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Announcements

Registering for labs in Ithaca - everyone should be registered for EITHER
Thurs or Fri lab, if not - PLEASE CANVAS EMAIL ME ASAP

For Weill students - please continue to join by zoom this week and next
unless you hear otherwise (!!)

For Weill / NYC students - Weill recess (Feb 26-March |) does not
correspond to Ithaca spring break (April 1-5) - we will (likely) re-schedule
lab and we will not have homework due during Weill recess (lectures will
be recorded...

Reminder: your |st homework is due Fri (Feb 9) 11:59PM (!!) - note that
after today’s lecture, you will have everything you need to complete your
homework!

Office hours this week = we are moving them | | AM-1PM on Weds (Feb
7) - note we may move them any given week but | will always send an
email / announce when these will be ahead of time!



Summary of lecture 5: Introduction
to random vectors AND
expectations / variances

® |ast class, we introduced random variables

® Today we will continue our discussion of random variables and
introduce random vectors!

® We will also begin our discussion of expectation, variances, and
related



Conceptual Overview

Experiment

Statistics Assumptions




Review: Experiments and
Outcomes

Experiment - a manipulation or measurement of a system
that produces an outcome we can observe

Experiment Outcome - a possible result of the experiment
Example (Experiment / Outcomes):

® Coin flip/ “Heads” or “Tails”

® Two coin flips / HH, HT, TH, TT

® Measure heights in this class / |.5m, |.7Im, 1.85m, ...



Review: Sample Spaces

Sample Space (()) - set comprising all possible outcomes associated
with an experiment

(Note: we have not defined a Sample - we will do this later!)
Examples (Experiment / Sample Space):

e “Single coin flip” / {H, T}

e “Two coin flips” / {HH,HT, TH,TT}

® “Measure Heights” / any actual measurement OR we could use [R
Events - a subset of the sample space
Examples (Sample Space / Examples of Events):

e “Single coin flip” / 0, {H}, {H,T}

e “Two coin flips” / {TH}, {HH,TH}, {HT, TH,TT}

® “Measure Heights” / {I.7m},{l.5m, ..,2.2m} OR [I.7m], (1.5m,|.8m)



Review: Sigma Algebra

e Sigma Algebra ( F) - a collection of events (subsets) of {) of interest with the following
three properties: 1. ) € F ,2. A € F then A°€ F ,3. Ay, Ag,... € F then | .2, A; € F

Note that we are interested in a particular Sigma Algebra for each sample space...
® Examples (Sample Space / Sigma Algebra):
o (HT}Y/ 0,{H},{T},{H, T}

e {HH,HT,TH,TT} /

0 {HH} {HT} {TH},{TT},{HH,HT},{HH,TH},{HH,TT},{HT,TH},{HT,TT},
(TH,TT}{HH,HT,TH},{HH, HT,TT},{HH,TH,TT},{TH,HT,TT}{HH, TH, HT, TT}

e IR /more complicated to define the sigma algebra of interest (see next slide...)



Review: Probability functions |

Probability Function - maps a Sigma Algebra of a sample to a subset of the
reals:

Pr: F — [0,1]

Not all such functions that map a Sigma Algebra to [0, 1] are probability functions,
only those that satisfy the following Axioms of Probability (where an axiom is a
property assumed to be true):

1. For AC Q,Pr(A) >0
2. Pr(Q) =1
3. For A, Ag,...C Q,if 4;NA; =0 (disjoint) for each i # j: Pr(J;° A;) ZPT

Note that since a probability function takes sets as an input and is restricted in
structure, we often refer to a probability function as a probability measure



Review: Conditional probability

® We have an intuitive concept of conditional probability: the
probability of an event, given another event has taken place

® We will formalize this using the following definition (note that
this is still a probability!!):

The formal definition of the conditional probability of A; given A; is:

Pr(A; N .Aj)
Pr(A;)

Pr(Ai|lA;) =

® While not obvious at first glance, this is actually an intuitive
definition that matches our conception of conditional
probability



Review: Independence

This requires that we define independence as follows:
If A; is independent of A;, then we have:
Pr(A;|A;) = Pr(A;)

This implies the following from the definition of conditional prob.:

Pr(AiNA)  Pr(A)Pr(4))

PrA) = ") Pr(4)

= Pr(A;)

This in turn produces the following relation for independent
events:

Pr(A;NA;) = Pr(A;)Pr(A;)



Review: Random variables |
Random variable - a real valued function on the sample space:

X: Q=R

Intuitively:

) — |[X(w),wec|—R

Note that these functions are not constrained by the axioms of
probability, e.g. not constrained to be between zero or one (although they
must be measurable functions and admit a probability distribution on the
random variable!!)

We generally define them in a manner that captures information that is of
interest

As an example, let’s define a random variable for the sample space of the
“two coin flip” experiment that maps each sample outcome to the
“number of Tails” of the outcome:

X(HH) =0, X(HT) =1, X(TH) =1, X(TT) = 2



Review: Random variables |l

®  Why we might want a concept like X:

® This approach allows us to handle non-numeric and numeric sample
spaces (sets) in the same framework (e.g., {H,T} is non-numeric but a
random variable maps them to something numeric)

® We often want to define several random variables on the same sample
space (e.g., for a “two coin flips” experiment “number of heads” and
“number of heads on the first of the two flips”):

X1 Q) — R Q
X9 : (0 >R
® A random variable provides a bridge between the abstract sample space

that is mapped by X and the actual outcomes of the experiment that we
run (the sample), which produces specific numbers x

—> X

—> X2

® As an example, the notation X = x bridges the abstract notion of what
values could occur X and values we actually measured x



Review: Random variables |l

A critical point to note: because we have defined a probability function on the
sigma algebra, this “induces” a probability function on the random variable X:

Pr:F—10,1]= Pr: X — [0,1]

In fact, this relationship allows us to “start” our modeling with the random variable
and the probability on this random variable (i.e. the Sample Space, Sigma Algebra,
and original probability function on random variable are implicit - but remember
these foundations are always there!!)

To bridge probability of an occurrence and what actually occurs in the experiment
e often use an “upper” case letter to represent the function and a “lower” case
letter to represent the values we actually observe:

Pr(X = x)

We will divide our discussion of random variables (which we will abbreviate r.v.)
and the induced probability distributions into cases that are discrete (taking
individual point values) or continuous (taking on values within an interval of the
reals), since these have slightly different properties (but the same foundation is
used to define both!!)



Random Variables
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Review: Discrete vs Continuous
Random Variables

There are TWO broad categories of random variables:“Discrete” and
“Continuous”

If the values the random variable can take can be “counted” then the random
variable is DISCRETE

If the values the random variable cannot be “counted” (e.g., the random variable
can take any values on the REALs) then the random variable is CONTINUOUS

We need to treat the (mathematical) mechanics of these two categories
differently...

Technical points: (A) discrete random variables may be finite or infinite as long as they
take “countable” states (e.g., the naturals are countable while the reals are uncountable),
(B) a continuous random variable can only be defined on an uncountable sample space
(usudlly the reals), but a discrete (or mixed) random variable may be defined in a
continuous sample space



Review: Discrete random variables /
probability mass functions (pmf)

° If we define a random variable on a discrete sample space, we produce a
discrete random variable. For example, our two coin flip / number of Tails
example:

X(HH) =0, X(HT) =1, X(TH) =1, X(TT) = 2

®  The probability function in this case will induce a probability distribution that
we call a probability mass function which we will abbreviate as pmf

® For our example, if we consider a fair coin probability model (assumption!) for
our two coin flip experiment and define a “number of Tails” r.v., we induce the
following pmf: 2

0.8
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Review: Discrete random variables /
cumulative mass functions (cmf)

An alternative (and important!) representation of a discrete probability model is a
cumulative mass function which we will abbreviate (cmf):

Fx(z) = Pr(X < x)
where we define this function for X from —oo to +o0.
This definition is not particularly intuitive, so it is often helpful to consider a

graph illustration. For example, for our two coin flip / fair coin / number of Tails
example:
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Continuous random variables /
probability density functions (pdf)

For a continuous sample space, we can define a discrete random
variable or a continuous random variable (or a mixture!)

For continuous random variables, we will define analogous
“probability” and “cumulative” functions, although these will have
different properties

For this class, we are considering only one continuous sample
space: the reals (or more generally the multidimensional
Euclidean space)

Recall that we will use the reals as a convenient approximation to
the true sample space



Mathematical properties of
continuous r.v.s

For the reals, we define a probability density function (pdf): fx ()

The pdf of X, a continuous r.v., does not represent the probability of a
specific value of X, rather we can use it to find the probability that a value
of X falls in an interval [a,b]:

b
Pra < X <b) = / fx(x)dx

Related to this concept, for a continuous random variable, the probability
of specific value (or point) is zero (why is this!?)

For a specific continuous distribution the cdf is unique but the pdf is not,
since we can assign values to non-measurable sets

If this is the case, how would we ever get a specific value when
performing an experiment!?



Continuous random variables /
cumulative density functions (cdf)
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Random variablesV (advanced
topic)

®  While it will not be clear from this class why cumulative (mass or density) distributions are
important (e.g., we will barely use them...) in your advanced stats classes you will use them a lot
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® The reason you will see them in advanced classes is these have nice properties for mathematical
purposes

® Asan example, ALL cumulative distribution functions have the SAME domain (=the reals!) and
image / codomain (from zero to one!) and all monotonic increasing functions with this
property represent ALL possible probability models

® They have other nice properties (e.g., they are uniquely defined as opposed to probability mass
or density functions)

® This is another reason why random variables are the central focus in many classes



Reminder: Random variables Il

®  Why we might want a concept like X:

® This approach allows us to handle non-numeric and numeric sample
spaces (sets) in the same framework (e.g., {H,T} is non-numeric but a
random variable maps them to something numeric)

® We often want to define several random variables on the same sample
space (e.g., for a “two coin flips” experiment “number of heads” and
“number of heads on the first of the two flips”):

X1 Q) — R Q
X9 : (0 >R
® A random variable provides a bridge between the abstract sample space

that is mapped by X and the actual outcomes of the experiment that we
run (the sample), which produces specific numbers x

—> X

—> X2

® As an example, the notation X = x bridges the abstract notion of what
values could occur X and values we actually measured x



Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Example of a discrete random

vector

Consider the two coin flip experiment and assume a probability function

for a fair coin: Pr({HH}) = Pr({HT}) = Pr({TH}) = Pr({TT}) = 0.25

X1 (HH) =0
X1 = { X1(HT) =X (TH) =1
X(TT) =2

Let’s define two random variables: “number of Tails” and “first flip is Heads”

Xo(TH) = Xo(TT) =0
Ao = { Xo(HH) = Xo(HT) = 1

The probability function induces the following pmf for the random vector

X=[X1, X2], where we use bold X do indicate a vector (or matrix):

PT(X) = P’I“(Xl = Scl,XQ = 332) = Px(X) = PXI,X2(331,902)

PT(Xl = O,XQ = O) = 0.0,PT‘(Xl = O,XQ = 1) = 0.25
Pr(X;=1,X,=0)=0.25Pr(X;=1,X,=1) =025
Pr(X;=2,Xy=0)=025Pr(X; =2,X,=1) = 0.0

PX1,X2 (x1,x2)
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Example of a continuous random
vector

® Consider an experiment where we define a two-dimensional Reals sample space
for “height” and “IQ” for every individual in the US (as a reasonable approximation)

® |et’s define a bivariate normal probability function for this sample space and
random variables Xi and X2 that are identity functions for each of the two
dimensions

® In this case, the pdf of X=[Xi, X2] is a bivariate normal (we will not write out the
formula for this distribution - yet):

Pr(X) = Pr(X) = x1, Xo = x2) = fx(X) = fx;,x, (21, 72)

Again, note that we cannot use this probability function
to define the probabilities of points (or lines!) but we can
use it to define the probabilities that values of the
random vector fall within (square) intervals of the two
random variables (!) [a,b], [c,d]

b rd
Pria < X1 <b,c< X <d) = / / Ix1,x, (1, 22)dz1, d2s
a C




Random vector conditional

probability and independence |

Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define
conditional probability for random vectors:

PT<X1|X2) =

PT(Xl M XQ)
P?“(XQ)

As a simple example (discrete in this case - but continuous is analogous!), consider the two flip
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads’”:

Xo=0]| Xo=1
X, =0| 00 | 02 |02
X, = 0.25 025 | 0.5 Pr(X;=0NnXy=1) 0.25
Pr(X;=0X2=1) = = =0.5
X, =2 025 | 00 |02 r(&n =02 =1) Pr(Xo=1) 0.5
0.5 0.5

We can similarly consider whether r.v's of a random vector are independent, e.g.

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125

NOTE |:we can use either Pr(X;|X;) = Pr(X;) or Pr(X;NX;)= Pr(X;)Pr(X;) to check
independence!

NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the
opposite is not true: if one does not show independence you’ve established they are not
independent (!!)



Random vectors conditional

probability and independence ||

For random variables that are
NOT independent...

For random variables that ARE

Xo=0] Xo=1
X1=0 0.0 0.25 0.25
X1 = 0.25 0.25 0.5
X1 =2 0.25 0.0 0.25
0.5 0.5

To establish non-independence, just
show ONE case that does not conform
to the independence definition (e.g.,):

Pr(X, =0|X; =0) =

P’I”(Xg =0NnX; = 0) =0# PT(XQ = O)PT(Xl = 0) =0.5%x0.25 =0.125

Pr(X,=0NX; =0)

Pr(X; =0)

OR

And you’re done!

=0 Pr(X;=0)=0.5

independent...
Xo=0]| X9=1
X1 =0 0.125 0.125 0.25
X = 0.25 0.25 0.5
X1 =2 0.125 0.125 0.25
0.5 0.5

To establish independence, you need to
show ALL combinations of random
variable states conform to the
independence definition (!!):

Pr(X; =0NX; =0) = Pr(Xs = 0)Pr(X; = 0) = 0.5%0.25 = 0.125
Pr(Xs=0NX; =1) = Pr(Xy =0)Pr(X; =1) = 0.5%0.5 = 0.25
Pr(Xs =0NX; =2) = Pr(Xs = 0)Pr(X; =2) = 0.5%0.25 = 0.125
Pr(Xs =1NX; =0) = Pr(Xs = 1)Pr(X; = 0) = 0.5 %0.25 = 0.125
PrX;=1NX,=1)=Pr(Xs=1)Pr(X; =1)=05%0.5=0.25
Pr(Xo=1NX; =2) = Pr(Xs = 1)Pr(X; =2) = 0.5%0.25 = 0.125



Marginal distributions of random
vectors

® Note that marginal distributions of random vectors are the
probability of a r.v. of a random vector after summing (discrete) or
integrating (continuous) over all the values of the other random variables:

maz(Xa)
Py, (2131) = Z PT‘(Xl =11 NXg = :UQ) = ZPT(Xl = ZI?l‘XQ == xz)PT(XQ = 332)

xo=min(X2)

oo

le ($1) = / PT(Xl = CElﬂXQ = Jjg)dxg = / PT(Xl = $1|X2 = xg)PT(Xg = $2)d332

— 00

®  Again,as a simple illustration, consider our two coin flip example:

Xo=0] Xo=1
X1=0 0.0 0.25 0.25
X1 =1 0.25 0.25 0.5
X1 =2 0.25 0.0 0.25
0.5 0.5




Three last points about random
vectors

® Just as we can define cmf’s / cdf’s for r.vs, we can do the same for random
vectors:

Fx, x,(z1,22) = Pr(X1 < x1, X2 < 22)

1 o
Fx, x,(z1,22) = / / fx, x,(x1, x2)dxr1d2s
—00 J —00

®  We have been discussing random vectors with two r.vs, but we can
consider any number n of r.v’s:

Pr(X)=Pr(X; =21, Xo=29,...., X, =)

®  We refer to probability distributions defined over r.v. to be univariate,
when defined over vectors with two r.v.s they are bivariate, and when
defined over three or more, they are multivariate



Expectations and variances

We are now going to introduce fundamental functions of random variables /
vectors: expectations and variances

These are functionals - map a function to a scalar (humber)

These intuitively (but not rigorously!) these may be thought of as “a function on a
function” with the following form:

f(X(Q),Pr(X)) : {X,Pr(X)} - R

These are critical concepts for understanding the structure of probability models
where the interpretation of the specific probability model under consideration

They also have deep connections to many important concepts in probability and
statistics

Note that these are distinct from functions (Transformations) that are defined
directly on X and not on Pr(X), i.e. Y = g(X):

X)X Y
g(X) =Y = Pr(X)— Pr(Y)



Expectations |

Following our analogous treatment of concepts for discrete and continuous
random variables, we will do the same for expectations (and variances),
which we also call expected values

Note that the interpretation of the expected value is the same in each
case

The expected value of a discrete random variable is defined as follows:
max(X)
EX= ) (X=iPr(X=1i)
i=min(X)

For example, consider our two-coin flip experlment / fair coin probability
model / random variable “number of tails™: )

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) =

Re(X)

0.0 0.2 04 0.6 0.8
T S N R B

.....................



Expectations |l

The expected value of a continuous random variable is defined as follows:

+00
EX = X fx(x)dx

— O

For example, consider our height measurement experiment / normal
probability model / identity random variable:

<
-

0.6 0.8

f(x)

04

0.0 0.2
| |




Expectations |l

In the discrete case, this is the same as adding up all the possibilities that
can occur and dividing by the total number, e.g. (0+1+1+2) /4 = | (hence
it is often referred to as the mean of the random variable

An expected value may be thought of as the “center of gravity”, where a
median (defined as the number where half of the probability is on either
side) is the “middle” of the distribution (note that for symmetric
distributions, these two are the same!)

The expectation of a random variable X is the value of X that minimizes
the sum of the squared distance to each possibility

For some distributions, the expectation of the random variable may be
infinite. In such cases, the expectation does not exist



That’s it for today

® Next lecture, we will continue our discussion of expectations,
variances, and related!



