## Quantitative Genomics and Genetics

BioCB 4830/6830; PBSB.520I. 03

## Lecture 9: Maximum Likelihood Estimators

Jason Mezey<br>Feb 20, 2024 (T) 8:40-9:55

## Announcements

- Reminder: 2nd homework will is due Feb 23) by II:59PM (!!)
- A key for homework \#I has now been posted (in the same location as the homework pdf and latex file)!
- We will have office hours IIAM-IPM tomorrow (!!) Weds., Feb 2I as normally scheduled
- We will have lecture on Thurs (Feb 22) but we WILL NOT have lecture this coming Tues (Feb 27) = ITHACA WINTER BREAK (!!)


## Summary of lecture 9: Maximum Likelihood Estimators

- Last lecture, we discussed statistics and estimators
- Today we will discuss an important class of estimators: Maximum Likelihood Estimators (MLE)


## Conceptual Overview



## Review: Samples

$$
\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]: \operatorname{Pr}
$$

## Review: Statistics



## Review: Estimators

$$
\begin{aligned}
& \text { Estimator: } T(\mathbf{x})=\hat{\theta} \quad \underset{\substack{\text { Estimator Sampling } \\
\text { Distribution: }}}{ } \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta \\
& A \\
& {\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]} \\
& X=x \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Random Variable } \\
& X(\omega), \omega \in \Omega \\
& \operatorname{Pr}(\mathcal{F}) \\
& \text { Experiment } \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

## Review (Many)

- Experiment - a manipulation or measurement of a system that produces an outcome we can observe
- Sample Space $(\Omega)$ - set comprising all possible outcomes associated with an experiment
- Sigma Algebra or Sigma Field $(\mathcal{F})$ - a collection of events (subsets) of the sample space of interest
- Probability Measure (=Function) - maps a Sigma Algebra of a sample to a subset of the reals
- Random Variable - (measurable) function on a sample space
- Probability Mass Function / Cumulative Mass Function (pmf / cmf) function that describes the probability distribution of a discrete random variable
- Probability Density Function / Cumulative Density Function (pdf / cdf) function that describes the probability distribution of a continuous random variable
- Probability Distribution Function / Cumulative Distrbution Function (pdf / cdf) - function that describes the probability distribution of a discrete OR continuous random variable


## Review: Random vectors

- We are often in situations where we are interested in defining more than one r.v. on the same sample space
- When we do this, we define a random vector
- Note that a vector, in its simplest form, may be considered a set of numbers (e.g. [I.2, 2.0, 3.3] is a vector with three elements)
- Also note that vectors (when a vector space is defined) ARE NOT REALLY NUMBERS although we can define operations for them (e.g. addition, "multiplication"), which we will use later in this course
- Beyond keeping track of multiple r.v.'s, a random vector works just like a r.v., i.e. a probability function induces a probability function on the random vector and we may consider discrete or continuous (or mixed!) random vectors
- Note that we can define several r.v.'s on the same sample space (= a random vector), but this will result in one probability distribution function (why!?)


## Review: Probability models

- Parameter - a constant(s) $\theta$ which indexes a probability model belonging to a family of models $\Theta$ such that $\theta \in \Theta$
- Each value of the parameter (or combination of values if there is more than on parameter) defines a different probability model: $\operatorname{Pr}(X)$
- We assume one such parameter value(s) is the true model
- The advantage of this approach is this has reduced the problem of using results of experiments to answer a broad question to the problem of using a sample to make an educated guess at the value of the parameter(s)
- Remember that the foundation of such an approach is still an assumption about the properties of the sample outcomes, the experiment, and the system of interest (!!!)


## Review: Inference

- Inference - the process of reaching a conclusion about the true probability distribution (from an assumed family probability distributions, indexed by the value of parameter(s) ) on the basis of a sample
- There are two major types of inference we will consider in this course: estimation and hypothesis testing
- Before we get to these specific forms of inference, we need to formally define: experimental trials, samples, sample probability distributions (or sampling distributions), statistics, statistic probability distributions (or statistic sampling distributions)


## Review: Samples

- Sample - repeated observations of a random variable $X$, generated by experimental trials
- We will consider samples that result from $n$ experimental trials (what would be the ideal $n=$ ideal experiment!?)
- Since a set of actual experimental outcomes may not be numbers (e.g., a set of H and T 's) we want to map them to numbers...
- We already have the formalism to do this and represent a sample of size $n$, specifically this is a random vector:

$$
[\mathbf{X}=\mathbf{x}]=\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

- As an example, for our two coin flip experiment / number of tails r.v., we could perform $n=2$ experimental trials, which would produce a sample $=$ random vector with two elements


## Review: Observed Sample

- It is important to keep in mind, that while we have made assumptions such that we can define the joint probability distribution of (all) possible samples that could be generated from $n$ experimental trials, in practice we only observe one set of trials, i.e. one sample
- For example, for our one coin flip experiment / number of tails r.v., we could produce a sample of $\mathrm{n}=10$ experimental trials, which might look like:

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

- As another example, for our measure heights / identity r.v., we could produce a sample of $\mathrm{n}=10$ experimental trails, which might look like:

$$
\mathbf{x}=[-2.3,0.5,3.7,1.2,-2.1,1.5,-0.2,-0.8,-1.3,-0.1]
$$

- In each of these cases, we would like to use these samples to perform inference (i.e. say something about our parameter of the assumed probability model)
- Using the entire sample is unwieldy, so we do this by defining a statistic


## Review: Sample Probability Distribution

- Note that since we have defined (or more accurately induced!) a probability distribution $\operatorname{Pr}(X)$ on our random variable, this means we have induced a probability distribution on the sample (!!):
$\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=P_{\mathbf{X}}(\mathbf{x})$ or $f_{\mathbf{X}}(\mathbf{x})$
- This is the sample probability distribution or sampling distribution (often called the joint sampling distribution)
- While samples could take a variety of forms, we generally assume that each possible observation in the sample has the same form, such that they are identically distributed:

$$
\operatorname{Pr}\left(X_{1}=x_{1}\right)=\operatorname{Pr}\left(X_{2}=x_{2}\right)=\ldots=\operatorname{Pr}\left(X_{n}=x_{n}\right)
$$

- We also generally assume that each observation is independent of all other observations:

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}\right) \operatorname{Pr}\left(X_{2}=x_{2}\right) \ldots \operatorname{Pr}\left(X_{n}=x_{n}\right)
$$

- If both of these assumptions hold, than the sample is independent and identically distributed, which we abbreviate as i.i.d.


## Review: Statistics I

- Statistic - a function on a sample
- Note that a statistic $T$ is a function that takes a vector (a sample) as an input and returns a value (or vector):

$$
T(\mathbf{x})=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=t
$$

- For example, one possible statistic is the mean of a sample:

$$
T(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- It is critical to realize that, just as a probability model on $X$ induces a probability distribution on a sample, since a statistic is a function on the sample, this induces a probability model on the statistic: the statistic probability distribution or the sampling distribution of the statistic (!!)


## Review: Statistics II

- As an example, consider our height experiment (reals as approximate sample space) / normal probability model (with true but unknown parameters $\theta=\left[\mu, \sigma^{2}\right] /$ identity random variable
- If we calculate the following statistic:

$$
T(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

what is $\operatorname{Pr}(T(\mathbf{X}))$ ?

- Are the distributions of $X_{i}=x_{i}$ and $\operatorname{Pr}(T(\mathbf{X}))$ always the same?


## Review: Estimators I

- Estimator - a statistic defined to return a value that represents our best evidence for being the true value of a parameter
- In such a case, our statistic is an estimator of the parameter: $T(\mathbf{x})=\hat{\theta}$
- Note that ANY statistic on a sample can in theory be an estimator.
- However, we generally define estimators (=statistics) in such a way that it returns a reasonable or "good" estimator of the true parameter value under a variety of conditions
- How we assess how "good" an estimator depends on our criteria for assessing "good" and our underlying assumptions


## Review: Estimators II

- Since our underlying probability model induces a probability distribution on a statistic, and an estimator is just a statistic, there is an underlying probability distribution on an estimator:

$$
\operatorname{Pr}(T(\mathbf{X}=\mathbf{x}))=\operatorname{Pr}(\hat{\theta})
$$

- Our estimator takes in a vector as input (the sample) and may be defined to output a single value or a vector of estimates:

$$
T(\mathbf{X}=\mathbf{x})=\hat{\theta}=\left[\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots\right]
$$

- We cannot define a statistic that always outputs the true value of the parameter for every possible sample (hence no perfect estimator!)
- There are different ways to define "good" estimators and lots of ways to define "bad" estimators (examples?)


## Estimator example I

- As an example, let's construct an estimator
- Consider the single coin flip experiment / number of tails random variable / Bernoulli probability model family (parameter p) / fair coin model (assumed and unknown to us!!!) / sample of size $n=10$
- We want to estimate p , where a perfectly reasonable estimator is:

$$
T(\mathbf{X}=\mathbf{x})=\hat{\theta}=\hat{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- e.g. this statistic (=mean of the sample) would equal 0.5 for the following particular sample (will it always?)

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

## Review: Estimator example II

- Let's continue with our example constructing the probability model
- Consider the single coin flip experiment / number of tails random variable

$$
\Omega=\{H, T\} \quad X: X(H)=0, X(T)=1
$$

- Bernoulli probability model family (parameter p )

$$
X \sim p^{X}(1-p)^{1-X}
$$

- Sample of size $n=10$

$$
[\mathbf{X}=\mathbf{x}]=\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{10}=x_{10}\right]
$$

- Sampling distribution (pmf of sample) if i.i.d. (!!)

$$
\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{10}=x_{10}\right] \sim p^{x_{1}}(1-p)^{1-x_{1}} p^{x_{2}}(1-p)^{1-x_{2}} \ldots p^{x_{10}}(1-p)^{1-x_{10}}
$$

## Review: Estimator example II

- Define a statistic $T(\mathbf{X})$

$$
T(\mathbf{X}=\mathbf{x})=T(\mathbf{X})=\bar{X}=\frac{1}{10} \sum_{i=1}^{10} X_{i}
$$

- Note the values the statistic can take (!!), e.g. with true $p=0.5$ PMF of $T(X) \mid p=0.5$

- Side note: we can write the sampling distribution (pmf) of the statistic as

$$
\operatorname{Pr}(T(\mathbf{X})) \sim\binom{n}{n T(\mathbf{X})} p^{n T(\mathbf{X})}(1-p)^{n-n T \mathbf{X})}
$$

- Remember for our sample, the value of our statistic for our observed sample (!!) would equal 0.5 (will it always?)

$$
\mathbf{x}=[1,1,0,1,0,0,0,1,1,0]
$$

## Estimators

$$
\begin{aligned}
& \text { Estimator: } T(\mathbf{x})=\hat{\theta} \quad \begin{array}{c}
\text { Estimator Sampling } \\
\text { Distribution: }
\end{array} \operatorname{Pr}(T(\mathbf{X}) \mid \theta), \theta \in \Theta \\
& \begin{array}{c}
\uparrow \\
{\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]}
\end{array} \\
& \text { Distribution: } \\
& \operatorname{Pr}\left(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]\right) \\
& \text { Experiment } \quad \Omega \\
& \text { (Sample Space) (Sigma Algebra) }
\end{aligned}
$$

## Introduction to maximum likelihood estimators (MLE)

- We will generally consider maximum likelihood estimators (MLE) in this course
- Now, MLE's are very confusing when initially encountered...
- However, the critical point to remember is that an MLE is just an estimator (a function on a sample!!),
- i.e. it takes a sample in, and produces a number as an output that is our estimate of the true parameter value
- These estimators also have sampling distributions just like any other statistic!
- The structure of this particular estimator / statistic is complicated but just keep this big picture in mind


## Introduction to MEES

- A maximum likelihood estimator (MLE) is an estimator (a statistic!) that has specific properties and is DERIVED in a specific way (i.e., this is a class of estimators)!
- MLE can be derived for (almost) any case where we want to do estimation AND they are (arguably) the most important class of estimators
- Recall that this statistic still takes in a sample and outputs a value that is our estimator (!!) Note that likelihoods are NOT probability functions, i.e. they need not conform to the axioms of probability (!!)
- $\quad$ Sometimes these estimators have nice forms (equations) that we can write out
- For example the maximum likelihood estimator when considering a sample for our single coin example / number of tails is:
- And for our heights example:

$$
M L E(\hat{\mu})=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \quad M L E\left(\hat{\sigma}^{2}\right)=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

## Likelihood I

- To introduce MLE's we first need the concept of likelihood
- Recall that a probability distribution (of a r.v. or for our purposes now, a statistic) has fixed constants in the formula called parameters
- For example, for a normally distributed random variable

$$
\operatorname{Pr}\left(X=x \mid \mu, \sigma^{2}\right)=f_{X}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- However, we could turn this around and fix the sample and let the parameters vary (this is a likelihood!)
- For example, say we have a sample $n=1$, where $x=0.2$ then the likelihood is (if we just set $\sigma^{2}=1$ for explanatory purposes):

$$
L(\mu \mid \mathbf{x}=0.2)=\frac{1}{\sqrt{2 \pi}} e^{-(0.2-\mu)^{2}}
$$

## Likelihood II

- Likelihood - a function with the form of a probability function which we consider to be a function of the parameters $\theta$ for a fixed the sample $[\mathbf{X}=\mathbf{x}]$
- The form of a likelihood is therefore the sampling distribution (the probability distribution!) of the i.i.d sample but there are (at least) three major differences:
- We have parameter values as input and the sample we have observed as a parameter
- The likelihood function does not operate as a probability function (they can violate the axioms of probability)
- For continuous cases, we can interpret the likelihood of a parameter (or combination of parameters) as the likelihood of the point


## Likelihood III

- Again, Likelihood has the form of a probability function which we consider to be a function of the parameters NOT the sample
- Note that likelihoods are NOT probability functions, i.e. they need not conform to the axioms of probability (!!)
- They have the appealing property that for an i.i.d. sample

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(\theta \mid x_{1}\right) L\left(\theta \mid x_{2}\right) \ldots L\left(\theta \mid x_{n}\right)
$$

- They have other appealing properties, including they are sufficient statistics, the invariance principal, etc.


## Normal model example I

- As an example, for our heights experiment / identity random variable, the (marginal) probability of a single observation in our sample is $x_{i}$ is:

$$
\operatorname{Pr}\left(X_{i}=x_{i} \mid \mu, \sigma^{2}\right)=f_{X_{i}}\left(x_{i} \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

- The joint probability distribution of the entire sample of $n$ observations is a multivariate ( $n$-variate) normal distribution
- Note that for an i.i.d. sample, we may use the property of independence

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\operatorname{Pr}\left(X_{1}=x_{1}\right) \operatorname{Pr}\left(X_{2}=x_{2}\right) \ldots \operatorname{Pr}\left(X_{n}=x_{n}\right)
$$

to write pdf of this entire sample as follow:

- The likelihood is therefore:

$$
P\left(\mathbf{X}=\mathbf{x} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

$$
L\left(\mu, \sigma^{2} \mid \mathbf{X}=\mathbf{x}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

## Normal model example II

- Let's consider a sample of size $\mathrm{n}=10$ generated under a standard normal, i.e.

$$
X_{i} \sim N\left(\mu=0, \sigma^{2}=1\right)
$$

$\left[\begin{array}{llllllllllll}-1.0013985 & 1.0968952 & 0.4398448 & 0.7402079 & 1.5576818 & -0.7619734 & 0.6158720 & 0.2738087 & 0.2182059 & 1.7288007\end{array}\right.$

- So what does the likelihood for this sample "look" like? It is actually a 3-D plot where the x and y axes are $\mu$ and $\sigma^{2}$ and the z -axis is the likelihood:

$$
L\left(\mu, \sigma^{2} \mid \mathbf{X}=\mathbf{x}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

- Since this makes it tough to see what is going on, let's set just look at the marginal likelihood for $\sigma^{2}=1$ when using the sample above:



## Introduction to MLE's

- A maximum likelihood estimator (MLE) has the following definition:

$$
M L E(\hat{\theta})=\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} L(\theta \mid \mathbf{x})
$$

- Recall that this statistic still takes in a sample and outputs a value that is our estimator (!!) Note that likelihoods are NOT probability functions, i.e. they need not conform to the axioms of probability (!!)
- Sometimes these estimators have nice forms (equations) that we can write out
- For example the maximum likelihood estimator when considering a sample for our single coin example / number of tails is:

$$
M L E(\hat{p})=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- And for our heights example:

$$
\operatorname{MLE}(\hat{\mu})=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \operatorname{MLE}\left(\hat{\sigma}^{2}\right)=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

## Getting to the MLE

- To use a likelihood function to extract the MLE, we have to find the maximum of the likelihood function $L(\theta \mid \mathbf{x})$ for our observed sample
- To do this, we take the derivative of the likelihood function and set it equal to zero (why?)
- Note that in practice, before we take the derivative and set the function equal to zero, we often transform the likelihood by the natural $\log (\ln )$ to produce the log-likelihood:

$$
l(\theta \mid \mathbf{x})=\ln [L(\theta \mid \mathbf{x})]
$$

- We do this because the likelihood and the log-likelihood have the same maximum and because it is often easier to work with the log-likelihood
- Also note that the domain of the natural log function is limited to $[0, \infty)$ but likelihoods are never negative (consider the structure of probability!)


## MLE under a normal model I

- Recall that the likelihood for a sample of size $n$ generated under a normal model has the following likelihood

$$
L\left(\mu, \sigma^{2} \mid \mathbf{X}=\mathbf{x}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

- By remembering the properties of $\ln$, we can derive the log-likelihood for this model

$$
\text { 1. } \ln \frac{1}{a}=-\ln (a)
$$

$$
\left.l\left(\mu, \sigma^{2} \mid \mathbf{X}=\mathbf{x}\right)\right)=-n \ln (\sigma)-\frac{n}{2} \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2} \begin{aligned}
& \text { 2. } \ln \left(a^{2}\right)=2 \ln (a) \\
& \text { 3. } \ln (a b)=\ln (a)+\ln (b) \\
& \text { 4. } \ln \left(e^{a}\right)=a
\end{aligned}
$$

- To obtain the maximum of this function with respect to $\mu$ we can then take the partial (!!) derivative with respect to and set this equal to zero, then solve (this is the MLE!):

$$
\begin{aligned}
\frac{\partial l(\theta \mid \mathbf{X}=\mathbf{x})}{\partial \mu} & =\frac{1}{\sigma^{2}} \sum_{i}^{n}\left(x_{i}-\mu\right)=0 \\
M L E(\hat{\mu}) & =\frac{1}{n} \sum_{i}^{n} x_{i}
\end{aligned}
$$

## That's it for today

- Next lecture, we will complete our discussion of MLE and (briefly) introduce confidence intervals (and then start introducing hypothesis testing!)

