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• Reminder: 2nd homework will is due Feb 23) by 11:59PM (!!) 

• A key for homework #1 has now been posted (in the same location as 
the homework pdf and latex file)!

• We will have office hours 11AM-1PM tomorrow (!!) Weds., Feb 21 as 
normally scheduled

• We will have lecture on Thurs (Feb 22) but we WILL NOT have lecture 
this coming Tues (Feb 27) = ITHACA WINTER BREAK (!!)

Announcements



Summary of lecture 9: Maximum 
Likelihood Estimators

• Last lecture, we discussed statistics and estimators

• Today we will discuss an important class of estimators: Maximum 
Likelihood Estimators (MLE)
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Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).

7
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To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0
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Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4
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(⌦,F , P r)

x

22

V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))
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Review (Many)
• Experiment - a manipulation or measurement of a system that produces an outcome we 

can observe 

• Sample Space (   ) - set comprising all possible outcomes associated with an experiment

• Sigma Algebra or Sigma Field (    ) - a collection of events (subsets) of the sample 
space of interest

• Probability Measure (=Function) - maps a Sigma Algebra of a sample to a subset of 
the reals

• Random Variable - (measurable) function on a sample space

• Probability Mass Function / Cumulative Mass Function (pmf / cmf) - 
function that describes the probability distribution of a discrete random variable 

• Probability Density Function / Cumulative Density Function   (pdf / cdf) - 
function that describes the probability distribution of a continuous random variable

• Probability Distribution Function / Cumulative Distrbution Function   
(pdf / cdf) - function that describes the probability distribution of a discrete OR 
continuous random variable

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(S) : S ! R (10)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ S, Pr(A) > 0.

2. Pr(S) = 1.

3. For A1,A2, ... 2 S, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A).

These axioms are necessary for many of the logically consistent results built upon proba-
bility. Intuitively, we can think of these axioms as matching how we tend to think about
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Review: Random vectors
• We are often in situations where we are interested in defining more than 

one r.v. on the same sample space

• When we do this, we define a random vector

• Note that a vector, in its simplest form, may be considered a set of numbers 
(e.g. [1.2,  2.0,  3.3] is a vector with three elements)

• Also note that vectors (when a vector space is defined) ARE NOT REALLY 
NUMBERS although we can define operations for them (e.g. addition, 
“multiplication”), which we will use later in this course

• Beyond keeping track of multiple r.v.’s, a random vector works just like a r.v., 
i.e. a probability function induces a probability function on the random 
vector and we may consider discrete or continuous (or mixed!) random 
vectors

• Note that we can define several r.v.’s on the same sample space (= a 
random vector), but this will result in one probability distribution function 
(why!?)



• Parameter - a constant(s)     which indexes a probability model 
belonging to a family of models      such that  

• Each value of the parameter (or combination of values if there is more 
than on parameter) defines a different probability model: Pr(X)

• We assume one such parameter value(s) is the true model

• The advantage of this approach is this has reduced the problem of using 
results of experiments to answer a broad question to the problem of 
using a sample to make an educated guess at the value of the 
parameter(s)

• Remember that the foundation of such an approach is still an assumption 
about the properties of the sample outcomes, the experiment, and the 
system of interest (!!!) 

BTRY 4830/6830: Quantitative Genomics and Genetics
Spring 2011

Lecture 5: Probability Models, Inference, Samples, Statistics, and Estimators

Lecture: February 14; Version 1: February 20; Version 2, March 15

1 Introduction

Last lecture, we discussed some fundamental functions of random variables/vectors and
their probability distributions, the interpretation of which does not depend on the specific
probability model under consideration: expectations (means), variances, covariances (cor-
relations). Today we will discuss some specific probability models that will be particularly
useful to us in our study of quantitative genomics. After introducing these models, we will
introduce inference and discuss the first critical concepts for making inferences: samples,
statistics, and their sampling distributions. We will then begin our discussion of estimation
(a particular class of inference), where we will make use of samples to determine the value
of the parameter of the underlying probability model that is responsible for our sample,
which we will use to (indirectly) make statements about the system we are studying.

2 Probability models

We have now discussed that by defining a probability function Pr(S) and a random variable
X(S) on a sample space S, we define a probability distribution for the random variable
Pr(X), and we can use expectations, variances, and covariance, to characterize aspects
of the probability distribution regardless of the specific form of the distribution. While
choosing a specific probability model (a specific probability distribution) is in theory only
restricted according to the axioms of probability, we in general make use of probability mod-
els that are both intuitive and allow for mathematical conveniences. One such convenience
is the ability to (mathematically) simply define a large number of possible probability mod-
els with a compact equation. For the models we will consider, the way this is done is by
making our probability distributions functions of parameters:

Parameter � a constant which indexes a probability model belonging to a family of
models � such that � ⇥ �.
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Review: Probability models



Review: Inference

• Inference - the process of reaching a conclusion about the true 
probability distribution (from an assumed family probability 
distributions, indexed by the value of parameter(s) ) on the basis of a 
sample

• There are two major types of inference we will consider in this 
course: estimation and hypothesis testing

• Before we get to these specific forms of inference, we need to 
formally define: experimental trials, samples, sample probability 
distributions (or sampling distributions), statistics, statistic probability 
distributions (or statistic sampling distributions) 



Review: Samples

• Sample - repeated observations of a random variable X, generated by 
experimental trials

• We will consider samples that result from n experimental trials (what 
would be the ideal n = ideal experiment!?)

• Since a set of actual experimental outcomes may not be numbers (e.g., a 
set of H and T’s) we want to map them to numbers…

• We already have the formalism to do this and represent a sample of size n, 
specifically this is a random vector:

• As an example, for our two coin flip experiment / number of tails r.v., we 
could perform n=2 experimental trials, which would produce a sample = 
random vector with two elements 

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
essential in quantitative genomics (the latter will often be our goal but the former is re-
quired for the latter). We will discuss these in general terms in the next two lectures and in
specific terms throughout the semester. Also, note that one of the nice aspects of assuming
that the probability model of our random variable is from a family indexed in a parameter
set �, the problem of inference is reduced to the problem of learning something about the
specific parameter value of our model �. However, before we get to concepts of inference
concerning �, we need to define several fundamental concepts: samples, statistics, and their
sampling distributions.

4 Samples and i.i.d.

Recall that the starting point of our discussion is a system we want to know something
about, and an experiment that produces a sample space S. We then define a probabil-
ity function and a random variable on S, which define a specific probability distribution
Pr(X = x), where by definition, we have defined a specific probability model (by making
assumptions) indexed by �. In general, we would like to know something about the pa-
rameter of our probability model �, which is defined by the system and experiment (and
by extrapolation from our many assumptions, can be used to learn about the system),
but is unknown to us. Inference is the process of determining something about the true
parameter value, and for this we need a sample.

Sample � repeated observations of a random variable X, generated by experiments.

The ideal set of experiments would have an infinite number of observations, but since
such cases are not possible, we will consider a sample of size n. Now, we have already seen
how to represent a sample, this is simply a random vector:

[X = x] = [X1 = x1, ..., Xn = xn] (7)

where unlike the random vectors we have considered before, each of the n random variables
have the same structure, they are simply indicate di⇥erent observations of the random
variable in our sample, e.g. for n = 2 in our coin flip example(s), we do not define X1=‘#
of Tails’ and X2=‘# of Heads’ but rather X1=‘# of Tails’ of the first flip (or pair of flips)
in an experiment and X2=‘# of Tails’ in the second flip (or pair of flips) in the same
experiment. Now, as we have discussed, defining a probability function on the sample
space Pr(S) induces a probability distribution of a random variable defined on the same
sample space Pr(X) and since our random vector is considering multiple realizations of
this random variable, the Pr(X) induces a probability distribution on our sample vector,

4



• It is important to keep in mind, that while we have made assumptions such that we 
can define the joint probability distribution of (all) possible samples that could be 
generated from n experimental trials, in practice we only observe one set of trials, 
i.e. one sample

• For example, for our one coin flip experiment / number of tails r.v., we could 
produce a sample of n = 10 experimental trials, which might look like:

• As another example, for our measure heights / identity r.v., we could produce a 
sample of n=10 experimental trails, which might look like:

• In each of these cases, we would like to use these samples to perform inference 
(i.e. say something about our parameter of the assumed probability model)

• Using the entire sample is unwieldy, so we do this by defining a statistic

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually
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Review: Observed Sample
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probability distribution on the sample (!!):
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Distribution
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Cov(X1, X2) =
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Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (7)

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)
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Review: Statistics I

• Statistic - a function on a sample

• Note that a statistic T is a function that takes a vector (a sample) as an 
input and returns a value (or vector):

• For example, one possible statistic is the mean of a sample:

• It is critical to realize that, just as a probability model on X induces a 
probability distribution on a sample, since a statistic is a function on the 
sample, this induces a probability model on the statistic: the statistic 
probability distribution or the sampling distribution of the statistic (!!)

perform inference, it is not particularly easy to use the entire sample as is, i.e. in the form
of a vector. We therefore usually define a statistic:

Statistic � a function on a sample.

If we define this statistic as T , it has the following structure:

T (x) = T (x1, x2, ..., xn) = t (13)

where t can be a single number or a vector. For example, let’s define a statistic which takes
a sample and returns the mean of the sample:

T (x) =
1

n

n�

i=1

xi (14)

So for the sample in equation (9) this statistic would be T (x) = 0.5 and for equation (10),
it would be T (x) = 0.01 A statistic on a specific realization of a sample is what we use for
inference, as we will see with the next two lectures.

Let’s consider one last important concept. It is also critical to realize that, just as the
probability function on the sample space Pr(S) induces a probability distribution on the
random variable defined on the sample space Pr(X), which in turn induces a probability
distribution of i.i.d sample vector Pr(X = x), since a statistic is a function on the sample,
the probability distribution of the sample induces a probability distribution on the possible
values the statistic could take Pr(T (X)), i.e. the probability distribution of the statistic
when considering all possible samples. We call this a sampling distribution of the statistic
and as we will see, this also plays an important role in inference.

5 Estimators

Recall that we are interested in knowing about a system and to do this, we conduct an
experiment, which we use to define sample space. We define a probability function and a
random variable X on this sample space, where we assume a specific form for the proba-
bility function, which defines a probability distribution on our random variable. We write
this Pr(X) or Pr(X = x), where the large ‘X’ indicates a random variable that can take
di�erent values, and the little ‘x’ represents a specific value that the random vector takes
(which at the moment we have not assigned). We assume that the probability distribution
of the random variable X has a specific form and is in a ‘family’ of probability distribu-
tions that are indexed by parameter(s) �, e.g. X ⇥ N(µ,⇤2), which we write Pr(X|�) or
Pr(X = x|�). While we have assumed the specific form of the distribution (e.g. a ‘normal’)
we do not know the specific values of the parameters. Our goal is to perform inference to
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Review: Statistics II

• As an example, consider our height experiment (reals as 
approximate sample space) / normal probability model (with 
true but unknown parameters                    / identity random 
variable  

• If we calculate the following statistic:

what is                  ?

• Are the distributions of Xi = xi and                  always the same?

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,�
2) = fX(x|µ,�

2) =
1p

2⇡�2
e
� (x�µ)2

2�2 (5)

This model therefore has two parameters (µ,�
2) such that ✓ is actually a parameter vec-

tor ✓ =
⇥
µ,�

2
⇤
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: ⇥ = (�1,1). The �

2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ⇥ = [0,1). As we have seen previously, our shorthand for a normal distribution is
X ⇠ N(µ,�

2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⌘ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) ✓) on the basis of a sample.

There are two major ‘types’ of inference: estimation and hypothesis testing. Both are
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we do not know the specific values of the parameters. Our goal is to perform inference to
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Review: Estimators I

• Estimator - a statistic defined to return a value that represents our 
best evidence for being the true value of a parameter 

• In such a case, our statistic is an estimator of the parameter:

• Note that ANY statistic on a sample can in theory be an estimator.

• However, we generally define estimators (=statistics) in such a way that it 
returns a reasonable or “good” estimator of the true parameter value 
under a variety of conditions 

• How we assess how “good” an estimator depends on our criteria for 
assessing “good” and our underlying assumptions

which we could also write:

[X = x] = [X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0, X6 = 0, X7 = 0, X8 = 1, X9 = 1, X10 = 0]
(16)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (17)

In either of these examples, our statistic takes a specific value ‘t’, which is our actual esti-
mate of the parameter value, which we can write T (x) = �̂.

Before we get to specific examples of estimators, a few comments:

1. Our parameter may be a single value or a vector of values � = [�1, �2, ...], e.g. � =�
µ,⇤2

⇥
and we can define a estimator that is a vector valued function on our sample,

which estimates these multiple parameters T (X = x) = �̂ =
⌅
�̂1, �̂2, ...

⇧
.

2. We cannot define a statistic that always takes the true value of � for every possible
sample (hence estimate), i.e. there is no perfect estimator.

3. There are di�erent ways to define ‘good’ estimators, each of which may have di�erent
properties. We will consider some of these below.

4. It is easy to define ‘bad’ estimators. For example, an estimator that takes every
sample to the same value. In this case, it is a good estimator if the true parameter
value happens to be this value, otherwise, it is a bad estimator.

6 Method of moments estimator

To make the concept of estimators clear, let’s consider a specific example of an estimator.
Let’s first assume that we have coin system, where experiments are coin flips, and our
random variable X has a Bernoulli distribution Pr(X = x|p), such that our goal is to esti-
mate the parameter p, where for this example, let’s say p = 0.5. Our random variable can
therefore take values 0 or 1 (with equal probability), such that we could obtain a sample
of the type in equation (10). In this case, a perfectly reasonable estimator would be the
mean (also called the expectation) of the sample:

T (X = x) = E(X = x) = �̂ = p̂ =
1

n

n⇤

i=1

xi (18)

As we mentioned above, this statistic has a sampling distribution that describes the possi-
ble values of this statistic. In this particular case, it happens to be a binomial distribution
with parameters n and p, although since we ‘re-scale’ the ‘number of Tails’ to be between
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Review: Estimators II

• Since our underlying probability model induces a probability distribution 
on a statistic, and an estimator is just a statistic, there is an underlying 
probability distribution on an estimator:

• Our estimator takes in a vector as input (the sample) and may be defined 
to output a single value or a vector of estimates: 

• We cannot define a statistic that always outputs the true value of the 
parameter for every possible sample (hence no perfect estimator!)

• There are different ways to define “good” estimators and lots of ways to 
define “bad” estimators (examples?)

variable X. Since these are repeated observations, our sample is actually a vector, which
we write X = [X1, ...,Xn] or [X = x] = [X1 = x1, ...,Xn = xn] to indicate all the possible
values our sample (the random vector) could take. Since we have defined a probability dis-
tribution on our random variable X, this also induces a (joint) probability distribution over
all the possible samples that we could produce, which we write as Pr(X) = Pr(X1, ...,Xn)
or Pr(X = x) = Pr(X1 = x1, ...,Xn = xn). We will generally assume that our sample
contains independent, repeated (identical) observations of our random variable, such that
our sample is i.i.d. In such a case, each of the individual observations in our sample has a
probability distribution that is the same as our random variable Pr(Xi = xi|✓).

Let’s assume that we’d like to perform a particular ‘type’ of inference, specifically that
we would like to infer the actual, unknown value of our parameters ✓. This type of infer-
ence is called estimation. The process of performing inferences requires that we define a
statistic, which is a function on our sample T (X) or T (X = x). Intuitively, the reason for
doing this is each of the observations in our sample of size n contains information about
the true parameter value, but each individual observation can take many possible values.
By combining these observations in a reasonable way, we can get more information about
what the true parameter value is and make a better ‘guess’ or estimate concerning the true
parameter value. This is the goal of defining a statistic. Note that unless we have a infinite
sample, we cannot know the true value of the parameter with certainty (hence estimation).

Our goal therefore is to define our statistic such that it is an estimate of the parame-
ter ✓. We write an parameter estimate as ✓̂, and since our statistic T is an estimator, we
write T (X) = ✓̂ or T (X = x) = ✓̂. Note that since our sample has a probability distribu-
tion (a sampling distribution), which reflects the possible values our sample could take, our
statistic and hence our estimator, has a probability distribution Pr(T (X = x)) = Pr(✓̂),
which need not be the same probability distribution of our original random variable X

(because it is a function of multiple observations of our random variable). Thus, our es-
timator also has a sampling distribution of possible values. However, our goal is to make
this probability distribution such that we have a reasonable probability of getting the right
parameter value or ‘close to’ the right parameter value for most samples, a concept we will
make more rigorous below.

In practice, we do not see all the possible value our sample, and therefore our estima-
tor can take. We only have a single sample, which we represent as lower case x. For
example, for a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (14)

which we could also write:

[X = x] = [X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0, X6 = 0, X7 = 0, X8 = 1, X9 = 1, X10 = 0]
(15)
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and for a normally distributed random variable this could be:
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In either of these examples, our statistic takes a specific value ‘t’, which is our actual esti-
mate of the parameter value, which we can write T (x) = ✓̂.

Before we get to specific examples of estimators, a few comments:

1. Our parameter may be a single value or a vector of values ✓ = [✓1, ✓2, ...], e.g. ✓ =⇥
µ,�

2
⇤

and we can define a estimator that is a vector valued function on our sample,
which estimates these multiple parameters T (X = x) = ✓̂ =

h
✓̂1, ✓̂2, ...

i
.

2. We cannot define a statistic that always takes the true value of ✓ for every possible
sample (hence estimate), i.e. there is no perfect estimator.

3. There are di↵erent ways to define ‘good’ estimators, each of which may have di↵erent
properties. We will consider some of these below.

4. It is easy to define ‘bad’ estimators. For example, an estimator that takes every
sample to the same value. In this case, it is a good estimator if the true parameter
value happens to be this value, otherwise, it is a bad estimator.

6 Method of moments estimator

To make the concept of estimators clear, let’s consider a specific example of an estimator.
Let’s first assume that we have coin system, where experiments are coin flips, and our
random variable X has a Bernoulli distribution Pr(X = x|p), such that our goal is to esti-
mate the parameter p, where for this example, let’s say p = 0.5. Our random variable can
therefore take values 0 or 1 (with equal probability), such that we could obtain a sample
of the type in equation (10). In this case, a perfectly reasonable estimator would be the
mean (also called the expectation) of the sample:

T (X = x) = E(X = x) = ✓̂ = p̂ =
1
n

nX

i=1

xi (17)

As we mentioned above, this statistic has a sampling distribution that describes the possi-
ble values of this statistic. In this particular case, it happens to be a binomial distribution
with parameters n and p, although since we ‘re-scale’ the ‘number of Tails’ to be between
zero and one by dividing by n, the sampling distribution of this statistic T (X = x) = X̄

with X̄ = Z/n where Z ⇠ (Bin(n, p)). However, in a ‘realistic’ sample, we do not have
multiple realizations of this statistic but rather a single value corresponding to a single

8



Estimator example I

• As an example, let’s construct an estimator  

• Consider the single coin flip experiment / number of tails random 
variable / Bernoulli probability model family (parameter p) / fair coin 
model (assumed and unknown to us!!!) / sample of size n=10

• We want to estimate p, where a perfectly reasonable estimator is:

• e.g. this statistic (=mean of the sample) would equal 0.5 for the following 
particular sample (will it always?)

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually

5

T (X = x) = �̂ = p̂ =
1

n

n⇥

i=1

xi (3)

� ⇧ � (4)

�̂ (5)

N = {1, 2, 3, ...} (6)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (7)

R = {⇥ 0 ⇤} (8)

�⌅ > x > ⌅ (9)

⇥ (10)

F (11)

Pr(F) (12)

⌃ ⇧ F (13)

f(X(F), P r) : {X, P r(X)} ⇤ R (14)

This A ⇧ F then Ac ⇧ F

A1,A2, ... ⇧ F then
��

i=1Ai ⇧ F

⌃, {H}, {T}, {H,T} (15)

F (16)

X1, ..., Xk : ⇥ ⇤ Rk (17)

[X1 = x1, ..., Xk = xk] (18)

Pr(X1, ..., Xk) (19)

E(⇥) (20)

E (21)

X(⇥) (22)

X(⇥) : ⇥ ⇤ R (23)

X1(⇥) : ⇥ ⇤ R (24)

X2(⇥) : ⇥ ⇤ R (25)
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• Let’s continue with our example constructing the probability model  

• Consider the single coin flip experiment / number of tails random 
variable

• Bernoulli probability model family (parameter p)

• Sample of size n=10

• Sampling distribution (pmf of sample) if i.i.d. (!!) 

To make this concept clearer, let’s consider two probability models for ‘paired coin flip’
example. We will again write these probabilities out as follows:

H2nd T2nd

H1st Pr(H1st \H2nd) Pr(H1st \ T2nd) Pr(H1st)
T1st Pr(T1st \H2nd) Pr(T1st \ T2nd) Pr(t1st)

Pr(H2nd) Pr(T2nd)

For our fair coin probability model, let’s again assign these probabilities as follows:

H2nd T2nd

H1st 0.25 0.25 0.5
T1st 0.25 0.25 0.5

0.5 0.5

In this model, H1st and H2nd are independent, i.e. Pr(H1st \H2nd) = Pr(H1st)Pr(H2nd)
(in fact, all of the possibilities we could consider in this model are independent). Next let’s
consider the psuedo-fair coin example:

H2nd T2nd

H1st 0.4 0.1 0.5
T1st 0.1 0.4 0.5

0.5 0.5

In this modelH1st andH2nd are not independent, i.e. Pr(H1st\H2nd) 6= Pr(H1st)Pr(H2nd)
and neither are the other possibilities considered. Intuitively, getting a ‘Head’ on the first
flip increases the probability of getting a ‘Head’ on the second (and similarly for ‘Tails’).
In this case, knowledge concerning one of the possibilities alters the probability of the next,
so it makes sense that they are not independent.

One final thought before we leave the concept of independence. It is important to note that
disjoint events cannot be independent. This follows from the third axiom of probability
and the definition of independence. This actually also makes intuitive sense but perhaps
not at first glance (see problem 1 on your first homework, which will be handed out next
week).

Pr(S) ! Pr(X) (11)

S = {H,T} (12)

X(S) : X(H) = 0, X(T ) = 1 (13)

X ⇠ p
X(1� p)1�X (14)

[X = x] = [X1 = x1, X2 = x2, ..., X10 = x10] (15)
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[X1 = x1, X2 = x2, ..., X10 = x10] ⇠ p

x1(1� p)1�x1p
x2(1� p)1�x2 ...p

x10(1� p)1�x10 (16)

T (X = x) = T (x) = X̄ =
1

10

10X

i=1

xi (17)

[Tmin, ..., Tmax] = [0, 0.1, ..., 1] ! [0, 1, ..., 10] (18)

Pr(T (x)) ⇠
✓

n

nT (x)

◆
p
nT (x)(1� p)1�nT (x) (19)

T (x) = ✓̂ = p̂ (20)

Pr(p̂) ⇠
✓

n

nT (x)

◆
p
nT (x)(1� p)1�nT (x) (21)

Ep̂ = p (22)
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))

T (x), P r(T (X))

Pr(T (X)|✓)

⌦ = {H,T}

X(⌦) : X(H) = 0, X(T ) = 1

23

X : X(H) = 0, X(T ) = 1

X : ⌦ ! R

X1 : ⌦ ! R

X2 : ⌦ ! R
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Review: Estimator example II



• Define a statistic T(X)

• Note the values the statistic can take (!!), e.g. with true p=0.5

• Side note: we can write the sampling distribution (pmf) of the statistic as

• Remember for our sample, the value of our statistic for our observed sample (!!) 
would equal 0.5 (will it always?)

[X1 = x1, X2 = x2, ..., X10 = x10] ⇠ p
x1(1� p)1�x1p

x2(1� p)1�x2 ...p
x10(1� p)1�x10 (16)

T (X = x) = T (x) = X̄ =
1

10

10X

i=1

xi (17)

[Tmin, ..., Tmax] = [0, 0.1, ..., 1] ! [0, 1, ..., 10] (18)

Pr(T (x)) ⇠
✓

n

nT (x)

◆
p
nT (x)(1� p)1�nT (x) (19)

T (x) = ✓̂ = p̂ (20)

Pr(p̂) ⇠
✓

n

nT (x)

◆
p
nT (x)(1� p)1�nT (x) (21)

Ep̂ = p (22)
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Review: Estimator example II

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually

5



Experiment
(Sample Space) (Sigma Algebra)

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).

7

Random Variable

⌦ (7)

F (8)

; 2 F (9)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (10)

F (11)

X (12)

X(S) (13)

Pr(F) (14)

X = x (15)

Pr(X) (16)

X = x , Pr(X)
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This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (17)

where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
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We are going to define a probability function which map sample spaces to the real line
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where Pr(S) is a function, which we could have written f(S).
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5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) � a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X2 (see figure
from class).
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Pr(;) = 0
Pr(HH) = 0.25, P r(HT ) = 0.25, P r(TH) = 0.25, P r(TT ) = 0.25
Pr(HH [HT ) = 0.5, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.5

Pr(HH [HT [ TH) = 0.75, etc. Pr(HH [HT [ TH [ TT ) = 1.0

Pr(HH [HT ) = 0.6, P r(HH [ TH) = 0.5, P r(HH [ TT ) = 0.5
Pr(HT [ TH) = 0.5, P r(HT [ TT ) = 0.5, P r(TH [ TT ) = 0.4

Pr(HH [HT [ TH) = 0.75, etc.

(⌦,F , P r)

x
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =
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Pr(⌦) ! Pr(X)
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Pr(T (X))
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Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

Pr(T (X)) (5)

3

Estimator: Estimator Sampling 
Distribution:

model|experimentA

model|experimentB

Y |experimentA

Y |experimentB

6=
A1 ! A2 ) �Y |Z

H0 : Pr(Y |X) = Pr(Y )

HA : Pr(Y |X) 6= Pr(Y )

X = x

Pr(X)

V ar(X) = (0� 1)2(0.25) + (1� 1)2(0.5) + (2� 1)2(0.25) = 0.5

f(X(⌦), P r(X)) : {X, P r(X)} ! R

Cov(X1, X2) =

i=max(X1)X

i=min(X1)

j=max(X2)X

j=min(X2)

((X1 = i)� EX1)((X2 = j)� EX2)PX1,X2(x1, x2) (1)

[X1 = x1, ..., Xn = xn] (2)

Pr([X1 = x1, ..., Xn = xn]) (3)

T (X) (4)

T (x) (5)

Pr(T (x)) (6)

EY = a+ bEX

Var(Y ) = b
2Var(X)

3

=

✓ 2 ⇥ (3)

✓̂ (4)

N = {1, 2, 3, ...} (5)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (6)

R = { 0!} (7)

�1 > x >1 (8)

⌦ (9)

F (10)

Pr(F) (11)

; 2 F (12)

f(X(F), P r) : {X, P r(X)}! R (13)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (14)

F (15)

X1, ..., Xk : ⌦! Rk (16)

[X1 = x1, ..., Xk = xk] (17)

Pr(X1, ..., Xk) (18)

E(⌦) (19)

E (20)

X(⌦) (21)

X(⌦) : ⌦! R (22)

X1(⌦) : ⌦! R (23)

X2(⌦) : ⌦! R (24)

⌦ (25)

Pr(F) (26)

X = x (27)

Pr(X) (28)

X = x , Pr(X)
S (29)
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V(X1|X2) =

max(X1)X

i=min(X1)

((X1 = i)� EX1)
2
Pr(Xi = i|X2) (205)

V(X1|X2) =

Z +1

�1
(X1 � EX1)

2
fX1|X2

(x1|x2)dx1 (206)

Cov(X1, X2) =

max(X1)X

i=min(X1)

max(X2)X

j=min(X2)

((X1 = i)�EX1)((X2 = j)�EX2)PX1,X2(x1, x2) (207)

Cov(X1, X2) =

Z +1

�1

Z +1

�1
(X1 � EX1)(X2 � EX2)fX1,X2(x1, x2)dx1dx2 (208)

FX1,X2(x1, x2) =

Z
x1

�1

Z
x2

�1
fX1,X2(x1, x2)dx1dx2 (209)

f(X(⌦), P r(X) : {X, P r(X)} ! R (210)

X(⌦) : ⌦ ! R

Pr(⌦) ! Pr(X)
⌦ind = ⌦1 ⇥ ⌦2 ⇥ ...⇥ ⌦n

X(!),! 2 ⌦

x = [x1, x2, ..., xn]

Pr([X1, X2, ..., Xn])

T (x) = T ([x1, x2, ..., xn]) = t

Pr(T (X))

T (x), P r(T (X))

Pr(T (X)|✓)

23

✓ 2 ⇥ (3)

✓̂ (4)

N = {1, 2, 3, ...} (5)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (6)

R = { 0!} (7)

�1 > x >1 (8)

⌦ (9)

F (10)

Pr(F) (11)

; 2 F (12)

f(X(F), P r) : {X, P r(X)}! R (13)

This A 2 F then Ac 2 F

A1,A2, ... 2 F then
S1

i=1Ai 2 F

;, {H}, {T}, {H,T} (14)

F (15)

X1, ..., Xk : ⌦! Rk (16)

[X1 = x1, ..., Xk = xk] (17)

Pr(X1, ..., Xk) (18)

E(⌦) (19)

E (20)

X(⌦) (21)

X(⌦) : ⌦! R (22)

X1(⌦) : ⌦! R (23)

X2(⌦) : ⌦! R (24)

⌦ (25)

Pr(F) (26)

X = x (27)

Pr(X) (28)

X = x , Pr(X)
S (29)
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Introduction to maximum 
likelihood estimators (MLE)

• We will generally consider maximum likelihood estimators (MLE) in this 
course

• Now, MLE’s are very confusing when initially encountered...

• However, the critical point to remember is that an MLE is just an 
estimator (a function on a sample!!), 

• i.e. it takes a sample in, and produces a number as an output that is our 
estimate of the true parameter value

• These estimators also have sampling distributions just like any other 
statistic!

• The structure of this particular estimator / statistic is complicated but 
just keep this big picture in mind



Introduction to MLE’s
• A maximum likelihood estimator (MLE) is an estimator (a statistic!) that has specific 

properties and is DERIVED in a specific way (i.e., this is a class of estimators)!

• MLE can be derived for (almost) any case where we want to do estimation AND they 
are (arguably) the most important class of estimators

• Recall that this statistic still takes in a sample and outputs a value that is our 
estimator (!!) Note that likelihoods are NOT probability functions, i.e. they need not 
conform to the axioms of probability (!!)

• Sometimes these estimators have nice forms (equations) that we can write out

• For example the maximum likelihood estimator when considering a sample for our 
single coin example / number of tails is:

• And for our heights example: 

is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

nX

i

(xi � x)2 (13)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇠ Bin(n, p) for a sample of
size n. In this case the likelihood is:

L(p|X = x) =

✓
x

n

◆
px(1� p)n�x (14)

and the log-likelihood is:

l(p|X = x) = ln

✓
x

n

◆
+ xln(p) + n� xln(1� p) (15)

such that the first derivative is:

@l(p|X = x)

@p
=

x

p
� n� x

1� p
(16)

and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(17)

which we can check by considering the second derivative:

@2l(p|X = x)

@p2
= � x

p2
+

x� n

(1� p)2
(18)

which is always negative. Note that the MLE and the method of moments estimator are
also the same in this case.

More generally, if we are interested in deriving the MLE(✓̂) for a vector of parameters
✓ = [✓1, ✓2, ...] we can take the derivative the log-likelihood function with respect to all
parameters:

dl(✓|X = x)

d✓
=

0

BB@

@l(✓|X=x)
@✓1

@l(✓|X=x)
@✓2
...

1

CCA

6

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

4



Likelihood I

• To introduce MLE’s we first need the concept of likelihood

• Recall that a probability distribution (of a r.v. or for our purposes now, a 
statistic) has fixed constants in the formula called parameters

• For example, for a normally distributed random variable

• However, we could turn this around and fix the sample and let the 
parameters vary (this is a likelihood!)

• For example, say we have a sample n=1, where x=0.2 then the likelihood 
is (if we just set            for explanatory purposes):

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,⇧2) = fX(x|µ,⇧2) =
1⌃
2⇤⇧2

e�
(x�µ)2

2�2 (5)

fX(x|µ1, µ2,⇧
2
1,⇧

2
2, ⌅) =

1

2⇤⇧1⇧2
⌃
1� ⌅

exp

⇧
� 1

2(1� ⌅2)

⇤
(x1 � µ1)2

2⇧2
1

� 2⌅(x1 � µ1)(x2 � µ2)

⇧1⇧2
+

(x2 � µ1)2

2⇧2
2

⌅⌃

(6)
This model therefore has two parameters (µ,⇧2) such that � is actually a parameter vector
� = �µ,⇥2 =

�
µ,⇧2

⇥
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: �µ = (�⌅,⌅). The ⇧2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values �⇥2 = [0,⌅). As we have seen previously, our shorthand for a normal distribution
is X ⇤ N(µ,⇧2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.

3 Introduction to inference

A major goal of the field of statistics is inference:

Inference ⇥ the process of reaching conclusions concerning an assumed probability dis-
tribution (specifically the parameter(s) �) on the basis of a sample.

3

X1 = 0.2. Since the random variable is normal, the likelihood function is:

L(µ|x = 0.2) =
1p
2⇡

e�(0.2�µ)2 (1)

(see your class notes for the graph of this function).

A few comments about likelihoods:

1. Note that although likelihood functions have the same structure as probability func-
tions, they are not probability functions (see your homework for an example).
This is again a confusing concept at first glance, but it turns out that we can’t con-
sider the probability distribution of parameter values in a frequentist framework (we
can in a Bayesian as we will see) so we cannot consider a probability distribution
over parameters. What’s more, when fixing the sample, the function need not con-
form to the axioms of probability and is therefore not a probability function. Given
these points, this is why we call these functions likelihoods instead of probabilities or
probability distributions.

2. If [(X) = x] = [X1 = x1, ..., Xn = xn] is an i.i.d sample, then the likelihood has the
following property:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (2)

As we will see, this is a very convenient property.

3. An appealing property of likelihoods is that they conform to the invariance principle,
which can be expressed as follows:

L(✓(1)|x)
L(✓(2)|x)

=
L(✓(1)|y)
L(✓(2)|y)

(3)

for two di↵erent parameter values ✓(1), ✓(2) and a new random variable Y that is
a function or our original random variable Y = f(X). Intuitively, this means that
even if we were to transform our random variable, the relationship between the like-
lihoods for parameter values remains unchanged and hence, our information about
the parameter remains unchanged under transformations.

4. Likelihoods are su�cient statistics, which intuitively means that if two samples pro-
duce the same value for a su�cient statistic, examining the specific form (numbers)
of the samples provides not additional useful information concerning the actual value
of the parameter, i.e. all the information in the sample about the parameter(s) ✓ is
captured in the likelihood.

3

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)

gi = AjAk (11)

2.1� 0.3 + (0)(�0.2) + (1)(1.1) + 0.7 (12)

SSE =
nX

n=1

(yi � ŷi)
2 (13)

HA : �AjAk
6= �AlAm

(14)

Y = �
0
0 +X

0
a�

0
a +X

0
�
0
d + ✏ (15)

�
2 = 1 (16)
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• Likelihood - a function with the form of a probability function which we 
consider to be a function of the parameters    for a fixed the sample 

• The form of a likelihood is therefore the sampling distribution (the 
probability distribution!) of the i.i.d sample but there are (at least) three 
major differences:

• We have parameter values as input and the sample we have observed as a 
parameter

• The likelihood function does not operate as a probability function (they 
can violate the axioms of probability)

• For continuous cases, we can interpret the likelihood of a parameter (or 
combination of parameters) as the likelihood of the point

values our sample (the random vector) could take. Since we have defined a probability dis-
tribution on our random variable X, this also induces a (joint) probability distribution over
all the possible samples that we could produce, which we write as Pr(X) = Pr(X1, ..., Xn)
or Pr(X = x) = Pr(X1 = x1, ..., Xn = xn). We will generally assume that our sample
contains elements that are independent and identically distributed (iid). In such a case,
each of the individual observations in our sample has a probability distribution that is the
same as our random variable Pr(Xi = xi|✓).

To perform inference with a sample, we define a statistic, which is a function on our
sample T (X) or T (X = x) such that it is an estimate of the parameter ✓. We write an
parameter estimate as ✓̂, and since our statistic T is an estimator, we write T (X) = ✓̂
or T (X = x) = ✓̂. Note that since our sample has a probability distribution (a sampling
distribution), which reflects the possible values our sample could take, our statistic and
hence our estimator, has a probability distribution Pr(T (X = x)) = Pr(✓̂), which need
not be the same probability distribution of our original random variable X. Our goal is to
make define our estimator in such a way that probability distribution of our estimator is
such that we have a reasonable probability of getting the right parameter value or ‘close
to’ the right parameter value.

For the bulk of this class, we will be concerned with Maximum Likelihood Estimators
(MLE). MLE’s have a number of very appealing properties (both theoretical and practi-
cal) and as a consequence, they are used extensively. While the structure of MLE’s can be
confusing at first glance, keep in mind that these estimators work like any other statistic:
you have a sample [X = x] that you input to a function T (X = x) and the output (a value
or vector) ✓̂ is the estimate of the parameter.

To define a MLE, we first need to define the concept of a likelihood:

Likelihood ⌘ a probability function which we consider to be a function of the param-
eter(s) ✓ for a fixed sample [X = x].

This seems odd at first glance, but let’s consider this in more detail. In general, when
we consider a probability distribution, we consider the parameters to be fixed and the
probability distribution defines the probability of di↵erent samples (or sample intervals).
In the case of a likelihood, we have flipped this around and are considering a single, fixed
sample and then we consider the function of di↵erent possible values of ✓.

The notation we use for a liklihood is L✓(x) = L(✓|x), where it is implicit that the sample
x is fixed. As a quick example, let’s consider a random variable X ⇠ N(µ,�2), where
we will assume we know that �2 = 1. Consider a sample of size n = 1, say for example

2

Likelihood II

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)

A1 ! A2 ) �Y |Z (10)

gi = AjAk (11)

2.1� 0.3 + (0)(�0.2) + (1)(1.1) + 0.7 (12)

SSE =
nX

n=1

(yi � ŷi)
2 (13)

HA : �AjAk
6= �AlAm

(14)

Y = �
0
0 +X

0
a�

0
a +X

0
�
0
d + ✏ (15)

�
2 = 1 (16)

✓ (17)
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Likelihood III

• Again, Likelihood has the form of a probability function which we 
consider to be a function of the parameters NOT the sample

• Note that likelihoods are NOT probability functions, i.e. they need not 
conform to the axioms of probability (!!)

• They have the appealing property that for an i.i.d. sample

• They have other appealing properties, including they are sufficient 
statistics, the invariance principal, etc.

X1 = 0.2. Since the random variable is normal, the likelihood function is:

L(µ|x = 0.2) =
1p
2⇡

e�(0.2�µ)2 (1)

(see your class notes for the graph of this function).

A few comments about likelihoods:

1. Note that although likelihood functions have the same structure as probability func-
tions, they are not probability functions (see your homework for an example).
This is again a confusing concept at first glance, but it turns out that we can’t con-
sider the probability distribution of parameter values in a frequentist framework (we
can in a Bayesian as we will see) so we cannot consider a probability distribution
over parameters. What’s more, when fixing the sample, the function need not con-
form to the axioms of probability and is therefore not a probability function. Given
these points, this is why we call these functions likelihoods instead of probabilities or
probability distributions.

2. If [(X) = x] = [X1 = x1, ..., Xn = xn] is an i.i.d sample, then the likelihood has the
following property:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (2)

As we will see, this is a very convenient property.

3. An appealing property of likelihoods is that they conform to the invariance principle,
which can be expressed as follows:

L(✓(1)|x)
L(✓(2)|x)

=
L(✓(1)|y)
L(✓(2)|y)

(3)

for two di↵erent parameter values ✓(1), ✓(2) and a new random variable Y that is
a function or our original random variable Y = f(X). Intuitively, this means that
even if we were to transform our random variable, the relationship between the like-
lihoods for parameter values remains unchanged and hence, our information about
the parameter remains unchanged under transformations.

4. Likelihoods are su�cient statistics, which intuitively means that if two samples pro-
duce the same value for a su�cient statistic, examining the specific form (numbers)
of the samples provides not additional useful information concerning the actual value
of the parameter, i.e. all the information in the sample about the parameter(s) ✓ is
captured in the likelihood.

3



Normal model example I
• As an example, for our heights experiment / identity random variable, the 

(marginal) probability of a single observation in our sample is xi is:

• The joint probability distribution of the entire sample of n observations is 
a multivariate (n-variate) normal distribution

• Note that for an i.i.d. sample, we may use the property of independence 

to write pdf of this entire sample as follow: 

• The likelihood is therefore: 

i.e. a sample random vector X has a (joint) probability distribution:

Pr(X = x) = PX(x) or fX(x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) (8)

where each of the Xi have the same distribution as we have defined for X. Since we know
they all have the same distribution, we know that:

Pr(X1 = x1) = Pr(X2 = x2) = ... = Pr(Xn = xn) (9)

and we therefore say that the sample is identically distributed. Ideally, it is also the case
that each of these Xi are independent of the rest. When this is the case, this makes much
of the mathematical framework we use to do inference easier, so we often try to construct
experiments, which produce such independence. When this is the case, we have:

Pr(X = x) = Pr(X1 = x1)Pr(X2 = x2)...P r(Xn = xn) (10)

which follows from the definition of independence. Ideally therefore, our sample is inde-
pendent and identically distributed, which we abbreviate as i.i.d. (or iid). We will largely
consider iid samples for this entire course.

Again, note that just as a probability function Pr(S) induces a probability distribution
on a random variable X, this same probability distribution will induce a joint probability
distribution on the random vector Pr(X = x). This is e�ectively the probability distribu-
tion describing all possible sample outcomes that could occur for a sample of size n, i.e. a
random vector where the marginal probability distributions have the same distribution as
X and there is no covariance among the Xi (note that by assuming iid, we are providing
additional limits on the possible probability distributions that could describe our possible
samples).

To perform inference in the real world, we generally only have a single set of experiment
and therefore a single sample (or at least a limited number of samples). We are therefore
going to consider inference for a specific realization of a sample of size n. For example, for
a set of n = 10 Bernoulli samples this could be something like:

x = [1, 1, 0, 1, 0, 0, 0, 1, 1, 0] (11)

and for a normally distributed random variable this could be:

x = [�2.3, 0.5, 3.7, 1.2,�2.1, 1.5,�0.2,�0.8,�1.3,�0.1] (12)

where for the latter, keep in mind the values are constrained by our precision of mea-
surement and we will approximate them by a continuous random variable and associated
sample that we assume are normally distributed, which defines the probability that ob-
servations of this random variable fall in a particular interval (see lecture 3). To actually

5

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

L(µ,�2|X = x) =
nY

i=1

1p
2⇡�2

e
�(xi�µ)2

2�2 (8)

where
Qn

i=1 x1 ⇤ x2 ⇤ ... ⇤ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,�2|X = x)) = �nln(�)� n

2
ln(2⇡)� 1

2�2

nX

i

(xi � µ)2 (9)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

@l(✓|X = x)

@µ
=

1

�2

nX

i

(xi � µ) = 0 (10)

where we use @ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

nX

i

xi (11)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

nX

i

xi = x) = x (12)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this

5

consider the latter two extensively in this course, they are critical to the foundation of
‘population genetics’, the subject that considers the statistical and probabilistic modeling
of how genes evolve in populations. Population genetics is a very relevant course for quan-
titative genomics (and other genomic disciplines), so I encourage you to take a theoretical
course on the subject.

Let’s now consider some probability models for continuous random variables. The model
we will make the most direct use of in this course is one that we have introduced previously,
the normal distribution (also called the Gaussian):

Pr(X = x|µ,⌅2) = fX(x|µ,⌅2) =
1⌅
2⇥⌅2

e�
(x�µ)2

2�2 (5)

Pr(Xi = xi|µ,⌅2) = fXi(xi|µ,⌅2) =
1⌅
2⇥⌅2

e�
(xi�µ)2

2�2 (6)

fX(x|µ1, µ2,⌅
2
1,⌅

2
2, ⇤) =

1

2⇥⌅1⌅2
⌅
1� ⇤

exp

⇧
� 1

2(1� ⇤2)

⇤
(x1 � µ1)2

2⌅2
1

� 2⇤(x1 � µ1)(x2 � µ2)

⌅1⌅2
+

(x2 � µ1)2

2⌅2
2

⌅⌃

(7)
This model therefore has two parameters (µ,⌅2) such that � is actually a parameter vector
� = �µ,�2 =

�
µ,⌅2

⇥
. The parameter µ intuitively sits in the ‘middle’ or at the ‘center of

gravity’ of this distribution (see class notes for a picture) and has the following possible
values: �µ = (�⇤,⇤). The ⌅2 parameter intuitively captures the ‘spread’ of the distri-
bution, i.e. the larger the value the greater the spread, and takes the following possible
values ��2 = [0,⇤). As we have seen previously, our shorthand for a normal distribution
is X ⇥ N(µ,⌅2).

Other continuous distributions that we will run into during this course are the Uniform,
chi squared, t-type, F-type, Gamma, and Beta. The former we will discuss in the context
of the distribution of p-values, the middle three will come up in our discussion of sampling
distributions of statistics, and we will discuss the last two during our lectures on Bayesian
statistics.

One final point to note. While we have considered parameterized statistical models for
individual ‘univariate’ random variables, there are analogous forms of all of these distribu-
tions for random vectors with multiple elements, which are ‘multivariate’ random variables
(although the multivariate forms have additional parameters). We will consider some mul-
tivariate forms of these distributions in this class, e.g. the multivariate Normal distribution.
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vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

P (X = x|µ,⇤2) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (8)

L(µ,⇤2|X = x) =
n⇤

i=1

1⇤
2⇥⇤2

e
�(xi�µ)2

2�2 (9)

where
�n

i=1 x1 ⇥ x2 ⇥ ... ⇥ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (10)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

⌅l(�|X = x)

⌅µ
=

1

⇤2

n⇥

i

(xi � µ) = 0 (11)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (12)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

n⇥

i

xi = x) = x (13)
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Normal model example II
• Let’s consider a sample of size n=10 generated under a standard normal, i.e. 

• So what does the likelihood for this sample “look” like?  It is actually a 3-D 
plot where the x and y axes are      and       and the z-axis is the likelihood:

  

• Since this makes it tough to see what is going on, let’s set just look at the 
marginal likelihood for            when using the sample above:

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:
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the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
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4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,⇤2|X = x)) = �nln(⇤)� n

2
ln(2⇥)� 1

2⇤2

n⇥

i

(xi � µ)2 (11)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:
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⌅µ
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i

(xi � µ) = 0 (12)

where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

n⇥

i

xi (13)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n
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i

xi = x) = x (14)
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where we use ⌅ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
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µ =
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n
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xi (13)

Note that this is the mean of the sample so we have:
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vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

L(µ,�2|X = x) =
nY

i=1

1p
2⇡�2

e
�(xi�µ)2

2�2 (8)

where
Qn

i=1 x1 ⇤ x2 ⇤ ... ⇤ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a

5. eaeb = ea+b

we have the following:

l(µ,�2|X = x)) = �nln(�)� n

2
ln(2⇡)� 1

2�2

nX

i

(xi � µ)2 (9)

To find the maximum of this function, we take a derivative with respect to µ and set this
equal to zero:

@l(✓|X = x)

@µ
=

1

�2

nX

i

(xi � µ) = 0 (10)

where we use @ to indicate cases where we are taking the derivative of a function of several
variables with respect to one (or a subset) of the variables (i.e. a partial derivative) and
we use d to take the derivative with respect to all variables at the same time. To find the
MLE, we now solve equation (18) with respect to µ:

µ =
1

n

nX

i

xi (11)

Note that this is the mean of the sample so we have:

MLE(µ̂) =
1

n

nX

i

xi = x) = x (12)

Now, to be assured that this is actually the MLE, we need to check that the second
derivative of log-likelihood function is negative at this point, which it is in this case (this
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Introduction to MLE’s
• A maximum likelihood estimator (MLE) has the following definition:

• Recall that this statistic still takes in a sample and outputs a value that is 
our estimator (!!) Note that likelihoods are NOT probability functions, i.e. 
they need not conform to the axioms of probability (!!)

• Sometimes these estimators have nice forms (equations) that we can 
write out

• For example the maximum likelihood estimator when considering a 
sample for our single coin example / number of tails is:

• And for our heights example: 

is easy to check and I’ll leave it as an exercise). Note that in this case, there was a closed
form equation for the MLE that does not involve the parameter we are trying to estimate,
but this is not always the case, particularly when we consider more complicated likelihood
functions (where we will need an algorithm). It is also interesting to note that, in this case,
the MLE(µ̂) is the same as the method of moments estimator (again, this is not always
the case). This is similarly the case for the MLE of �2:

MLE(�̂2) =
1

n

nX

i

(xi � x)2 (13)

which can be derived the using the same approach.

As another quick example, let’s derive the MLE(p̂) for X ⇠ Bin(n, p) for a sample of
size n. In this case the likelihood is:

L(p|X = x) =

✓
x

n

◆
px(1� p)n�x (14)

and the log-likelihood is:

l(p|X = x) = ln

✓
x

n

◆
+ xln(p) + n� xln(1� p) (15)

such that the first derivative is:

@l(p|X = x)

@p
=

x

p
� n� x

1� p
(16)

and by setting this equal to zero and solving for p we obtain:

MLE(p̂) =
x

n
(17)

which we can check by considering the second derivative:

@2l(p|X = x)

@p2
= � x

p2
+

x� n

(1� p)2
(18)

which is always negative. Note that the MLE and the method of moments estimator are
also the same in this case.

More generally, if we are interested in deriving the MLE(✓̂) for a vector of parameters
✓ = [✓1, ✓2, ...] we can take the derivative the log-likelihood function with respect to all
parameters:

dl(✓|X = x)

d✓
=

0

BB@

@l(✓|X=x)
@✓1

@l(✓|X=x)
@✓2
...

1

CCA
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5. Likelihoods have an appealing property described by the ‘Likelihood principle’, which
basically states that any evidence present in a sample about ✓ depends only on the
likelihood function. This is a deeper theoretical concept than su�ciency (although
they are related).

Now that we have defined a likelihood, we are ready to define a Maximum Likelihood
Estimator:

MLE(✓̂) = ✓̂ = argmax✓2⇥L(✓|x) (4)

where ‘argmax’ simply means the argument or value of ✓ within the set ⇥ that maximizes
the function. That is, the actual value that we get as an estimate, after plugging in the
sample x into this equation, is the value of ✓ where this function has a maximum. We
can illustrate this concept visually by plotting this function with possible parameter val-
ues on the X-axis and the Likelihood function on the Y-axis (see class notes for a diagram).

To determine the MLE means finding the maximum of a function. There are broadly
two ways to do this: a. derive a specific (useful) formula for the MLE, b. in more complex
cases, use an algorithm to determine the MLE. While the former is a reasonable strategy in
some cases (as we will discuss today), as we will see later in the class, sometimes the latter
strategy is the only way to determine the MLE. To derive a specific formula for an MLE, as
you’ll recall from calculus, a way to solve the problem of finding a maximum of a function
is to find where the first derivative of the function takes a value of zero, and then check to
see if the second derivative at this point is negative, to determine whether this point is a
maximum, i.e. instead of a minimum (or saddle point). When using this approach to find
the maximum, it is often easier to deal with the natural log of the likelihood:

l(✓|x) = ln [L(✓|x)] (5)

Since logarithms are ‘monotonic’ they change the shape of the likelihood function but do
not change the location of the maximum, i.e. maximizing the log-likelihood produces the
same result as maximizing the likelihood. Part of the reason log-likelihoods are easier to
deal with is they take advantage of the property ln(ab) = ln(a) + ln(b), such that the
likelihood of an i.i.d. sample:

L(✓|x1, x2, ..., xn) = L(✓|x1)L(✓|x2)...L(✓|xn) (6)

when expressed as a log-likelihood is:

l(✓|x1, x2, ..., xn) = l(✓|x1) + l(✓|x2) + ...+ l(✓|xn) (7)

As an example, let’s derive the MLE of the the parameter µ of a normally distributed
random variable X ⇠ N(µ,�2) for an i.i.d sample of size n, i.e. our sample is a random

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

4

Pr(X = x) = Pr(X1 = x1, X2 = x2, ..., Xn = xn) = PX(x) or fX(x)

MLE(p̂) =
1

n

nX

i=1

xi (8)

MLE(µ̂) = x̄ =
1

n

nX

i=1

xi (9)
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Getting to the MLE

• To use a likelihood function to extract the MLE, we have to find the 
maximum of the likelihood function            for our observed sample

• To do this, we take the derivative of the likelihood function and set it 
equal to zero (why?) 

• Note that in practice, before we take the derivative and set the function 
equal to zero, we often transform the likelihood by the natural log (ln) to 
produce the log-likelihood:

• We do this because the likelihood and the log-likelihood have the same 
maximum and because it is often easier to work with the log-likelihood

• Also note that the domain of the natural log function is limited to                  
but likelihoods are never negative (consider the structure of probability!) 

5. Likelihoods have an appealing property described by the ‘Likelihood principle’, which
basically states that any evidence present in a sample about � depends only on the
likelihood function. This is a deeper theoretical concept than su⇥ciency (although
they are related).

Now that we have defined a likelihood, we are ready to define a Maximum Likelihood
Estimator:
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where ‘argmax’ simply means the argument or value of � within the set � that maximizes
the function. That is, the actual value that we get as an estimate, after plugging in the
sample x into this equation, is the value of � where this function has a maximum. We
can illustrate this concept visually by plotting this function with possible parameter val-
ues on the X-axis and the Likelihood function on the Y-axis (see class notes for a diagram).

To determine the MLE means finding the maximum of a function. There are broadly
two ways to do this: a. derive a specific (useful) formula for the MLE, b. in more complex
cases, use an algorithm to determine the MLE. While the former is a reasonable strategy in
some cases (as we will discuss today), as we will see later in the class, sometimes the latter
strategy is the only way to determine the MLE. To derive a specific formula for an MLE, as
you’ll recall from calculus, a way to solve the problem of finding a maximum of a function
is to find where the first derivative of the function takes a value of zero, and then check to
see if the second derivative at this point is negative, to determine whether this point is a
maximum, i.e. instead of a minimum (or saddle point). When using this approach to find
the maximum, it is often easier to deal with the natural log of the likelihood:

l(�|x) = ln [L(�|x)] (5)

Since logarithms are ‘monotonic’ they change the shape of the likelihood function but do
not change the location of the maximum, i.e. maximizing the log-likelihood produces the
same result as maximizing the likelihood. Part of the reason log-likelihoods are easier to
deal with is they take advantage of the property ln(ab) = ln(a) + ln(b), such that the
likelihood of an i.i.d. sample:

L(�|x1, x2, ..., xn) = L(�|x1)L(�|x2)...L(�|xn) (6)

when expressed as a log-likelihood is:
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As an example, let’s derive the MLE of the the parameter µ of a normally distributed
random variable X � N(µ,⇥2) for an i.i.d sample of size n, i.e. our sample is a random

4

X2(⌦) : ⌦ ! R (26)

⌦ (27)

Pr(F) (28)

X = x (29)

Pr(X) (30)

X = x , Pr(X)
S (31)

l(✓|x) = ln[L(✓|x)] (32)

5 Probability Functions

To use sample spaces in probability, we need a way to map these sets to the real numbers.
To do this, we define a function. Before we consider the specifics of how we define a prob-
ability function or measure, let’s consider the intuitive definition of a function:

Function (intuitive def.) ⌘ a mathematical operator that takes an input and produces an
output.

This concept is often introduced to us as Y = f(X) where f() is the function that maps
the values taken by X to Y . For example, we can have the function Y = X

2 (see figure
from class).

We are going to define a probability function which map sample spaces to the real line
(to numbers):

Pr(F) : F ! [0, 1] (33)

where Pr(S) is a function, which we could have written f(S).

To be useful, we need some rules for how probability functions are defined (that is, not all
functions on sample spaces are probability functions). These rules are are called the axioms
of probability (note that an axiom is a rule that we assume). There is some variation in
how these are presented, but we will present them as three axioms:

Axioms of Probability

1. For A ⇢ ⌦, P r(A) > 0

2. Pr(⌦) = 1

3. For A1,A2, ... 2 ⌦, if Ai\Aj = ; (disjoint) for each i 6= j: Pr(
S1

i
Ai) =

P1
i
Pr(A)

8

[0,⇧) (3)

MLE(p̂) =
1

n

n⇥

i=1

xi (4)

T (X = x) = X̄ = µ̂ ⇥ N(µ,⇤2/n) (5)

T (X = x) = �̂ = p̂ =
1

n

n⇥

i=1

xi (6)

� ⌃ � (7)

�̂ (8)

N = {1, 2, 3, ...} (9)

Z = {...� 3,�2,�1, 0, 1, 2, 3, ...} (10)

R = {⇤ 0 ⌅} (11)

�⇧ > x > ⇧ (12)

⇥ (13)

F (14)

Pr(F) (15)

⌥ ⌃ F (16)

f(X(F), P r) : {X, P r(X)} ⌅ R (17)

This A ⌃ F then Ac ⌃ F

A1,A2, ... ⌃ F then
��

i=1Ai ⌃ F

⌥, {H}, {T}, {H,T} (18)

F (19)

X1, ..., Xk : ⇥ ⌅ Rk (20)

[X1 = x1, ..., Xk = xk] (21)

Pr(X1, ..., Xk) (22)

E(⇥) (23)

E (24)
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MLE under a normal model 1
• Recall that the likelihood for a sample of size n generated under a normal 

model has the following likelihood

• By remembering the properties of ln, we can derive the log-likelihood for 
this model

• To obtain the maximum of this function with respect to    we can then 
take the partial (!!) derivative with respect to    and set this equal to zero, 
then solve (this is the MLE!):

vector X = x of n elements, where each Xi = xi is normally distributed. In this case, the
likelihood equation is:

L(µ,�2|X = x) =
nY

i=1

1p
2⇡�2

e
�(xi�µ)2

2�2 (8)

where
Qn

i=1 x1 ⇤ x2 ⇤ ... ⇤ xn. If we now consider the log likelihood, from equation (15) and
the following properties of natural log (ln) and exponential (e) functions:

1. ln 1
a = �a

2. ln(a2) = 2a

3. ln(ab) = a+ b

4. ln(ea) = a
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That’s it for today

• Next lecture, we will complete our discussion of MLE and (briefly) 
introduce confidence intervals (and then start introducing 
hypothesis testing!)


