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• For Weill (NYC) students - we will have a lecture classroom for Thurs 
(Feb 15):  A-250 (1300 York Ave, 2nd floor)

• 2nd homework will be available later today (Feb 13) and will be due Feb 
23) by 11:59PM (!!) 

Announcements



Summary of lecture 7: Introduction 
to samples (and statistics!)

• Last class, we completed our discussion of expectations and variances 
of random variables and vectors!

• We will also began our discussion of probability models

• Today we will complete our discussion of probability models and 
introduce samples
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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Review: Random Variables
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Review: Random vectors
• We are often in situations where we are interested in defining more than 

one r.v. on the same sample space

• When we do this, we define a random vector

• Note that a vector, in its simplest form, may be considered a set of numbers 
(e.g. [1.2,  2.0,  3.3] is a vector with three elements)

• Also note that vectors (when a vector space is defined) ARE NOT REALLY 
NUMBERS although we can define operations for them (e.g. addition, 
“multiplication”), which we will use later in this course

• Beyond keeping track of multiple r.v.’s, a random vector works just like a r.v., 
i.e. a probability function induces a probability function on the random 
vector and we may consider discrete or continuous (or mixed!) random 
vectors

• Note that we can define several r.v.’s on the same sample space (= a 
random vector), but this will result in one probability distribution function 
(why!?)



Review: Probability models I
• We have defined Pr(X), a probability model (=probability function!) on a 

random variable, which technically we produce by defining Pr function on the 
sigma algebra and the X (random variable function) on the sample space

• So far, we have generally considered such probability models / functions 
without defining them explicitly (except for a illustrative few examples)

• To define an explicit model for a given system / experiment we are going to 
assume that there is a “true” probability model, that is a consequence of the 
experiment that produces sample outcomes

• We place “true” in quotes since the defining a single true probability model 
for a given case could only really be accomplished if we knew every single 
detail about the system and experiment (would a probability model be useful 
in this case?) 

• In practice, we therefore assume that the true probability distribution is 
within a restricted family of probability distributions, where we are satisfied if 
the true probability distribution in the family describes the results of our 
experiment pretty well / seems reasonable given our assumptions



Review: Probability models II

• In short, we therefore start a statistical investigation assuming that there 
is a single true probability model that correctly describes the possible 
experiment outcomes given the uncertainty in our system

• In general, the starting point of a statistical investigation is to make 
assumptions about the form of this probability model

• More specifically, a convenient assumption is to assume our true 
probability model is specific model in a family of distributions that can be 
described with a compact equation

• This is often done by defining equations indexed by parameters



• Parameter - a constant(s)     which indexes a probability model 
belonging to a family of models      such that  

• Each value of the parameter (or combination of values if there is more 
than on parameter) defines a different probability model: Pr(X)

• We assume one such parameter value(s) is the true model

• The advantage of this approach is this has reduced the problem of using 
results of experiments to answer a broad question to make an educated 
guess at the value of the parameter(s)

• Remember that the foundation of such an approach is still an assumption 
about the properties of the the experiment, and the system of interest 
(!!!) 
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1 Introduction

Last lecture, we discussed some fundamental functions of random variables/vectors and
their probability distributions, the interpretation of which does not depend on the specific
probability model under consideration: expectations (means), variances, covariances (cor-
relations). Today we will discuss some specific probability models that will be particularly
useful to us in our study of quantitative genomics. After introducing these models, we will
introduce inference and discuss the first critical concepts for making inferences: samples,
statistics, and their sampling distributions. We will then begin our discussion of estimation
(a particular class of inference), where we will make use of samples to determine the value
of the parameter of the underlying probability model that is responsible for our sample,
which we will use to (indirectly) make statements about the system we are studying.

2 Probability models

We have now discussed that by defining a probability function Pr(S) and a random variable
X(S) on a sample space S, we define a probability distribution for the random variable
Pr(X), and we can use expectations, variances, and covariance, to characterize aspects
of the probability distribution regardless of the specific form of the distribution. While
choosing a specific probability model (a specific probability distribution) is in theory only
restricted according to the axioms of probability, we in general make use of probability mod-
els that are both intuitive and allow for mathematical conveniences. One such convenience
is the ability to (mathematically) simply define a large number of possible probability mod-
els with a compact equation. For the models we will consider, the way this is done is by
making our probability distributions functions of parameters:

Parameter � a constant which indexes a probability model belonging to a family of
models � such that � ⇥ �.
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Review: Probability models III



Discrete parameterized examples

• Consider the probability model for the one coin flip experiment / number 
of tails.  

• This is the Bernoulli distribution with parameter    = p (what does p 
represent!?) where 

• We can write this X ~ Bern(p) and this family of probability models has 
the following form:

• For the experiment of n coin flips / number of tails, one possible family 
Binomial distribution X ~ Bin(n, p):

• There are many other discrete examples: hypergeometric, Poisson, etc.    

The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not

2

The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not

2

The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not

2

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 5: Probability Models, Inference, Samples, Statistics, and Estimators

Lecture: February 14; Version 1: February 20; Version 2, March 15

1 Introduction

Last lecture, we discussed some fundamental functions of random variables/vectors and
their probability distributions, the interpretation of which does not depend on the specific
probability model under consideration: expectations (means), variances, covariances (cor-
relations). Today we will discuss some specific probability models that will be particularly
useful to us in our study of quantitative genomics. After introducing these models, we will
introduce inference and discuss the first critical concepts for making inferences: samples,
statistics, and their sampling distributions. We will then begin our discussion of estimation
(a particular class of inference), where we will make use of samples to determine the value
of the parameter of the underlying probability model that is responsible for our sample,
which we will use to (indirectly) make statements about the system we are studying.

2 Probability models

We have now discussed that by defining a probability function Pr(S) and a random variable
X(S) on a sample space S, we define a probability distribution for the random variable
Pr(X), and we can use expectations, variances, and covariance, to characterize aspects
of the probability distribution regardless of the specific form of the distribution. While
choosing a specific probability model (a specific probability distribution) is in theory only
restricted according to the axioms of probability, we in general make use of probability mod-
els that are both intuitive and allow for mathematical conveniences. One such convenience
is the ability to (mathematically) simply define a large number of possible probability mod-
els with a compact equation. For the models we will consider, the way this is done is by
making our probability distributions functions of parameters:

Parameter � a constant which indexes a probability model belonging to a family of
models � such that � ⇥ �.

1

The di⇥erences among di⇥erent models in a particular family therefore simply depends
on the specific values of the parameters.

To make this concept more concrete, let first consider the probability model for a dis-
crete random variable that can take only one of two values 0 or 1 (which could represent
‘Heads’ or ‘Tails’ for a coin sample space of ‘one flip’). In this case, our specific probability
model is the Bernoulli distribution, which is a function of a single parameter p:

Pr(X = x|p) = PX(x|p) = px(1� p)1�x (1)

Note that we use a conditional notation, since the specific probability model depends on
the value of the contant, e.g. a ‘fair coin’ probability model is a case where p = 0.5. The
parameter p can take values from [0, 1], so in our parameter notation, we have � = p and
� = [0, 1]. We will often use the following shorthand X ⇤ Bern(p) to indicate a random
variable that has a Bernoulli distribution.

Let’s now introduce a second probability model that we could use to model our ran-
dom variable describing the ‘number of Tails’ for our sample space of ‘two coin flips’
S = {HH,HT, TH, TT}. Recall that this random variable had the following structure:
X(HH) = 0, X(HT ) = 1, X(TH) = 1, X(TT ) = 2. We can simply represent this random
variable as a function of two random variables X1 ⇤ Bern(p) and X2 ⇤ Bern(p) if we set
X = X1 +X2. More generally, we could do this for a sample space for n flips of a coin if
we set X =

⇤n
i=1Xi. In this case, the probability model for X is a binomial distribution:

Pr(X = x|n, p) = PX(x|n, p) =
�
n

x

⇥
px(1� p)n�x (2)

which technically has two parameters (n, p) but we often consider sets of probability models
indexed by p for a specific n, i.e. we only consider the parameter p. For example, in our two
flip case, we have n = 2 and for these two flips, we can define a number of models including
the ‘fair coin’ model p = 0.5. Note that if you are unfamiliar with ‘choose’ notation, it is
defined as follows: �

n

x

⇥
=

n!

x!(n� x)!
(3)

n! = n ⇥ (n� 1) ⇥ (n� 2) ⇥ ... ⇥ 1 (4)

which intuitively accounts for the di⇥erent orderings that lead to the same number of
‘Tails’, e.g. in the two flip case, the ordering HT and TH produce the same number of
Tails. We use the following shorthand for the Binomial distribution: X ⇤ Bin(n, p).

Other important discrete distributions include the Hypergeometric, Geometric, and Pois-
son. We will discuss the former when we consider Fisher’s exact test. While we will not

2



Continuous parameterized 
examples

• Consider the measure heights experiment (reals as approximation to the 
sample space) / identity random variable

• For this example we can use the family of normal distributions that are 
parameterized by                       (what do these parameters represent!?) 
with the following possible values:                        , 

• We often write this as                    and the equation has the following 
form: 

• There are many other continuous examples: uniform, exponential, etc.  

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):
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gravity’ of this distribution (see class notes for a picture) and has the following possible
values: � = (�⌅,⌅). The ⌅2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values � = [0,⌅). As we have seen previously, our shorthand for a normal distribution is
X ⇤ N(µ,⌅2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⇥ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) �) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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Example for random vectors

• Since random vectors are the generalization of r.v.’s, we similarly can 
define parameterized probability models for random vectors

• As an example, if we consider an experiment where we measure “height” 
and “IQ” and we take the 2-D reals as the approximate sample space 
(vector identity function), we could assume the bivariate normal family of 
probability models:
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Introduction to inference I

• Recall that our eventual goal is to use an experiment to provide an 
answer to a question (about a system)

• So far, we have set up the mathematical foundation that we need to 
accomplish this goal in a probability / statistics setting

• Specifically, we have defined formal components of our framework and 
made assumptions that have reduced the scope of the problem

• With these components and assumptions in place, we are almost 
ready to perform inference, which will accomplish our goal  



• For our system and experiment, we are going to assume there is a single 
“correct” probability function (which in turn defines the probability of our 
possible random variable outcomes)

• For the purposes of inference, we often assume a parameterized family of 
probability models determine the possible cases that contain the “true” model 
that describes the result of the experiment   

• This reduces the problem of inference to identifying the “single” value(s) of 
the parameter that describes this true model

• Inference (informally) is the process of using the output of an experiment to 
answer the question

• Our eventual goal is to use a sample (generated by experiment trials) to 
provide an answer to a question (about a system)

Introduction to inference II



Introduction to inference III

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family probability 
distributions, indexed by the value of parameter(s) ) on the basis of a 
sample

• There are two major types of inference we will consider in this 
course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to 
formally define: experimental trials, samples, sample probability 
distributions (or sampling distributions), statistics, statistic probability 
distributions (or statistic sampling distributions) 
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
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f(X(⌦), P r(X) : {X, P r(X)} ! R (210)
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Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n
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Pr([X1, X2, ..., Xn])
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Pr(T (X))
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To do this, we define a function. Before we consider the specifics of how we define a prob-
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This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
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Experiments to Samples (what 
we observe!)

• Experiment - a manipulation or measurement of a system that 
produces an outcome we can observe

• Experiment Outcome - a possible outcome of the experiment

• Sample Space - set comprising all possible outcomes of an 
experiment 

• Experimental Trial - one instance of an experiment

• Sample - (informal) results of one or more experimental trials

• Example (Experiment / Sample Space / Sample):

• Coin flip /  {H, T} /  T,  T,  H,  T,  H

• Two coin flips / {HH,  HT,  TH,  TT} /  HH,  HT,  HH,  TH,  HH

• Measure heights in this class / Reals / 5’9”, 5’2”, 5’1”, 6’0”, 5’7”



Samples I

• Sample - repeated observations of a random variable X, generated by 
experimental trials

• We will consider samples that result from n experimental trials (what 
would be the ideal n = ideal experiment!?)

• Since a set of actual experimental outcomes may not be numbers (e.g., a 
set of H and T’s) we want to map them to numbers…

• We already have the formalism to do this and represent a sample of size n, 
specifically this is a random vector:

• As an example, for our two coin flip experiment / number of tails r.v., we 
could perform n=2 experimental trials, which would produce a sample = 
random vector with two elements 

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
essential in quantitative genomics (the latter will often be our goal but the former is re-
quired for the latter). We will discuss these in general terms in the next two lectures and in
specific terms throughout the semester. Also, note that one of the nice aspects of assuming
that the probability model of our random variable is from a family indexed in a parameter
set �, the problem of inference is reduced to the problem of learning something about the
specific parameter value of our model �. However, before we get to concepts of inference
concerning �, we need to define several fundamental concepts: samples, statistics, and their
sampling distributions.

4 Samples and i.i.d.

Recall that the starting point of our discussion is a system we want to know something
about, and an experiment that produces a sample space S. We then define a probabil-
ity function and a random variable on S, which define a specific probability distribution
Pr(X = x), where by definition, we have defined a specific probability model (by making
assumptions) indexed by �. In general, we would like to know something about the pa-
rameter of our probability model �, which is defined by the system and experiment (and
by extrapolation from our many assumptions, can be used to learn about the system),
but is unknown to us. Inference is the process of determining something about the true
parameter value, and for this we need a sample.

Sample � repeated observations of a random variable X, generated by experiments.

The ideal set of experiments would have an infinite number of observations, but since
such cases are not possible, we will consider a sample of size n. Now, we have already seen
how to represent a sample, this is simply a random vector:

[X = x] = [X1 = x1, ..., Xn = xn] (7)

where unlike the random vectors we have considered before, each of the n random variables
have the same structure, they are simply indicate di⇥erent observations of the random
variable in our sample, e.g. for n = 2 in our coin flip example(s), we do not define X1=‘#
of Tails’ and X2=‘# of Heads’ but rather X1=‘# of Tails’ of the first flip (or pair of flips)
in an experiment and X2=‘# of Tails’ in the second flip (or pair of flips) in the same
experiment. Now, as we have discussed, defining a probability function on the sample
space Pr(S) induces a probability distribution of a random variable defined on the same
sample space Pr(X) and since our random vector is considering multiple realizations of
this random variable, the Pr(X) induces a probability distribution on our sample vector,

4



• For example, for our one coin flip experiment / number of tails r.v., we could 
produce a sample of n = 10 experimental trials, which might look like:

• As another example, for our measure heights / identity r.v., we could produce a 
sample of n=10 experimental trails, which might look like:

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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Example: Observed Sample!



Samples II

• Recall that we have defined experiments (= experimental trials) in a 
probability / statistics setting where these involve observing individuals 
from a population or the results of a manipulation

• We have defined the possible outcome of an experimental trial, i.e. the 
sample space

• We have also defined a random variable X, where this can take values 
representing the outcomes of our experimental trials, i.e., X = x

• Since the random variable X also has an induced probability distribution 
associated with it, we can also consider Pr(X), i.e., the probability of each 
possible outcome of an experiment or the entire sample!

• Since this defines a probability model Pr(X), we have shifted our focus 
from the sample space to the random variable

� (7)

F (8)

Pr(F) (9)

⇤ ⇥ F (10)

This A ⇥ F then Ac ⇥ F

A1,A2, ... ⇥ F then
��

i=1Ai ⇥ F

⇤, {H}, {T}, {H,T} (11)

F (12)

E(S) (13)

E (14)

X(�) (15)

� (16)

Pr(F) (17)

X = x (18)

Pr(X) (19)

X = x , Pr(X)
S (20)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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• Note that since we have defined (or more accurately induced!) a probability 
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Sample Probability Distribution

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R

Cov(X1, X2) =

i=max(X1)X

i=min(X1)

j=max(X2)X

j=min(X2)

((X1 = i)� EX1)((X2 = j)� EX2)PX1,X2(x1, x2) (1)

[X1 = x1, ..., Xn = xn] (2)

Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (7)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)
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That’s it for today

• Next lecture, we will continue our discussion of inference by 
introducing statistics (and estimators)!


