,1 +Xz,2�z,2 + ✏ (195)
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Review: Sigma Algebra

• Sigma Algebra (    ) - a collection of events (subsets) of     of interest with the following 
three properties: 1.            , 2.                                 , 3.                                                             

Note that we are interested in a particular Sigma Algebra for each sample space...

• Examples (Sample Space / Sigma Algebra):

• {H, T}  /

• {HH, HT, TH, TT}  / 

•       / more complicated to define the sigma algebra of interest (see next slide…)
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(S) : S ! R (10)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ S, Pr(A) > 0.

2. Pr(S) = 1.

3. For A1,A2, ... 2 S, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
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Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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Problem 2 (Medium)

Assume that the system we are interested in is a coin. The experiment we will consider is two flips

of the coin. Note: for parts (d)-(j) use the probability model in part (c).

a. What is the sample space of this experiment?

⌦ = {HH,HT, TH, TT}

b. What is the Sigma-algebra (containing all events) for this sample space? Which of these

events is the event ‘the first flip is heads’? Which of these events is the event ‘the second flip

is heads’?

F =

;, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH}, {HH,TT}, {HT, TH}, {HT, TT},
{TH, TT}{HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {TH,HT, TT}{HH,TH,HT, TT}

{H1st} = {HH,HT}

{H2nd} = {HH,TH}

c. Define a probability model such that the probability of a ‘heads’ on the first flip and the

second flip is Pr(H1st) = Pr(H2nd) = 0.5, where the probability of heads on both the first

and second flip is Pr(H1st\H2nd) = 0.3. Write out the probabilities for all possible outcomes

of an experimental trial. Write down the formulas or relationships you used to calculate these

probabilities as part of your answer.

H2nd T2nd

H1st Pr(H1st \H2nd) Pr(H1st \ T2nd) Pr(H1st)

T1st Pr(T1st \H2nd) Pr(T1st \ T2nd) Pr(t1st)

Pr(H2nd) Pr(T2nd)

H2nd T2nd

H1st 0.3 Pr(H1st) - Pr(H1st \H2nd) 0.5

T1st Pr(H2nd) - Pr(H1st \H2nd) Eq 0.5

0.5 0.5

Eq = 1 - Pr(H1st \H2nd) + Pr(H1st \ T2nd) + Pr(T1st \H2nd)

H2nd T2nd

H1st 0.3 0.2 0.5

T1st 0.2 0.3 0.5

0.5 0.5

2



• Probability Function - maps a Sigma Algebra of a sample to a subset of the 
reals:

• Not all such functions that map a Sigma Algebra to [0,1] are probability functions, 
only those that satisfy the following Axioms of Probability (where an axiom is a 
property assumed to be true):

• Note that since a probability function takes sets as an input and is restricted in 
structure, we often refer to a probability function as a probability measure
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Review: Conditional probability

• We have an intuitive concept of conditional probability: the 
probability of an event, given another event has taken place

• We will formalize this using the following definition (note that 
this is still a probability!!):

• While not obvious at first glance, this is actually an intuitive 
definition that matches our conception of conditional 
probability

of probability). This means that some of the architects of probability theory are still alive,
and one of them is here at Cornell: Eugene Dynkin (who is in his 90’s). Dynkin (among
other accomplishments) proved a number of theorems and developed a number of impor-
tant methods (e.g. ⇥-�-systems) which are used to prove a number of important results
in basic probability. He is a great teacher and if you ever get the chance to take a course
from him, it’s worth it (and you get a living connection to the beginning of probability as
we know it!).

S = (�⇥,⇥) (5)

7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we
can define the conditional probability as ‘the probability of an event, given that another
event has taken place’. That is, this concept makes formal the case where an event that
has taken place provides us information that changes the probability of a future or focal
event. The formal definition of the conditional probability of Ai given Aj is:

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
(6)

At first glance, this relationship does not seem very intuitive. Let’s consider a quick
example that will make it clear why we define conditional probability this way. Let’s use
our ‘paired coin flip’ where Pr{HH} = Pr{HT} = Pr{TH} = Pr{TT} = 0.25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st TH TT

where we have the following probabilities:

H2nd T2nd

H1st Pr(H1st ⇧H2nd) Pr(H1st ⇧ T2nd) Pr(H1st)
T1st Pr(T1st ⇧H2nd) Pr(T1st ⇧ T2nd) Pr(T1st)

Pr(H2nd) Pr(T2nd)

where each entry of the last column reflects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
Pr(H1st) = Pr(HH ⌅HT ), Pr(H2nd) = Pr(HH ⌅ TH), Pr(T1st) = Pr(TH ⌅ TT ), and
Pr(T2nd) = Pr(HT ⌅ TT ) (work this out for yourself!). Let’s now define the following
probability model:

9



Review: An example of 
conditional prob.

• Intuitively, if we condition on the first flip being “Heads”, we need 
to rescale the total to be one (to be a probability function):
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H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

Let’s consider the probability that our second flip is a ‘Heads’ given that we know our first
flip is a ‘Heads’. Note that ‘first flip is Heads’ is H1st = {HH ⇥HT} and the ‘second flip
heads’ is H2nd = {HH ⇥ TH}. This conditional probability is therefore:

Pr(H2nd|H1st) =
Pr(H2st

�
H1st)

Pr(H1st)
=

Pr(HH)

Pr(HH ⇥HT )
=

0.25

0.5
= 0.5 (7)

Here is an intuitive way to think about what is going on. If we know that the first flip
is a head, this limits the outcomes to {HH,HT} (the first row of the table). Note that
conditional probability conforms to the definition of a probability function, so if we think
conceptually of defining the first flip to be ‘Heads’ we now dealing with a ‘new’ sample space
that contains two elements: S|H1st

= {HH,HT}, i.e. our new sample space is the first row
of the table. To conform to the second axiom we need to make the total probability of this
‘new’ space be one (i.e. Pr(S|H1st

) = 1), which we can do by defining Pr(HH|H1st) = 0.5
and Pr(HT |H1st) = 0.5, i.e. after restricting ourselves to these two cases, we have to pick
one or the other and each is equally likely. Thus, the formula in (6) comes from making
sure the second axiom is satisfied for Pr(S|H1st

), where we need to divide by the total
probability of the first row in the original sample space Pr(HH ⇥ HT ) = 0.5 to rescale
the total probability of Pr(HH ⇥ HT |H1st) to ‘one’. This is what is happening in the
denominator. Thus, in our fair coin example, where the probability of ‘Heads’ or ‘Tails’ is
0.5 on each flip, the conditional probability of H2nd given H1st is 0.5.

8 Independence

The concept of independence also matches how we intuitively use probabilistic models.
Intuitively, if events are independent, then knowing that one of the events has happened
provides us no additional information for altering the probability that the second event will
happen, and vice versa. We can define this concept directly from the concept of conditional
probability. If Ai is independent of Aj , then we have:

Pr(Ai|Aj) = Pr(Ai) (8)

While this result is intuitive, it produces a relationship that is less intuitive, specifically:

Pr(Ai ⇤Aj) = Pr(Ai)Pr(Aj) (9)

However, this follows from the definition of conditional probability and independence (equa-
tions 5 and 7):

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
=

Pr(Ai)Pr(Aj)

Pr(Aj)
= Pr(Ai) (10)
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10

Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)

Pr({HH})
Pr({HH} [ {HT}) (53)
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Review: Independence

• This requires that we define independence as follows:

• This implies the following from the definition of conditional prob.:

• This in turn produces the following relation for independent 
events:

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5
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Review: Example of independence

• Consider the sample space of “two coin flips” and the following 
probability model:

of probability). This means that some of the architects of probability theory are still alive,
and one of them is here at Cornell: Eugene Dynkin (who is in his 90’s). Dynkin (among
other accomplishments) proved a number of theorems and developed a number of impor-
tant methods (e.g. ⇥-�-systems) which are used to prove a number of important results
in basic probability. He is a great teacher and if you ever get the chance to take a course
from him, it’s worth it (and you get a living connection to the beginning of probability as
we know it!).

S = (�⇥,⇥) (5)

7 Conditional Probability

A critical concept in probability is the concept of conditional probability. Intuitively, we
can define the conditional probability as ‘the probability of an event, given that another
event has taken place’. That is, this concept makes formal the case where an event that
has taken place provides us information that changes the probability of a future or focal
event. The formal definition of the conditional probability of Ai given Aj is:

Pr(Ai|Aj) =
Pr(Ai

�
Aj)

Pr(Aj)
(6)

At first glance, this relationship does not seem very intuitive. Let’s consider a quick
example that will make it clear why we define conditional probability this way. Let’s use
our ‘paired coin flip’ where Pr{HH} = Pr{HT} = Pr{TH} = Pr{TT} = 0.25. In this
case, we have the following:

H2nd T2nd

H1st HH HT
T1st TH TT

where we have the following probabilities:

H2nd T2nd

H1st Pr(H1st ⇧H2nd) Pr(H1st ⇧ T2nd) Pr(H1st)
T1st Pr(T1st ⇧H2nd) Pr(T1st ⇧ T2nd) Pr(T1st)

Pr(H2nd) Pr(T2nd)

where each entry of the last column reflects a sum of the rows and each entry of the bottom
rows are the sums or each column. Note that we also have the following relationships
Pr(H1st) = Pr(HH ⌅HT ), Pr(H2nd) = Pr(HH ⌅ TH), Pr(T1st) = Pr(TH ⌅ TT ), and
Pr(T2nd) = Pr(HT ⌅ TT ) (work this out for yourself!). Let’s now define the following
probability model:
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To make this concept clearer, let’s consider two probability models for ‘paired coin flip’
example. We will again write these probabilities out as follows:

H2nd T2nd

H1st Pr(H1st ⇥H2nd) Pr(H1st ⇥ T2nd) Pr(H1st)
T1st Pr(T1st ⇥H2nd) Pr(T1st ⇥ T2nd) Pr(t1st)

Pr(H2nd) Pr(T2nd)

For our fair coin probability model, let’s again assign these probabilities as follows:

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

In this model, H1st and H2nd are independent, i.e. Pr(H1st ⇥H2nd) = Pr(H1st)Pr(H2nd)
(in fact, all of the possibilities we could consider in this model are independent). Next let’s
consider the psuedo-fair coin example:

H2nd T2nd

H1st 0.4 0.1 0.5
T1st 0.1 0.4 0.5

0.5 0.5

In this modelH1st andH2nd are not independent, i.e. Pr(H1st⇥H2nd) �= Pr(H1st)Pr(H2nd)
and neither are the other possibilities considered. Intuitively, getting a ‘Head’ on the first
flip increases the probability of getting a ‘Head’ on the second (and similarly for ‘Tails’).
In this case, knowledge concerning one of the possibilities alters the probability of the next,
so it makes sense that they are not independent.

One final thought before we leave the concept of independence. It is important to note that
disjoint events cannot be independent. This follows from the third axiom of probability
and the definition of independence. This actually also makes intuitive sense but perhaps
not at first glance (see problem 1 on your first homework, which will be handed out next
week).
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probability model:
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• A probability function / measure takes the Sigma Algebra to the reals and provides a model of the 
uncertainty in our system / experiment:

• When we define a probability function, this is an assumption (!!), i.e. what we believe is an 
appropriate probabilistic description of our system / experiment

• We would like to have a concept that connects the actual outcomes of our experiment to this 
probability mode

• What’s more, we are often in situations where we are interested in using numbers to represent 
the outcomes, e.g., , “Heads” and “Tails” accurately represent the outcomes of a coin flip example 
but they are not numbers (e.g., we may be interested in “number of heads”)

• In addition, many of the mathematical tools we use in probability and statistics require the 
outcomes being represented within the reals

• We therefore are often interested in a function of the original sample space that maps this space 
to the reals

• We will define a random variable for this purpose

• In general, the concept of a random variable is a “bridging” concept between the actual 
experiment and the probability model, this provides a numeric description of sample outcomes 
that can be defined many ways (i.e. provides great versatility)

Next Essential Concept: Random variables I
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• Random variable - a real valued function on the sample space:

• Intuitively:

• Note that these functions are not constrained by the axioms of 
probability, e.g. not constrained to be between zero or one (although they 
must be measurable functions and admit a probability distribution on the 
random variable!!)

• We generally define them in a manner that captures information that is of 
interest

• As an example, let’s define a random variable for the sample space of the 
“two coin flip” experiment that maps each sample outcome to the 
“number of Tails” of the outcome:

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =

�
⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,
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1 Introduction

Last lecture, we introduced critical concepts for probabilistic modeling: sample spaces
and probability functions. Today, we will introduce additional critical concepts: random
variables and their associated probability distribution functions. We will do this for random
variables that are discrete or continuous. We will then generalize the concept of a random
variable to a random vector.

2 Random variables

As we discussed last lecture, a probability function or measure is a function that takes a
sample space to the reals:

Pr(S) : S ! R (1)

and that abides by certain rules (the axioms of probability). For example, we can define a
probability function on the sample space for ‘a pair of coin flips’ as S = {HH,HT, TH, TT}
using Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25, i.e. a fair coin example. As we
make use of sample spaces and the probability functions that we define, we are often in a
position where we want to quantify specific types of outcomes, e.g. the number of ‘Tails’
in our two flips. To do this, we define a random variable, which is a real valued function
on the sample space f(S), where we generally substitute X for f :

X(S) : S ! R (2)

A random variable di↵ers from a probability function in that it is not constrained to follow
the axioms of probability (although it must adhere to rules such that it is still considered a
mathematical function!). For example, it is not constrained to be greater than zero, if need
not take the entire probability space to 1, and it need enforce additivity on disjoint sets (the
third axiom of probability). While these functions are unconstrained, we in general define
them in such a way such that they capture useful information about sample outcomes.
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).
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X(⌦) : X(H) = 0, X(T ) = 1

X : ⌦ ! R
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (18)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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We are going to define a probability function which map sample spaces to the real line
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:
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where Pr(S) is a function, which we could have written f(S).

7
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F (8)

Pr(F) (9)

⇤ ⇥ F (10)

This A ⇥ F then Ac ⇥ F

A1,A2, ... ⇥ F then
��

i=1Ai ⇥ F

⇤, {H}, {T}, {H,T} (11)

F (12)

E(S) (13)

E (14)

X(�) (15)

� (16)

Pr(F) (17)

X = x (18)

Pr(X) (19)

X = x , Pr(X)
S (20)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Y |experimentB
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H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)
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A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)
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Random Variables

✓̂0 (45)

✓̂1 (46)

MLE(�̂) = [�̂µ, �̂a, �̂d] (47)

MLE(�̂) = [�̂µ, �̂a, �̂d, �̂z] (48)

xi,a (49)

xi,d (50)

xi,z (51)
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
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✓
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1 + e
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(52)
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nX
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
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�̂u

1 + e�̂u
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✓
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(53)

l(✓̂1|y) =
nX
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
yiln

✓
e
�̂u+xi,a�̂a+xi,d�̂d+xi,z �̂i,z

1 + e
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(54)

l(✓̂0|y) =
nX

i=1


yiln

✓
e
�̂u+xi,z �̂i,z

1 + e�̂u+xi,z �̂i,z
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✓
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Pr : F ! [0, 1] (56)
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• Why we might want a concept like X:

• This approach allows us to handle non-numeric and numeric sample 
spaces (sets) in the same framework (e.g., {H, T} is non-numeric but a 
random variable maps them to something numeric)

• We often want to define several random variables on the same sample 
space (e.g., for a “two coin flips” experiment “number of heads” and 
“number of heads on the first of the two flips”):

• A random variable provides a bridge between the abstract sample space 
that is mapped by X and the actual outcomes of the experiment that we 
run (the sample), which produces specific numbers x

• As an example, the notation X = x bridges the abstract notion of what 
values could occur X and values we actually measured x

X1

X2

⌦ (7)

F (8)

Pr(F) (9)

; 2 F (10)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (11)

F (12)

E(⌦) (13)

E (14)

X(⌦) (15)

X(⌦) : ⌦ ! R (16)

⌦ (17)

Pr(F) (18)

X = x (19)

Pr(X) (20)

X = x , Pr(X)
S (21)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).
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Random variables III

X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R
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X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R

24



• A critical point to note: because we have defined a probability function on the 
sigma algebra, this “induces” a probability function on the random variable X:

• In fact, this relationship allows us to “start” our modeling with the random variable 
and the probability on this random variable  (i.e. the Sample Space, Sigma Algebra, 
and original probability function on random variable are implicit - but remember 
these foundations are always there!!)

• To bridge probability of an occurrence and what actually occurs in the experiment 
e often use an “upper” case letter to represent the function and a “lower” case 
letter to represent the values we actually observe:

• We will divide our discussion of random variables (which we will abbreviate r.v.) 
and the induced probability distributions into cases that are discrete (taking 
individual point values) or continuous (taking on values within an interval of the 
reals), since these have slightly different properties (but the same foundation is 
used to define both!!)

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =

�
⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,

2

Random variables IV
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MLE(�̂) = [�̂µ, �̂a, �̂d] (47)

MLE(�̂) = [�̂µ, �̂a, �̂d, �̂z] (48)

xi,a (49)

xi,d (50)

xi,z (51)
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i=1


yiln

✓
e
�̂u+xi,a�̂a+xi,d�̂d

1 + e
�̂u+xi,a�̂a+xi,d�̂d

◆
+ (1� yi)

✓
1� e

�̂u+xi,a�̂a+xi,d�̂d

1 + e
�̂u+xi,a�̂a+xi,d�̂d

◆�
(52)

l(✓̂0|y) =
nX

i=1


yiln

✓
e
�̂u

1 + e�̂u

◆
+ (1� yi)

✓
1� e

�̂u

1 + e�̂u

◆�
(53)

l(✓̂1|y) =
nX

i=1


yiln

✓
e
�̂u+xi,a�̂a+xi,d�̂d+xi,z �̂i,z

1 + e
�̂u+xi,a�̂a+xi,d�̂d+xi,z �̂i,z

◆
+(1�yi)

✓
1� e

�̂u+xi,a�̂a+xi,d�̂d+xi,z �̂i,z

1 + e
�̂u+xi,a�̂a+xi,d�̂d+xi,z �̂i,z

◆�

(54)

l(✓̂0|y) =
nX

i=1


yiln

✓
e
�̂u+xi,z �̂i,z

1 + e�̂u+xi,z �̂i,z

◆
+ (1� yi)

✓
1� e

�̂u+xi,z �̂i,z

1 + e�̂u+xi,z �̂i,z

◆�
(55)

Pr : F ! [0, 1] ) Pr : X ! [0, 1] (56)

6



• There are TWO broad categories of random variables: “Discrete” and 
“Continuous”

• If the values the random variable can take can be “counted” then the random 
variable is DISCRETE

• If the values the random variable cannot be “counted” (e.g., the random variable 
can take any values on the REALs) then the random variable is CONTINUOUS

• We need to treat the (mathematical) mechanics of these two categories 
differently… 

• Technical points: (A) discrete random variables may be finite or infinite as long as they 
take “countable” states (e.g., the naturals are countable while the reals are uncountable), 
(B) a continuous random variable can only be defined on an uncountable sample space 
(usually the reals), but a discrete (or mixed) random variable may be defined in a 
continuous sample space

Discrete vs Continuous Random 
Variables



Discrete random variables / 
probability mass functions (pmf)

• If we define a random variable on a discrete sample space, we produce a 
discrete random variable.  For example, our two coin flip / number of Tails 
example: 

• The probability function in this case will induce a probability distribution that 
we call a probability mass function which we will abbreviate as pmf

• For our example, if we consider a fair coin probability model (assumption!) for 
our two coin flip experiment and define a “number of Tails” r.v., we induce the 
following pmf:

3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =

�
⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,
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3 Discrete random variables

To make the concept of a random variable more clear, let’s begin by considering discrete
random variables, where just as with discrete sample spaces, we assume that we can enu-
merate the values that the random variable can take, i.e. they take specific values we
can count such as 0, 1, 2, etc. and cannot take any value within an interval (although
note they can potentially take an infinite number of discrete states!). For example, for our
sample space of two coin flips S = {HH,HT, TH, TT}, we can define a random variable
X representing ‘number of Tails’:

X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2 (3)

This is something useful we might want to know about our sample outcomes and now we
can work with numbers as opposed to concepts like ‘HT’.

Since we have defined a probability function and a random variable on the same sam-
ple space S, we can think of the probability function as inducing a probability distribution
on the random variable. We will often represent probability distributions using PX(x) or
Pr(X = x), where the lower case ‘x’ indicates the specific value taken by the random
variable X. For example, if we define a ‘fair coin’ probability model for our two flip sample
space:

Pr(HH) = Pr(HT ) = Pr(TH) = Pr(TT ) = 0.25 (4)

given this probability model and the random variable defined in equation (3), we now have
the following probability distribution for X:

PX(x) = Pr(X = x) =
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⇤

⇥

Pr(X = 0) = 0.25
Pr(X = 1) = 0.5
Pr(X = 2) = 0.25

(5)

where, again, we use lower case x to indicate a specific realization of the random variable
X. Note that it is implicit that a probability of zero is assigned to every other value of
X. Here, we have also introduced the notation PX(x) to indicate that this probability
distribution is a probability mass function or ‘pmf’, i.e. a probability distribution for a dis-
crete random variable. This is to distinguish it from a probability distribution defined on a
continuous random variable, which we will see is slightly di�erent conceptually. Intuitively,
the ‘mass’ part of this description can be seen when plotting this probability distribution
with the value taken by X on the X-axis and the probability on the Y-axis (see plot from
class). In this case the ‘mass’ of the probability is located at three points: 0, 1, and 2.

Now that we have introduced a pmf, let’s consider a related concept: the cumulative
mass function or ‘cmf’. When first introduced, it is not clear why we need to define cmf’s.
However, it turns out the cmf’s play an important role in probability theory and statistics,
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Pr(X1 = 1, X2 = 0) = Pr({HT, TH} \ {TH, TT}) = Pr({TH}) = 0.25 (46)

Pr(X1 = 0) = Pr({HH}) = 0.25 (47)

Pr(X1 = 1) = Pr({HT, TH}) = 0.5 (48)

Pr({HH}) (49)

Pr(HH) (50)

Pr(X = 0) (51)

Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25 (52)
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Discrete random variables / 
cumulative mass functions (cmf)

• An alternative (and important!) representation of a discrete probability model is a 
cumulative mass function which we will abbreviate (cmf):

• This definition is not particularly intuitive, so it is often helpful to consider a 
graph illustration.  For example, for our two coin flip / fair coin / number of Tails 
example: 

since they provide an alternative representation of a probability model (versus a pmf) that
has better properties in some cases (we will see this below when discussing the uniqueness
of the analogous concept for continuous distributions) and they have strong connections to
critical concepts in statistics, e.g. such as a p-value. For the moment, you should take my
word for it that cumulative functions are worth knowing about.

We define a cmf as follows:
FX(x) = Pr(X 6 x) (6)

where we define this function for X from �⇥ to +⇥. Equation (6) is actually enough to
define the cmf completely. However, it is often more intuitive to see how this is calculated
using the following formalism:

FX(x) =
x�

i

Pr(X = i) (7)

where the sum is over a discrete set of values over the real line that we wish to consider
(again, note that only values defined in our probability model are assigned non-zero prob-
ability). For example, for the probability model in equation (5) we we can use equation
(7) to calculate the value of the cmf at particular values:

FX(�1) = 0, FX(0) = 0.25, FX(0.5) = 0.25, FX(1) = 0.75
FX(1.2) = 0.75, FX(1) = 1.0, FX(12) = 1.0

(8)

When graphing a cmf from �⇥ to ⇥ with X on the X-axis and FX(x) on the Y-axis, this
produces a ‘step function’. For example, from (�⇥, 0) (the interval that gets infinitely
close to zero but does not include zero) the function takes the value zero. It then makes a
‘step’ or ‘jump’ up to 0.25 for the interval [0, 1), etc. (see graph from class).

4 Continuous random variables

We define random variables that can take any value on the real line or an interval of the
real line R to be continuous random variables. It turns out that considering intervals of
(or the entire) real line adds considerable complexity for defining the analogous concepts
we have considered with discrete random variables (although not if we define a discrete
random variable on a continuous probability space - see your first Homework!). To mo-
tivate the reason for using continuous random variables, let’s consider our example of a
sample space of ‘human heights’. As we have discussed last lecture, human heights cannot
take any possible value on the real line, but we assume heights could actually take any
continuous value between �⇥ and ⇥ for mathematical convenience (and because we can
define probability functions in such a way that this assumption provides a reasonable ap-
proximation of reality).

3

F X
(x

)

X



Continuous random variables / 
probability density functions (pdf)

• For a continuous sample space, we can define a discrete random 
variable or a continuous random variable (or a mixture!)

• For continuous random variables, we will define analogous 
“probability” and “cumulative” functions, although these will have 
different properties

• For this class, we are considering only one continuous sample 
space: the reals (or more generally the multidimensional 
Euclidean space)

• Recall that we will use the reals as a convenient approximation to 
the true sample space



Mathematical properties of 
continuous r.v.’s

• For the reals, we define a probability density function (pdf): 

• The pdf of X, a continuous r.v., does not represent the probability of a 
specific value of X, rather we can use it to find the probability that a value 
of X falls in an interval [a,b]:

• Related to this concept, for a continuous random variable, the probability 
of specific value (or point) is zero (why is this!?)

• For a specific continuous distribution the cdf is unique but the pdf is not, 
since we can assign values to non-measurable sets 

• If this is the case, how would we ever get a specific value when 
performing an experiment!?

For our continuous probability space, defining a probability function and random vari-
able results in a probability density function (pdf) fX(x) which we can use to define the
probability of an interval of the random variable:

Pr(a 6 X 6 b) =

� b

a
fX(x)dx (9)

where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):

FX(x) =

� x

�⇤
fX(x)dx (10)

where intuitively, the cdf evaluated at a value x is the area under the curve of the pdf,
starting from �⇤ to x, e.g. for a symmetric distribution, the value of x right under the
‘peak’ of the pdf produces FX(x) = 0.5 (and note this relationship holds for all continuous
distributions if we consider x=median(X) where we will define median in our next lecture).

As an example, assuming our height case, where you will recall from last lecture we define
the sample space of heights to be all open, closed, and combination open/closed intervals
on the real line, we will define a random variable X, which takes each of these intervals
as an input and returns same interval as an output (note that as we will discuss in our
lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
and returns the same value as an output, i.e. the function has the general form f(x) = x.

Since we are allowing heights to (in theory) take any value on the real line, we define
a probability function that induces the normal distribution on X, a reasonable model for
heights. The pdf of a normal distribution has the following form:

fX(x) =
1⌅
2⇥⇤2

e�
(x�µ)2

2�2 (11)

where we often use the following shorthand to represent this pdf fX(x) ⇥ N(µ,⇤2) and
where the µ and ⇤2 are constants the we call parameters (see your notes from class for
a picture of this pdf). The cdf of the normal FX(x) = �(x) is easy to draw (see your
class notes for a picture) and while it cannot be written in a ‘closed form’, the function
can be calculated to very high precision (we define an equation that has a closed form ex-
pression as one that we can write as a single expression that includes only simple functions).
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fX(x)dx (9)

where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):

FX(x) =

� x

�⇤
fX(x)dx (10)

where intuitively, the cdf evaluated at a value x is the area under the curve of the pdf,
starting from �⇤ to x, e.g. for a symmetric distribution, the value of x right under the
‘peak’ of the pdf produces FX(x) = 0.5 (and note this relationship holds for all continuous
distributions if we consider x=median(X) where we will define median in our next lecture).

As an example, assuming our height case, where you will recall from last lecture we define
the sample space of heights to be all open, closed, and combination open/closed intervals
on the real line, we will define a random variable X, which takes each of these intervals
as an input and returns same interval as an output (note that as we will discuss in our
lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
and returns the same value as an output, i.e. the function has the general form f(x) = x.

Since we are allowing heights to (in theory) take any value on the real line, we define
a probability function that induces the normal distribution on X, a reasonable model for
heights. The pdf of a normal distribution has the following form:

fX(x) =
1⌅
2⇥⇤2

e�
(x�µ)2

2�2 (11)

where we often use the following shorthand to represent this pdf fX(x) ⇥ N(µ,⇤2) and
where the µ and ⇤2 are constants the we call parameters (see your notes from class for
a picture of this pdf). The cdf of the normal FX(x) = �(x) is easy to draw (see your
class notes for a picture) and while it cannot be written in a ‘closed form’, the function
can be calculated to very high precision (we define an equation that has a closed form ex-
pression as one that we can write as a single expression that includes only simple functions).
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Continuous random variables / 
cumulative density functions (cdf)

• For continuous random variables, 
we also have an analog to the 
cmf, which is the cumulative 
density function abbreviated 
as cdf:

• Again, a graph illustration is 
instructive

• Note the cdf runs from zero to 
one (why is this?)
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where the integral of fX(x) from �⇤ to ⇤ equals 1 (second axiom of probability). We
can also define a cumulative density function (cdf):
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where intuitively, the cdf evaluated at a value x is the area under the curve of the pdf,
starting from �⇤ to x, e.g. for a symmetric distribution, the value of x right under the
‘peak’ of the pdf produces FX(x) = 0.5 (and note this relationship holds for all continuous
distributions if we consider x=median(X) where we will define median in our next lecture).

As an example, assuming our height case, where you will recall from last lecture we define
the sample space of heights to be all open, closed, and combination open/closed intervals
on the real line, we will define a random variable X, which takes each of these intervals
as an input and returns same interval as an output (note that as we will discuss in our
lecture on samples, while we generally will only consider specific point outcomes of the
random variable in our sample, e.g. X = 5⇥ for an individual person’s height, we will use
the random variable and its associated probability distribution to consider the probability
that a specific sample outcome occurs in an interval - see below). In this particular height
example, our random variable X is the identity function, the function which takes an input
and returns the same value as an output, i.e. the function has the general form f(x) = x.

Since we are allowing heights to (in theory) take any value on the real line, we define
a probability function that induces the normal distribution on X, a reasonable model for
heights. The pdf of a normal distribution has the following form:

fX(x) =
1⌅
2⇥⇤2

e�
(x�µ)2

2�2 (11)

where we often use the following shorthand to represent this pdf fX(x) ⇥ N(µ,⇤2) and
where the µ and ⇤2 are constants the we call parameters (see your notes from class for
a picture of this pdf). The cdf of the normal FX(x) = �(x) is easy to draw (see your
class notes for a picture) and while it cannot be written in a ‘closed form’, the function
can be calculated to very high precision (we define an equation that has a closed form ex-
pression as one that we can write as a single expression that includes only simple functions).
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That’s it for today

• Next lecture, we will continue our discussion of random variables, 
random vectors and introduce expectations, variances, and related!


