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Announcements

Registering for labs in Ithaca - everyone should be registered for EITHER
Thurs or Fri lab, if not - PLEASE CANVAS EMAIL ME ASAP

For Weill (NYC) students - we have lecture classrooms for next week
(and today) Feb I3 and Feb 15: A-250 (1300 York Ave, 2nd floor)

Reminder: | st homework is due tomorrow (Fri, Feb 9) by I [:59PM (!!)



Summary of lecture 6: Introduction
expectations / variances of random
AND Intro to Inference

® Last class, we introduced expectations

® TJoday we will continue our discussion of expectations and variances
of random variables and vectors!

® We will also begin our discussion of probability models



Conceptual Overview

Experiment

Statistics Assumptions




Review: Random Variables
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Review: Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Review: Example of a discrete

random vector

Consider the two coin flip experiment and assume a probability function

Xo(TH) = Xo(TT) =0

for a fair coin: Pr({HH)}) = Pr({HTY}) = Pr({TH)}) = Pr({TT}) = 0.25

Let’s define two random variables: “number of Tails” and “first flip is Heads”
X1(HH) =0

X1 =% Xi(HT)=X(TH) =1
X1(TT) =2

Ao = { Xo(HH) = Xo(HT) = 1

The probability function induces the following pmf for the random vector

X=[X1, X2], where we use bold X do indicate a vector (or matrix):

PT(X) = P’I“(Xl = Scl,XQ = 332) = Px(X) = PXI,X2(331,902)

PT(Xl = O,XQ = O) = 0.0,PT‘(Xl = O,XQ = 1) = 0.25
Pr(X;=1,X,=0)=0.25Pr(X;=1,X,=1) =025
Pr(X;=2,Xy=0)=025Pr(X; =2,X,=1) = 0.0
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Review: Example of a continuous
random vector

® Consider an experiment where we define a two-dimensional Reals sample space
for “height” and “IQ” for every individual in the US (as a reasonable approximation)

® |et’s define a bivariate normal probability function for this sample space and
random variables Xi and X2 that are identity functions for each of the two
dimensions

® In this case, the pdf of X=[Xi, X2] is a bivariate normal (we will not write out the
formula for this distribution - yet):

Pr(X) = Pr(X) = x1, Xo = x2) = fx(X) = fx;,x, (21, 72)

[
Again, note that we cannot use this probability function ‘f’g
to define the probabilities of points (or lines!) but we can S
use it to define the probabilities that values of the
random vector fall within (square) intervals of the two
random variables (!) [a,b], [c,d]

2

b rd
Pria < X1 <b,c< X <d) = / / Ix1,x, (1, 22)dz1, d2s
a C




Review: Random vector conditional
probability and independence |

Just as we have defined conditional probability (which are probabilities!) for sample spaces, we can define
conditional probability for random vectors:

PT(Xl M XQ)
P?“(XQ)

PT<X1|X2) =

As a simple example (discrete in this case - but continuous is analogous!), consider the two flip
sample space, fair coin probability model, random variables: “number of tails” and “first flip is heads’”:

Xo=0]| Xo=1
X, =0| 00 | 02 |02
X, = 0.25 025 | 0.5 Pr(X;=0NnXy=1) 0.25
Pr(X;=0X2=1) = = =0.5
X, =2 025 | 00 |02 r(&n =02 =1) Pr(Xo=1) 0.5
0.5 0.5

We can similarly consider whether r.v's of a random vector are independent, e.g.

Pr(X;=0NXy=1)=0.25# Pr(X; = 0)Pr(X; = 1) = 0.25% 0.5 = 0.125

NOTE |:we can use either Pr(X;|X;) = Pr(X;) or Pr(X;NX;)= Pr(X;)Pr(X;) to check
independence!

NOTE II: to establish Xi, Xj are independent you must check all possible relationships but the
opposite is not true: if one does not show independence you’ve established they are not
independent (!!)



Review: Random vectors conditional
probability and independence ||

For random variables that are
NOT independent...

For random variables that ARE

Xo=0] Xo=1
X1=0 0.0 0.25 0.25
X1 = 0.25 0.25 0.5
X1 =2 0.25 0.0 0.25
0.5 0.5

independent...
Xo=0]| X9=1
X1 =0 0.125 0.125 0.25
X = 0.25 0.25 0.5
X1 =2 0.125 0.125 0.25
0.5 0.5

To establish non-independence, just
show ONE case that does not conform
to the independence definition (e.g.,):

Pr(X,=0NX; =0)

Pr(X; =0|X; =0) = PriX, = 0]

OR

P’I”(Xg =0NnX; = 0) =0# PT(XQ = O)PT(Xl = 0) =0.5%x0.25 =0.125

And you’re done!

=0 Pr(X;=0)=0.5

To establish independence, you need to
show ALL combinations of random
variable states conform to the
independence definition (!!):

Pr(X; =0NX; =0) = Pr(Xs = 0)Pr(X; = 0) = 0.5%0.25 = 0.125
Pr(Xs=0NX; =1) = Pr(Xy =0)Pr(X; =1) = 0.5%0.5 = 0.25
Pr(Xs =0NX; =2) = Pr(Xs = 0)Pr(X; =2) = 0.5%0.25 = 0.125
Pr(Xs =1NX; =0) = Pr(Xs = 1)Pr(X; = 0) = 0.5 %0.25 = 0.125
PrX;=1NX,=1)=Pr(Xs=1)Pr(X; =1)=05%0.5=0.25
Pr(Xo=1NX; =2) = Pr(Xs = 1)Pr(X; =2) = 0.5%0.25 = 0.125



Review: Expectations and
variances

We are now going to introduce fundamental functions of random variables /
vectors: expectations and variances

These are functionals - map a function to a scalar (humber)

These intuitively (but not rigorously!) these may be thought of as “a function on a
function” with the following form:

f(X(Q),Pr(X)) : {X,Pr(X)} - R

These are critical concepts for understanding the structure of probability models
where the interpretation of the specific probability model under consideration

They also have deep connections to many important concepts in probability and
statistics

Note that these are distinct from functions (Transformations) that are defined
directly on X and not on Pr(X), i.e. Y = g(X):

X)X Y
g(X) =Y = Pr(X)— Pr(Y)



Review: Expectations |

Following our analogous treatment of concepts for discrete and continuous
random variables, we will do the same for expectations (and variances),
which we also call expected values

Note that the interpretation of the expected value is the same in each
case

The expected value of a discrete random variable is defined as follows:
max(X)
EX= ) (X=iPr(X=1i)
i=min(X)

For example, consider our two-coin flip experlment / fair coin probability
model / random variable “number of tails™: )

EX = (0)(0.25) + (1)(0.5) + (2)(0.25) =

Re(X)

0.0 0.2 04 0.6 0.8
T S N R B

.....................



Review: Expectations ||

The expected value of a continuous random variable is defined as follows:

+00
EX = X fx(x)dx

— O

For example, consider our height measurement experiment / normal
probability model / identity random variable:

<
-

0.6 0.8

f(x)

04

0.0 0.2
| |




Expectations |l

In the discrete case, this is the same as adding up all the possibilities that
can occur and dividing by the total number, e.g. (0+1+1+2) /4 = | (hence
it is often referred to as the mean of the random variable

An expected value may be thought of as the “center of gravity”, where a
median (defined as the number where half of the probability is on either
side) is the “middle” of the distribution (note that for symmetric
distributions, these two are the same!)

The expectation of a random variable X is the value of X that minimizes
the sum of the squared distance to each possibility

For some distributions, the expectation of the random variable may be
infinite. In such cases, the expectation does not exist



Variances |

° We will define variances for discrete and continuous random variables,
where again, the interpretation for both is the same

° The variance of a discrete random variable is defined as follows:

mazx(X)
Var(X)=V(X)= ) (X =i)-EX)’Pr(X =1)
i=min(X)

®  For example, consider our two-coin flip experiment / fair coin probability
model / random variable “number of tails™:

< |
-

0.8
Ll

© |
o

Var(X) = (0 —1)2(0.25) + (1 — 1)2(0.5) + (2 — 1)2(0.25) = 0.5 §<§_E

N
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Variances |l

The variance of a continuous random variable is defined as follows:

+0o0
Var(X) = VX = /_ (X —EX)*fx(x)dx

For example, consider our height measurement experiment / normal
probability model / identity random variable:

1.0

—{ Means and SDs
m=0,sd=1
m=1,sd=2
m=3,sd=0.5
m=

m
m
[m|
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Variances llI

Intuitively, the variance quantifies the “spread” of a distribution

The squared component of variance has convenient mathematical
properties, e.g. we can view them as sides of triangles

Other equivalent (and often used) formulations of variance:
Var(X) = E [(X — EX)?]
Var(X) = E(X?) — (EX)?

Instead of viewing variance as including a squared term, we could view the
relationship as follows:

Var(X) = E[(X — EX)(X — EX)]



Generalization: higher moments

The expectation of a random variable is the “first” moment and we can
generalize this concept to “higher” moments:

EXF =Y XFPr(X)

EXF = / X*fx(x)dx

The variance is the second “central” moment (i.e. calculating a moment

after subtracting off the mean) and we can generalize this concept to
higher moments as well:

C(X*) =) (X —EX)"Pr(X)

C(xF) = /(X _EX) fy (2)da



Random vectors: expectations
and variances

®  Recall that a generalization of a random variable is a random vector, e.g.
X: [XlaXQ] PX17X2(CU1,ZUQ) OT le,XQ(.Tl,CUQ)

® The expectation (a function of a random vector and its distribution!) is a
vector with the expected value of each element of the random vector,

& EX = [EX1, EXo]
®  Variances also result in variances of each element (and additional terms...
see next slide!!)

® Note that we can determine the conditional expected value or variance
of a random variable conditional on a value of another variable, e.g.

max(X1) max(X1)
E(Xi|X2) = ) (Xi=iPr(Xi=ilXs) V(Xi[Xo)= Y ((X1=1)—EX1)’Pr(X; = i|Xs)
i=min(X1) i=min(X1)
+oo +o0
E(Xl‘XQ) = leX1|X2 (331|£E2)da?1 V(X1|X2) = / (Xl — EXl)QfX1|X2 (xl‘xg)dilﬁl



Random vectors: covariances

Variances (again a function!) of a random vector are similar producing
variances for each element, but they also produce covariances, which
relate the relationships between random variables of a random vector!!

i=max(X1) j=mazx(X2)

Cov(X1,X2) = > > (X1 =1) —EX1)((X2 = j) — EX2) Px, x, (21, 32)
i=min(X1) j=min(X2)

+00 +00
COV(Xl, XQ) = / (X1 - EXl)(XQ - EXQ)le’XQ (xl, .’L‘Q)d.%’ldwg

Intuitively, we can interpret a positive covariance as indicating “big values
of Xi tend to occur with big values of X2 AND small values of Xi tend to
occur with small values of X2"”

Negative covariance is the opposite (e.g.“big X1 with small X2 AND small
X1 with big X2")

Zero covariance indicates no relationship between big and small values of
X1 and X2



An illustrative example

For example, consider our experiment where we have measured “height”
and “IQ” / bivariate normal probability model / identity random variable:




Notes about covariances

Covariance and independence, while related, are NOT synonymous (!!),
although if random variables are independent, then their covariance is
zero (but necessarily vice versa!)

Covariances are symmetric: Cov(X, X2) = Cov(Xa, X1)
Other equivalent (and often used) formulations of covariances:
Cov(X1, X2) = E[(X1 — EX1)(X2 — EX>)]
Cov(X1, X2) = E(X1X2) — EX1EX>

From these formulas, it follows that the covariance of a random variable
and itself is the variance:

Cov(X1,X1) = E(X1X:) —EX,EX; = E(X?) — (EX})? = Var(X))



Covariance matrices

Note that we have defined the “output” of applying an expectation
function to a random vector but we have not yet defined the analogous

output for applying a variance function to a random vector

The output is a covariance matrix, which is square, symmetric matrix with
variances on the diagonal and covariances on the off-diagonals

For example, for two and three random variables:

. VarX1 COV(Xl,XQ)
Var(X) = cov(Xy, Xa)  VarX,

VarX1 COV(Xl,XQ) COV(Xl,Xg)
Var(X) = |Cov(X1, X2) Var Xs Cov(Xa, X3)
COV(Xl,Xg) COV(XQ,Xg) Var(Xg)

Note that not all square, symmetric matrices are covariance matrices (!!),
technically they must be positive (semi)-definite to be a covariance matrix



Covariances and correlations

Since the magnitude of covariances depends on the variances of XI and
X2, we often would like to scale these such that “1” indicates maximum
“big with big / small with small” and “-1”" indicates maximum “big with
small” (and zero still indicates no relationship)

A correlation captures this relationship:

COV(Xl,X2>

Corr(X1, X3) = v/ Var(X1)+/Var(Xz)

Where we can similarly calculate a correlation matrix, e.g. for three
random variables:

1 Corr(X1, X2) Corr(X7, X3)
Corr(X) = | Corr(Xy, Xo) 1 Corr( X2, X3)
Corr(X1, X3) Corr(Xa, X3) 1



Algebra of expectations and
variances

® If we consider a function (e.g., a transformation) on X (a function on the
random variable but not on the probabilities directly!), recall that this can
result in a different probability distribution for Y and therefore different
expectations, variances, etc. for Y as well

®  We will consider two types of functions on random variables and the
result on expectation and variances:sums Y = X1+ X2+...and Y = a + bXi
where a and b are constants

®  For example, for sums, Y = Xi + X2 we have the following relationships:
E(Y) = E(X1 + XQ) = EX| + EXy
Var(Y') = Var(X; + X3) = VarX; + VarXs + 2Cov(X7, Xo)

®  As another example, for Y = Xi + X2 + X3 we have:
E(Y) = E(Xl + X2 + Xg) = EX1 + EX2 + EX3
Var(Y) = Var(X;+Xo+X3) = VarX;+VarXo+Var X3+2Cov (X1, X2)4+2Cov(X1, X3)+2Cov(Xs, X3)



Algebra of expectations and
variances

For the function Y = a + bXi we obtain the following relationships:

BEY = a4 bEX
Var(Y) = b*Var(X)

Finally, note that if we were to take the covariance (or correlation) of two
random variables Y1 and Y2 with the relationship:

Yi=a1 + 01X, Yo =az + baXo
COV(Yl,YQ) = bleCOV(Xl,XQ)

Corr (Y7, Ys) = Corr(X1, Xo)



So far
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Probability models |

We have defined Pr(X), a probability model (=probability function!) on a
random variable, which technically we produce by defining Pr function on the
sigma algebra and the X (random variable function) on the sample space

So far, we have generally considered such probability models / functions
without defining them explicitly (except for a illustrative few examples)

To define an explicit model for a given system / experiment we are going to
assume that there is a “true” probability model, that is a consequence of the
experiment that produces sample outcomes

We place “true” in quotes since the defining a single true probability model
for a given case could only really be accomplished if we knew every single
detail about the system and experiment (would a probability model be useful
in this case?)

In practice, we therefore assume that the true probability distribution is
within a restricted family of probability distributions, where we are satisfied if
the true probability distribution in the family describes the results of our
experiment pretty well / seems reasonable given our assumptions



Probability models |l

In short, we therefore start a statistical investigation assuming that there
is a single true probability model that correctly describes the possible
experiment outcomes given the uncertainty in our system

In general, the starting point of a statistical investigation is to make
assumptions about the form of this probability model

More specifically, a convenient assumption is to assume our true
probability model is specific model in a family of distributions that can be
described with a compact equation

This is often done by defining equations indexed by parameters



Probability models ||

Parameter - a constant(s) 0 éhich indexes@a I@bability model
belonging to a family of models ™~ such that

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to make an educated
guess at the value of the parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the the experiment, and the system of interest

(1)



Discrete parameterized examples

®  Consider the probability model for the one coin flip experiment / number
of tails.

e This is the Bernoulli distribution with parameter §) = p (what does p
represent!?) where © = [0, 1]

®  We can write this X ~ Bern(p) and this family of probability models has
the following form:

P’I“(X — Qj‘p) — PX(ZU’p) :px(l _p)l_x

®  For the experiment of n coin flips / number of tails, one possible family
Binomial distribution X ~ Bin(n, p):
n\ n!
(:U) - al(n—x)!

nl=nx(n—1)%x(n—2)*..x1

Pr(X = z|n,p) = Px(z|n,p) = (Z)px(l —-p)""

® There are many other discrete examples: hypergeometric, Poisson, etc.



Continuous parameterized
examples

®  Consider the measure heights experiment (reals as approximation to the
sample space) / identity random variable

®  For this example we can use the family of normal distributions that are
parameterized by 6 = [,u, 02] (what do these parameters represent!?)
with the following possible values: ©, = (o0, 0), ©,2 = |0, 00)

®  We often write this as X ~ N(u,0?) and the equation has the following

form:
Pr(X = olu,0%) = fx(elp0?) = ——e T &
r(X =xlu,0) = fx(xlp, o) = e 20 o
’ ’ V2mo? . A

®  There are many other continuous examples: uniform, exponential, etc.



Example for random vectors

® Since random vectors are the generalization of r.v.s, we similarly can
define parameterized probability models for random vectors

® Asan example, if we consider an experiment where we measure “height”
and “1Q” and we take the 2-D reals as the approximate sample space
(vector identity function), we could assume the bivariate normal family of
probability models:

1 1 (w1 —p1)? 2p(w1 — ) (w2 — p2) | (w2 — pun)?
p?) ( " )]

2 2
X ’ ) ’ 9 - ex _ _
Plpn ot ) = 5 |t = — -

rho=0.5




That’s it for today

® Next lecture, we will begin our discussion of inference!



