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Announcements

NEXT WEEK |: 2nd homework will is due Feb 23) by | 1:59PM (!!)

NEXT WEEK 2: Lecture on Tues (Feb 20) will be by zoom for BOTH
Ithaca and NYC!

NEXT WEEK 3:1 will need to reschedule office hours (stay tuned!)



Summary of lecture 8: Statistics and
Estimators

® Last lecture, we discussed probability models and introduce samples

® Today we are going to introduce statistics and estimators



Conceptual Overview

Experiment

Statistics Assumptions




Review: Random Variables
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Review: Random vectors

We are often in situations where we are interested in defining more than
one r.v.on the same sample space

When we do this, we define a random vector

Note that a vector, in its simplest form, may be considered a set of numbers
(e.g.[1.2, 2.0, 3.3] is a vector with three elements)

Also note that vectors (when a vector space is defined) ARE NOT REALLY
NUMBERS although we can define operations for them (e.g. addition,
“multiplication”), which we will use later in this course

Beyond keeping track of multiple r.v’s, a random vector works just like a r.v.,
i.e. a probability function induces a probability function on the random
vector and we may consider discrete or continuous (or mixed!) random
vectors

Note that we can define several r.v.s on the same sample space (= a

random vector), but this will result in one probability distribution function
(why!?)



Review: Probability models |

In short, we therefore start a statistical investigation assuming that there
is a single true probability model that correctly describes the possible
experiment outcomes given the uncertainty in our system

In general, the starting point of a statistical investigation is to make
assumptions about the form of this probability model

More specifically, a convenient assumption is to assume our true
probability model is specific model in a family of distributions that can be
described with a compact equation

This is often done by defining equations indexed by parameters



Review: Probability models ||

Parameter - a constant(s) & which indexes a probability model
belonging to a family of models © such that § € ©

Each value of the parameter (or combination of values if there is more
than on parameter) defines a different probability model: Pr(X)

We assume one such parameter value(s) is the true model

The advantage of this approach is this has reduced the problem of using
results of experiments to answer a broad question to make an educated
guess at the value of the parameter(s)

Remember that the foundation of such an approach is still an assumption
about the properties of the the experiment, and the system of interest

(1)



Review: Introduction to inference

For our system and experiment, we are going to assume there is a single
“correct” probability function (which in turn defines the probability of our
possible random variable outcomes)

For the purposes of inference, we often assume a parameterized family of
probability models determine the possible cases that contain the “true” model
that describes the result of the experiment

This reduces the problem of inference to identifying the “single” value(s) of
the parameter that describes this true model

Inference (informally) is the process of using the output of an experiment to
answer the question

Our eventual goal is to use a sample (generated by experiment trials) to
provide an answer to a question (about a system)



Review: Inference

® Inference - the process of reaching a conclusion about the true
probability distribution (from an assumed family probability
distributions, indexed by the value of parameter(s) ) on the basis of a
sample

® There are two major types of inference we will consider in this
course: estimation and hypothesis testing

® Before we get to these specific forms of inference, we need to
formally define: experimental trials, samples, sample probability
distributions (or sampling distributions), statistics, statistic probability
distributions (or statistic sampling distributions)



So far

X=x :

- Pr(X)
X
/Ran'dom Vari:ble\
X X(w),w e Pr(F)
A A A
Experiment () F

(Sample Space) (Sigma Algebra)



Samples
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Review: Experiments to Samples
(what we observe!)

Experiment - a manipulation or measurement of a system that
produces an outcome we can observe

Experiment Outcome - a possible outcome of the experiment

Sample Space - set comprising all possible outcomes of an
experiment

Experimental Trial - one instance of an experiment
Sample - (informal) results of one or more experimental trials
Example (Experiment / Sample Space / Sample):

e Coinflip/ {HT}/ T T HT H

® Two coin flips / {HH, HT, TH, TT}/ HH, HT, HH, TH, HH

® Measure heights in this class / Reals / 5’9”,5’2”, 51”7, 6’0", 5'7”



Review: Samples |

Sample - repeated observations of a random variable X, generated by
experimental trials

We will consider samples that result from n experimental trials (what
would be the ideal n = ideal experiment!?)

Since a set of actual experimental outcomes may not be numbers (e.g.,a
set of H and T’s) we want to map them to numbers...

We already have the formalism to do this and represent a sample of size n,
specifically this is a random vector:

X =x| = X1 =21,..., Xy = xp]

As an example, for our two coin flip experiment / number of tails r.v., we
could perform n=2 experimental trials, which would produce a sample =
random vector with two elements



Example: Observed Sample!

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]



Review: Samples |

Recall that we have defined experiments (= experimental trials) in a
probability / statistics setting where these involve observing individuals
from a population or the results of a manipulation

We have defined the possible outcome of an experimental trial, i.e. the
sample space ()

We have also defined a random variable X where this can take values
representing the outcomes of our experimental trials, i.e., X = x

Since the random variable X also has an induced probability distribution
associated with it, we can also consider Pr(X), i.e., the probability of each
possible outcome of an experiment or the entire sample!

Since this defines a probability model Pr(X), we have shifted our focus
from the sample space to the random variable



Sample Probability Distribution

® Note that since we have defined (or more accurately induced!) a probability
distribution Pr(X) on our random variable, this means we have induced a
probability distribution on the sample (!!):

Pr(X=x)= Pr(X; =1, X2 =29,..., X, = ) = Px(x) or fx(x)

® This is the sample probability distribution or sampling distribution (often called the
joint sampling distribution)

® While samples could take a variety of forms, we generally assume that each
possible observation in the sample has the same form, such that they are
identically distributed:

Pr(Xy=z1) = Pr(Xo=x9) = ... = Pr(X,, = z,)

® We also generally assume that each observation is independent of all other
observations:

Pr(X=x)=Pr(X; =x1)Pr(Xy = x2)...Pr(X, = x,)

® If both of these assumptions hold, than the sample is independent and identically
distributed, which we abbreviate as i.i.d.



The Observed Sample!

It is important to keep in mind, that while we have made assumptions such that we
can define the joint probability distribution of (all) possible samples that could be
generated from n experimental trials, in practice we only observe one set of trials,
i.e. one sample

For example, for our one coin flip experiment / number of tails r.v., we could
produce a sample of n = 10 experimental trials, which might look like:

x = [1,1,0,1,0,0,0,1,1,0]

As another example, for our measure heights / identity r.v., we could produce a
sample of n=10 experimental trails, which might look like:

x = [-2.3,0.5,3.7,1.2, -2.1,1.5,-0.2, —0.8, —1.3, —0.1]

In each of these cases, we would like to use these samples to perform inference
(i.e. say something about our parameter of the assumed probability model)

Using the entire sample is unwieldy, so we do this by defining a statistic



Samples
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Statistics
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Statistics |

Statistic - a function on a sample

Note that a statistic T is a function that takes a vector (a sample) as an
input and returns a value (or vector):

T(x)=T(x1,22,....,Tn) =t

For example, one possible statistic is the mean of a sample:

T(x) = % zn: .,
1=1

It is critical to realize that, just as a probability model on X induces a
probability distribution on a sample, since a statistic is a function on the
sample, this induces a probability model on the statistic: the statistic
probability distribution or the sampling distribution of the statistic (!!)



Statistics ||

® As an example, consider our height experiment (reals as
approximate sample space) / normal probability model (with
true but unknown parameters 6 = |p,0°] /identity random
variable

® |f we calculate the following statistic:

T(X) — %ixz
1=1

what is Pr(7T'(X))?
® Are the distributions of Xi = xi and Pr(7T'(X)) always the same?



Statistics

Statistic Sampling Pr (T (X))

Statistic: T'(x)
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Statistics and estimators |

Recall for the purposes of inference, we would like to use a sample to say
something about the specific parameter value (of the assumed) family or
probability models that could describe our sample space

Said another way, we are interested in using the sample to determine the “true”
parameter value that describes the outcomes of our experiment

An approach for accomplishing this goal is to define our statistic in a way that it
will allow us to say something about the true parameter value

In such a case, our statistic is an estimator of the parameter: T(X) — 0

There are many ways to define estimators (we will focus on maximum likelihood
estimators in this course)

Intuitively, an estimator is the value for which we have the best evidence for being
the true value of the parameter (our “best guess’) based on the sample, given
uncertainty and our assumptions

Note that without an infinite sample, we will never know the true value of the
parameter with absolute certainty (!!)



Statistics and estimators |l

Estimator - a statistic defined to return a value that represents our
best evidence for being the true value of a parameter

In such a case, our statistic is an estimator of the parameter: T(X) .y
Note that ANY statistic on a sample can in theory be an estimator.

However, we generally define estimators (=statistics) in such a way that it
returns a reasonable or “good” estimator of the true parameter value
under a variety of conditions

How we assess how “good” an estimator depends on our criteria for
assessing “good” and our underlying assumptions



Statistics and estimators |l

Since our underlying probability model induces a probability distribution
on a statistic, and an estimator is just a statistic, there is an underlying
probability distribution on an estimator:

N

Pr(T(X =x)) = Pr(0)

Our estimator takes in a vector as input (the sample) and may be defined
to output a single value or a vector of estimates:

T(X =x)=0= [e},e}, ]

We cannot define a statistic that always outputs the true value of the
parameter for every possible sample (hence no perfect estimator!)

There are different ways to define “good” estimators and lots of ways to
define “bad” estimators (examples?)



Statistics

Statistic Sampling Pr (T (X))

Statistic: T'(x)
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Distribution:
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Estimators

A
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Estimator example |

As an example, let’s construct an estimator

Consider the single coin flip experiment / number of tails random
variable / Bernoulli probability model family (parameter p) / fair coin
model (assumed and unknown to us!!!) / sample of size n=10

We want to estimate p, where a perfectly reasonable estimator is:
1 n
T(XzX)szﬁzE;mi
1=

e.g. this statistic (=mean of the sample) would equal 0.5 for the following
particular sample (will it always?)

x =[1,1,0,1,0,0,0,1,1,0]



Estimator example ||

Let’s continue with our example constructing the probability model

Consider the single coin flip experiment / number of tails random
variable

O={H,T} X:X(H)=0X(T)=1

Bernoulli probability model family (parameter p)
X ~pt(l—p)—

Sample of size n=10

[X — X] — [Xl =1, X9 = T2,..., X190 = fL‘lo]

Sampling distribution (pmf of sample) if i.i.d. ()

(X1 =21, X9 = 29, ..., X10 = 210] ~ p" (1 — p)' ~"1p™(1 — p)'~*2..p™0(1

—D

)1—:1310



Estimator example |l

Define a statistic T(X)

0

Note the values the statistic can take (!!), e.g. with true p=0.5
PMF of T(X) | p=0.5

1 10
T(X=x)=TK) =X =) Xi
1=1

Q_‘
-

Rdx)
O.‘G 0.8

0.4

0.2

0.0

| ‘ ‘ ‘ ‘ ‘ |
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

Side note: we can write the sampling distribution (pmf) of the statistic as
n
Pr(T (X)) ~ nT (X) 1 — n—nT(X)
) ~ (e )X -
Remember for our sample, the value of our statistic for our observed sample (!!)
would equal 0.5 (will it always?)

x =[1,1,0,1,0,0,0,1,1,0]
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Estimators

A
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Introduction to maximum
likelihood estimators (MLE)

We will generally consider maximum likelihood estimators (MLE) in this
course

Now, MLE’s are very confusing when initially encountered...

However, the critical point to remember is that an MLE is just an
estimator (a function on a sample!!),

i.e. it takes a sample in, and produces a nhumber as an output that is our
estimate of the true parameter value

These estimators also have sampling distributions just like any other
statistic!

The structure of this particular estimator / statistic is complicated but
just keep this big picture in mind



That’s it for today

® Next lecture, we will continue our discussion of estimators by
introducing Maximum Likelihood Estimators (MLE)!



